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Abstract

Concept prerequisite learning focuses on machine learning
methods for measuring the prerequisite relation among con-
cepts. With the importance of prerequisites for education, it
has recently become a promising research direction. A major
obstacle to extracting prerequisites at scale is the lack of large
scale labels which will enable effective data driven solutions.
We investigate the applicability of active learning to concept
prerequisite learning. We propose a novel set of features tai-
lored for prerequisite classification and compare the effec-
tiveness of four widely used query strategies. Experimental
results for domains including data mining, geometry, physics,
and precalculus show that active learning can be used to re-
duce the amount of training data required. Given the proposed
features, the query-by-committee strategy outperforms other
compared query strategies.

Introduction
A prerequisite relation describes a fundamental directed re-
lation among concepts in knowledge structures. Following
the learning order that is consistent with the underlying
prerequisite relations is also crucial to successful teaching
and learning processes. For the example shown in Figure 1,
learning the concept “Hidden Markov model” requires first
understanding its prerequisites such as “posterior probabil-
ity” and “maximum likelihood”. Obtaining prerequisite re-
lations is crucial for a variety of other educational applica-
tions such as curriculum planning (Agrawal, Golshan, and
Papalexakis 2015) and intelligent tutoring systems (Aleven
and Koedinger 2002). It can be especially useful for on-
line learning at scale where students are faced with a large
amount of educational resources.

This paper focuses on the concept prerequisite learning
problem (Talukdar and Cohen 2012; Liang et al. 2015),
where the goal is to predict whether a concept A is a prereq-
uisite of a concept B given the pair (A,B). Although there
has been research on learning prerequisites (Vuong, Nixon,
and Towle 2011; Talukdar and Cohen 2012; Liang et al.
2015; Wang et al. 2016; Scheines, Silver, and Goldin 2014;
Liu et al. 2016; Pan et al. 2017), the lack of large scale pre-
requisite labels remains a major obstacle for effective ma-
chine learning-based solutions.
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Figure 1: Concept prerequisite relations. “A → B” repre-
sents that the concept A is a prerequisite of the concept B.

A possible solution for learning a good classifier given
limited labeled instances is active learning (Angluin 1988;
Cohn, Ghahramani, and Jordan 1996; Settles 2010), since it
is designed to learn classifiers with significantly fewer labels
by actively directing the query to the most “valuable” exam-
ples. As such, active learning methods could could also be
applied to solving the current challenges of concept prereq-
uisite learning.

The goal of this work is to make the first attempt of ap-
plying active learning to the concept prerequisite learning
problem. We investigate three families of query selection
strategies by comparing their effectiveness on reducing the
amount of training data. The first are informativeness-based
methods such as uncertainty sampling (Lewis and Catlett
1994) and query-by-committee (Seung, Opper, and Som-
polinsky 1992). The second are methods which take both in-
formativeness and representativeness into account. The third
are diversity-based strategies which aim to cover the feature
space as broadly as possible. For classification, we propose
a novel set of features for representing concept pairs and
choose from four widely used classifiers the most suitable
one for conducting active learning experiments. Our experi-
ment results show a clear win for query-by-committee over
other compared query strategies and show that active learn-
ing can be used to reduce the amount of training data re-
quired for concept prerequisite learning.



Related Work
Regardless of being a relatively new research area, data-
driven methods for learning concept prerequisite relations
have been explored in multiple works. Established methods
in educational data mining have been devoted to analyzing
student assessment data which records the performance of
students on different items (Vuong, Nixon, and Towle 2011;
Scheines, Silver, and Goldin 2014; Chen, Wuillemin, and
Labat 2015; Chen, González-Brenes, and Tian 2016). Such
methods require that the association between test items and
handcrafted knowledge components is set beforehand and
are not applicable for processing a large concept set. Gor-
don et al. (2016) proposed an information-theoretic metric
to capture concept dependencies in a scientific corpus. Their
method relies on topic modeling techniques and requires hu-
man annotations of latent topics to make the result inter-
pretable. Wikipedia has been exploited to find prerequisite
relations among universally shared concepts. (Talukdar and
Cohen 2012; Liang et al. 2015; Wang et al. 2016; Agrawal,
Golshan, and Papalexakis 2015), using both the Wikipedia
article content and their linkage structures. Besides informa-
tion in Wikipedia, Pan et al. (2017) propose to include other
features such as video references and sentence references for
learning prerequisite relations among concepts in MOOCs.
In addition, course prerequisites have also been used for
learning concept prerequisite relations (Yang et al. 2015;
Liang et al. 2017). To our knowledge, active learning has not
been applied to the concept prerequisite learning problem.

Pool-based Active Learning
Pool-based sampling (Lewis and Gale 1994) is a typical ac-
tive learning scenario in which one maintains a labeled set
Dl and an unlabeled set Du. In particular, we let Du ∪Dl =
D = {1, . . . , n} and Du ∩ Dl = ∅. For i ∈ {1, . . . , n},
we use xi ∈ Rd to denote a feature vector representing the
i-th instance, and yi ∈ {−1,+1} to denote its ground truth
class label. At each round, one or more instances are selected
from Du whose label(s) are then requested, and the labeled
instance(s) are then moved to Dl. Typically instances are
queried in a prioritized way such that one can obtain good
classifiers trained with a substantially smaller setDl. We fo-
cus on the pool-based sampling setting where queries are
selected in serial, i.e., one at a time. Algorithm 1 presents
the typical setting of serial pool-based active learning.

Query Strategies
The key component of active learning is the design of an
effective criterion for selecting the most “valuable” instance
to query, which is often referred to as query strategy. We use
s∗ to refer to the selected instance by the strategy. In general,
different strategies follow a greedy framework:

s∗ = argmax
s∈Du

min
y∈{−1,1}

f(s; y,Dl), (1)

where f(s; y,Dl) ∈ R is a scoring function to measure the
risks of choosing y as the label for xs ∈ Du given an exist-
ing labeled set Dl.

Algorithm 1 Pseudocode for pool-based active learning.
Input:
D ← {1, 2, ..., n} % a data set of n instances

Initialize:
Dl ← {s1, s2, ..., sk} % initial labeled set with k

seeds
Du ← D\Dl % initial unlabeled set

while Du 6= ∅ do
Select s∗ from Du % according to a query strategy
Query the label ys∗ for the selected instance s∗
Dl ← Dl ∪ {s∗}
Du ← Du\{s∗}

end while

We investigate four commonly used query strategies:
uncertainty sampling (Lewis and Catlett 1994), query-
by-committee (Seung, Opper, and Sompolinsky 1992),
QUIRE (Huang, Jin, and Zhou 2014), and diversity sam-
pling. These strategies are designed based on different as-
sumptions: The first two selection strategies are based on
the informativeness of the instance estimated by classifiers;
QUIRE is based on the combination of informativeness and
representativeness; Diversity sampling is based on the diver-
sity in the feature space. Although being different, we show
that under the binary classification setting, they can all be
reformulated as Eq. (1).
Uncertainty Sampling selects the instance which it is least
certain how to label. We choose to study one popular
uncertainty-based sampling variant, the least confident. Sub-
ject to Eq. (1), the resulting approach is to let

f(s; y,Dl) = 1− P∆(Dl)(ys = y|xs), (2)

where P∆(Dl)(ys = y|xs) is a conditional probability which
is estimated from a probabilistic classification model ∆
trained on {(xi, yi) | ∀i ∈ Dl}.
Query-By-Committee maintains a committee of models
trained on labeled data, C(Dl) = {g(1), ..., g(C)}. It aims
to reduce the size of version space. Specifically, it selects
the unlabeled instance about which committee members dis-
agree the most based on their predictions. Subject to Eq. (1),
the resulting approach is to let

f(s; y,Dl) =
∑C

k=1
1[y 6= g(k)(xs)], (3)

where g(k)(xs) ∈ {−1, 1} is the predicted label of xs using
the classifier g(k).
QUIRE aims to measure and combine the two types of
query selection criteria, informativeness and representative-
ness, using a comprehensive max-margin framework. Sub-
ject to Eq. (1), the resulting approach is to let

f(s; y,Dl) = (Lu,lyl + Lu,sy)TL−1
u,u(Lu,lyl + Lu,sy)

− 2yLs,lyl − Ls,s, (4)

where L = (K + λI)−1 and K is the kernel matrix of
size n × n and f(s; y,Dl) is equal to the negative margin
if ys = y up to a constant. Due to limited space, please refer



to (Huang, Jin, and Zhou 2014) (pp. 1938–1940) for their
detailed notations.
Diversity Sampling aims to select instances that cover as
much of the feature space as possible. It selects the unlabeled
instance with the lowest average cosine similarity between
the instance’s feature vector and those of the instances in
the current training labeled dataset. Subject to Eq. (1), the
resulting approach is to let

f(s; y,Dl) =
∑
i∈Dl

1− cos(xs,xi) (5)

where cos(xi,xj) =
xi·xj

|xi||xj | is the cosine similarity func-
tion. Note label y is not considered in this method.

Experimental Design
For experiments, we apply the previously mentioned active
learning algorithms to concept prerequisite learning prob-
lem (Liang et al. 2015). Given a pair of concepts (A, B), we
predict whether or not A is a prerequisite of B, which is a
binary classification problem. Here, cases where B is a pre-
requisite of A and where no prerequisite relation exists are
both considered negative.

Dataset
We use the Wiki concept map dataset (Wang et al. 2016)
which is collected from textbooks on four different edu-
cational domains. For each domain, the dataset consists of
prerequisite pairs in the concept map. In the preprocessing
stage, we validate whether each of the prerequisite relations
in the dataset satisfies the required properties of a strict par-
tial order (i.e., transitivity and irreflexivity) and ask domain
experts to manually correct their labels if needed. We also
expand the dataset by using the irreflexive and transitive
properties: (i) add (B, A) as a negative sample if (A, B) is
a positive sample; (ii) add (A, C) as a positive sample if both
(A, B) and (B, C) are positive samples. Table 1 summarizes
the statistics of the our final processed dataset.

Domain # Concepts # Pairs # Prerequisites
Data Mining 120 826 292
Geometry 89 1681 524
Physics 153 1962 487
Precalculus 224 2060 699

Table 1: Dataset statistics.

Feature Description
For each concept pair (A,B), we calculate two types of fea-
tures from information retrieval and natural language pro-
cessing: graph-based and text-based features. Note that for
all features, we use a Wikipedia dump of Oct. 2016.

Graph-based Features (GF) The first type of feature is
designed to utilize the link structure of Wikipedia. For con-
venience, we use the following notations: In(A) is the set
of concepts that link to A; Out(A) is the set of concepts
which A links to; C = {c1, ..., cN} is the concept space,

i.e. all concepts in Wikipedia. Specifically, different types of
graph-based features are:
• In/Out Degree. (GF #1-#4) The in/out degree of A/B.
• Common Neighbors. (GF #5) The number of common

neighbors of A and B, i.e. |Out(A) ∩Out(B)|.
• # Links. (GF #6-#7) The number of times A/B links to
B/A. The link structure within Wikipedia can be used as
a proxy for prerequisite relations. The intuition is that a
concept is usually linked to its prerequisites.

• Link Proportion. (GF #8-#9) The proportion of pages
that link to A/B also link to B/A, i.e. |In(A)∩In(B)|

|In(A)| and
|In(A)∩In(B)|
|In(B)| .

• NGD. (GF #10) The Normalized Google Distance (Witten
and Milne 2008) between A and B. Specifically,

NGD(A,B) =

max(log |In(A)|, log |In(B)|)− log |In(A) ∩ In(B)|
logN −min(log |In(A)|, log |In(B)|)

• PMI. (GF #11) The Pointwise Mutual Information relat-
edness between the incoming links of A and B. (Ratinov
et al. 2011)

PMI(A,B) = log
N · |In(A) ∩ In(B)|
|In(A)| · |In(B)|

• RefD. (GF #12) A metric to measure how differently A
and B’s related concepts link to each other. Proposed by
(Liang et al. 2015), RefD has been used as a proxy to
measure concept prerequisite relations.

RefD(A,B) =

∑N
i=1 r(ci, B) · w(ci, A)∑N

i=1 w(ci, A)
−∑N

i=1 r(ci, A) · w(ci, B)∑N
i=1 w(ci, B)

where w(ci, A) weights the importance of ci to A; and
r(ci, A) is an indicator showing whether ci links to A.

• PageRank. (GF #13) The difference between A and B’s
PageRank scores (Page et al. 1999). The PageRank score,
based on the link analysis, can be used to estimate the
importance of concepts.

• HITS. (GF #14-#15) The difference between A and B’s
hub scores and the difference between their authority
scores (Kleinberg 1999). Similar to PageRank, authority
and hub scores are used as proxies for concept impor-
tance.

Text-based Features (TF) The second type of feature is
designed to utilize textual content in the Wikipedia page.
Note we have trained a topic model (Blei, Ng, and Jor-
dan 2003) (#topics=300) on the Wiki corpus. We have also
trained a word2vec (Mikolov et al. 2013) (size=300) model
on the same corpus with each concept treated as an individ-
ual token. Specifically, different types of text-based features
are:



• 1st Sent. (TF #1-#2) WhetherA/B appears in the first sen-
tence of B/A. The first sentence of a Wikipedia article
is usually the definition of the concept and the concepts
mentioned in the sentence are more likely to be a prereq-
uisite.

• In Title. (TF #3) Whether A appears in B’s title. For ex-
ample, “machine learning” is contained in “Supervised
machine learning”.

• Title Jaccard. (TF #4) The Jaccard similarity between A
and B’s titles.

• Length. (TF #5-#6) The number of words of A/B’s con-
tent. This might serve as a proxy for complexity level and
popularity of the concept.

• Mention. (TF #7-#8) The number of times A/B are men-
tioned in the content of B/A. The intuition is that the
important prerequisites of a concept might be mentioned
many times in its content.

• NP. (TF #9-#11) The number of noun phrases in A/B’s
content; The number of common noun phrases. If the con-
cept is very general, its content tends to have more noun
phrases.

• Tf-idf Sim. (TF #12) The cosine similarity between Tf-idf
vectors for A and B’s first paragraphs.

• Word2vec Sim. (TF #13) The cosine similarity between
vectors of A and B trained by word2vec. Both word2vec
and tf-idf similarities are measures for semantic related-
ness, which is needed because usually two concepts with
prerequisite relation are semantically related.

• LDA Entropy. (TF #14-#15) The Shannon entropy of the
LDA vector of A/B.

H(A) = −
T∑
i

pAi log pAi

where pA is A’s LDA vector, i.e., the distribution over T
topics. More advanced concepts usually focus on fewer
topics, thus leading to a lower LDA entropy.

• LDA Cross Entropy. (TF #16-#17) The cross entropy
between the LDA vector of A/B and B/A. Gordon et
al. (2016) propose to use this feature to capture concept
dependencies in a scientific corpus.

H(A;B) = H(A) +DKL(A||B)

where H(A) is the entropy of A’s LDA vector, and
DKL(A||B) is the Kullback-Leibler divergence between
A and B’s LDA vectors.

Experimental Results
Evaluation of Classification
Before investigating the performance of active learning, we
first evaluate concept prerequisite learning under the tradi-
tional binary classification setting. In our experiments, we
employ four widely used binary classifiers: Naı̈ve Bayes
(NB), Logistic Regression (LR), Support Vector Machine
(SVM) (Cortes and Vapnik 1995), and Random Forest

Classifier Metric Data Mining Geometry Physics Precalulus

NB

P 71.5 84.4 54.3 85.7
R 28.5 44.3 71.9 66.9
F1 37.8 58.1 61.6 75.0
AUC 81.4 87.1 85.5 93.2

LR

P 65.8 71.3 58.0 81.7
R 77.4 81.3 78.8 88.4
F1 71.1 75.8 66.8 84.8
AUC 85.9 91.6 89.2 95.4

SVM

P 73.7 82.8 77.9 86.7
R 64.7 69.9 50.3 81.4
F1 68.6 75.5 61.1 83.9
AUC 85.0 91.3 88.8 95.1

RF

P 80.7 95.0 85.2 90.2
R 73.3 84.7 59.3 87.1
F1 76.7 89.5 69.9 88.6
AUC 92.2 97.8 93.9 97.5

Table 2: Results (%) for concept prerequisite relation classi-
fication.

(RF) (Breiman 2001). Specifically, we set C = 1.0 for LR,
use a linear kernel for SVM, and use 200 trees for RF. For
each dataset, we apply 5-fold cross validation and report the
average precision (P ), recall (R), F1-score (F1) and Area
under the ROC curve (AUC).

As shown in Table 2, the classification results vary by dif-
ferent methods. Overall, Naı̈ve Bayes performs the worst
in terms of both F1 and AUC, which is due to the fact
that the strong independence assumption does not hold for
our designed feature set. For example, the number of noun
phrases might be correlated with the number of words;
PageRank and HITS scores are not independent either. As
linear classification models, LR and SVM lead to similar
F1 and AUC while the former has higher recall and the
latter has higher precision. Among four methods, Random
Forest outperforms other three across all four domains, by
5.6%, 13.7%, 3.1%, and 3.8% respectively w.r.t. F1 and
6.3%, 6.1%, 4.7%, and 2.1% w.r.t. AUC. This might be be-
cause, compared with a linear combination of features for
classification, the procedure of RF (the bagging and random
selection of feature set) is more suitable for capturing the
relation between the proposed feature set and concept pre-
requisite relations. We use RF in the following experiments
as the classification model.

Feature Analysis
We also conduct a feature analysis in order to gain more
insights on the proposed feature set. Table 3 lists top 10 fea-
tures for each domain. Since Random Forest is used, the
feature importance is calculated by “mean decrease impu-
rity”. It is defined as the total decrease in node impurity,
weighted by the probability of reaching that node, averaged
over all trees of the ensemble. From Table 3, we can observe
the following: (i) While the ranking of features is different
across four domains, there are many common important fea-
tures such as PageRank, HITS’s authority score, RefD, etc;
(ii) Among top features, there are more graph-based fea-
tures than text-based features. This might be because cur-
rent text-based features are still very simple and more ef-



Data Mining Geometry Physics Precalculus
Authority diff PageRank diff PageRank diff PageRank diff

LDA entropy of A In degree of A RefD Authority diff
PageRank diff Out degree of A # mentions of A in B RefD
In degree of A RefD In degree of B # mentions of A in B

RefD # mentions of A in B Authority diff Out degree of A
LDA entropy of B LDA entropy of A Link proportion of B A in B’s 1st sentence

In degree of B A in B’s 1st sentence Out degree of A In degree of A
LDA cross entropy (A;B) Length of A In degree of A Hub diff

Link proportion of A # NPs in A LDA entropy of A # NPs in A
LDA cross entropy (B;A) # mentions of B in A # NPs in B # mentions of A in B

Table 3: Top 10 important features for each domain.

fective text features are yet to be explored. Several possi-
ble choices include lexico-syntactic patterns (Hearst 1992),
structural features (Pan et al. 2017), etc. (iii) Top text-based
features are LDA entropy, LDA cross entropy, Mention, and
NP. Similarity-based features such as Tf-idf and Word2vec
similarities are not as important; (iv) Top graph-based fea-
tures are PageRank, authority score, RefD, in/out degree,
and link proportion. Other graph features such as common
neighbors, NGD, and PMI are less important. From obser-
vation (iii) and (iv) we find that symmetric pairwise fea-
tures such as similarity and PMI are not important in cur-
rent in-domain classification setting. This can be explained
by noticing that the motivation of designing these features
is to add constraints on the semantic relatedness, which is
usually already satisfied in the in-domain setting. We expect
such features to be more important in a cross-domain classi-
fication setting, where the concept space is much larger and
more diverse.

Evaluation of Active Learning
Settings We follow the typical evaluation protocol of
pool-based active learning. We first randomly split a dataset
into a training set D and a test set Dtest with a ratio of 2:1.
Then we randomly select 20 samples from the training set
as the initial query set Q and compute its closure Dl. Mean-
while, we set Du = D\Dl. In each iteration, we pick an un-
labeled instance fromDu to query for its label, update the la-
bel set Dl, and re-train a classification model on the updated
Dl ∩ D. The re-trained classification model is then evalu-
ated on Dtest. In all experiments, we use a random forests
classifier (Breiman 2001) with 200 trees as the classifica-
tion model. We use Area under the ROC curve (AUC) as
the evaluation metric. Taking into account the effects of ran-
domness subject to different initializations, we continue the
above experimental process for each method repeatedly with
300 preselected distinct random seeds. Their average scores
and confidence intervals (α = 0.05) are reported. We com-
pare the following five query strategies, most of which have
been introduced in previous sections:

• Random: randomly selecting an instance to query. We
choose this as the baseline for comparison.

• LC: least confident sampling, a widely used uncertainty

sampling variant. We use a logistic regression model to
estimate the posterior probabilities.

• QBC: query-by-committee algorithm. We apply query-
by-bagging (Mamitsuka 1998) and use a committee of
three decision trees.

• QUIRE: a strategy for querying informative and represen-
tative examples. We follow the authors’ experimental ap-
proach to use an RBF kernel and set the parameter λ = 1.

• Diversity: a strategy for selecting the unlabeled instance
that is as diverse as possible in the feature space of current
labeled set.

Results Figure 2 shows the AUC results of different query
strategies for concept prerequisite learning. For each case,
we present the average values and 95% confidence intervals
of repeated 300 trials with different train/test splits. From
the figure we have the following observations:

First, comparing results on four domains, we can find
different query strategies have relatively consistent learn-
ing curves, with the only exception of LC on the Precal-
culus domain. This is possibly caused by that the num-
ber of concept in Precalculus is much larger than other
domains and the logistic regression classifier used by LC
failed to give an accurate uncertainty estimation. Second,
when comparing different strategies with the Random base-
line, we find: (i) Informativeness-based methods (least con-
fident sampling and query-by-committee) show substantial
improvement over random; QBC is constantly outperform-
ing other query strategies on all domains, which shows the
advantage of using ensemble method to estimate uncertainty
over the single linear classification model as used by LC.
This again suggests that decision tree-based classifiers are
more effective given the proposed feature set. (ii) Diversity-
sampling is not significantly different from random, which
suggests that choosing the instance as diverse as possible in
the proposed feature space is not effective. (iii) QUIRE per-
forms worse than random, especially during the early stage
of active learning. It is also worth mentioning that QUIRE
requires significantly longer time for choosing instances be-
cause of calculating the inverse and determinant of large ma-
trices. In addition, for our datasets, by empirically tuning the
RBF parameter γ for the best, we still did not find any ad-
vantages of QUIRE over LC or QBC. This might be because
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Figure 2: Comparison of different query strategies for concept prerequisite classification.

the used RBF kernel, on which QUIRE’s performance is crit-
ically dependent, does not really suit our provided features.

To sum up, we find that informativeness-based query
strategies, especially query-by-committee, is more effective
for concept prerequisite learning given the proposed feature
set. Different active learning strategies can be used to reduce
the amount of training data required to get an expected AUC
score for concept prerequisite learning.

Conclusion and Future Work
We made several contributions to concept prerequisite learn-
ing. In order to deal with the lack of large scale labels
which makes problematic supervised learning for concept
prerequisite learning, we investigated the applicability of ac-
tive learning. Our active learning experiments for compar-
ing different query strategies found that query-by-committee
constantly outperforms other methods including uncertainty
sampling, QUIRE, and diversity sampling. We proposed a
novel set of features for concept pair representation tailored
for the concept prerequisite learning problem. The top fea-
tures identified by the feature importance analysis hopefully

will be helpful for other supervised prerequisite learning
methods.

Future work could be to design active learning query
strategies better tailored to the concept prerequisite learning
problem. In the typical setup of active learning, the depen-
dency among labeled or unlabeled instances is not consid-
ered. However, since the prerequisite relation is both transi-
tive and irreflexive, then when an unlabeled instance is la-
beled, there could be other unlabeled instances whose la-
bels can be deduced by applying logical reasoning with the
two properties. Query strategies that can take such properties
into account will make active learning more effective.

It would be useful to investigate in more detail the se-
mantic representation of concept pairs for prerequisite learn-
ing and to design more complex features such as complexity
level features, structural features, etc. and see their effect on
the classification performance.
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