Exploring Web Scale Language Models
for Search Query Processing

. * . . .
Jian Huang Jianfeng Gao Jiangbo Miao
Information Sciences and Microsoft Research Facebook
Technology One Microsoft Way 704 Hibiscus Place

Pennsylvania State University
University Park, PA 16802
jhuang@ist.psu.edu

Xiaolong Li
Microsoft Research
One Microsoft Way

Redmond, WA 98052

Xijaolong.Li@microsoft.com

ABSTRACT

It has been widely observed that search queries are com-
posed in a very different style from that of the body
or the title of a document. Many techniques explicitly
accounting for this language style discrepancy have shown
promising results for information retrieval, yet a large scale
analysis on the extent of the language differences has been
lacking. In this paper, we present an extensive study on
this issue by examining the language model properties of
search queries and the three text streams associated with
each web document: the body, the title, and the anchor
text. Our information theoretical analysis shows that queries
seem to be composed in a way most similar to how authors
summarize documents in anchor texts or titles, offering a
quantitative explanation to the observations in past work.

We apply these web scale n-gram language models to
three search query processing (SQP) tasks: query spelling
correction, query bracketing and long query segmentation.
By controlling the size and the order of different language
models, we find that the perplexity metric to be a good
accuracy indicator for these query processing tasks. We
show that using smoothed language models yields significant
accuracy gains for query bracketing for instance, compared
to using web counts as in the literature. We also demon-
strate that applying web-scale language models can have
marked accuracy advantage over smaller ones.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.4.m [Information Systems]:
Miscellaneous

Keywords

Web n-gram, language models, very large-scale experiments,

*Work done while first author was visiting Microsoft.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.

WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.

ACM 978-1-60558-799-8/10/04.

. Redmond, WA 98052
jfgao@microsoft.com

Kuansan Wang

Microsoft Research

One Microsoft Way
Redmond, WA 98052

Kuansan.Wang@microsoft.com

. San Jose, CA, 95117
jomiao@facebook.com

Fritz Behr
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
fritzb@microsoft.com

search query processing

General Terms

Algorithms, Experimentation

1. INTRODUCTION

The massive data freely available on the web has spurred
significant interests to tap on the web as a corpus for all
manners of IR and NLP research [2]. Enabled by the power
of such web scale data, simple models can yield remarkable
results in various real-world applications such as statistical
machine translation [17]. Many of these models rely on the
web count information, either as web page hits count or
as term frequency statistics derived from a large sample
of the web (e.g. the Google 1T web corpus [8] — 1T
Corpus for short hereafter). N-gram language models (LM)
represent the probability of the occurrence of a word w
accounting for its (limited) history h.. The advantages of
this representation over count statistics are twofold. First,
compared to models which are agnostic of word order (e.g.
the bag-of-words model), LM accounts for the order of words
which is important for many tasks (e.g. ‘blue sky’ and ‘sky
blue’ are syntactically and semantically different). Second,
LM is capable of predicting non-zero probability for a word
sequence unseen in training by interpolating or backing off
to lower order models, and thus it is more robust to rare
n-grams in application?®.

Building web-scale language models can significantly ad-
vance many of the IR research and applications, yet the
sheer size of the web presents great engineering challenges
for applying many of the classical language modeling tech-
niques. For the purpose of developing a web machine trans-
lation system, an approximation approach dubbed Stupid
Backoff was proposed [9] with a constant backoff coefficient,
permitting the model to be efficiently trained for web data

Tndeed, an order-3 language model (derived from a trillion-
token web corpus) with 4 billion n-grams still encountered
more than 30% unseen tri-grams in testing. The unseen data
problem exacerbates dramatically in higher order models
due to the curse of dimensionality.

in the MapReduce environment. However, the model is no
longer a statistical model for not properly normalizing the
probabilities. Enabled by an ingenious data structure to
store n-grams in backorder trees, MSRLM [25] allows the
smoothing factor to be properly estimated on the web scale.
An improved version of MSRLM called Constantly Adaptive
Language Modeling technique (CALM) was introduced [30]
which allows the language model be built incrementally with
the new web data. This work leverages these recent advances
in large scale language modeling techniques to build web
scale n-gram models.

The n-gram language models in this work are built from
different web sources, including the different text fields from
the documents such as titles, anchor texts and body texts,
as well as web search queries. Recently, IR techniques
accounting for these alternative data sources, compared
to using only document texts in tradition, have achieved
promising results (for instance, [3, 15] demonstrated sig-
nificant improvement for ranking using search queries). In
particular, Svore et al. [27] studied the contributions of these
different sources to IR accuracy and significantly improved
the state-of-the-art ranking function BM25.

Complementary to these works in document ranking, we
showcase the value of these web n-gram language models
with a set of “Search Query Processing” (SQP) tasks. In
the web search setting, SQP tasks distinguish themselves
from many traditional IR/NLP tasks in at least two aspects.
(1) SQP tasks deal with the query language instead of the
formal natural language as that found in the text of a clean
corpus such as the Wall Street Journal. The query language
is found to be dominated by noun phrases that are loosely
attached [5]. This sharply contrasts with text written in
a formal language that well conforms to the underlying
grammar. (2) In the web context, SQP tasks are faced
with a living language with an open-domain and dynamic
vocabulary, as new words are constantly being created. For
instance, the query log of 2009 of a web search engine is
drastically different from that of 2007. Even the grammar
changes over time: it has been observed that the average
query length increases over the years [1] indicating users
are becoming more sophisticated. These challenges on the
one hand render many conventional or elaborate methods
inapplicable. On the other hand, they present opportunities
where web n-gram LMs are particularly suitable to apply.

We highlight the contributions of this work as follows:

e We build web-scale language models from web sources
including the search queries, as well as the titles, the
anchor texts and the bodies of web documents. To the
best of our knowledge, this is the first extensive and
empirical analysis on the language model properties of
these different sources as well as the model sizes and
orders on the web scale.

e Unsupervised methods, including a novel query seg-
mentation approach, are applied to efficiently tackle
three search query processing tasks from query spelling
correction to analyzing sub-query structures. Through
these SQP tasks, we explore how these language
differences are incarnated in the accuracy of these real
world applications in web search engines.

The remainder of the paper is organized as follows. We

first introduce the Web N-gram Language Models Collection
used in this work in Section 2. This is followed by a
large-scale information theoretic study in Section 3 that
quantifies the language differences of the language models
from different web sources. Motivated by these n-gram
property findings, Section 4 illustrates how these different
sources as well as the model order and size can impact the
accuracy of the query spelling correction task. Section 5 and
6 analyze the syntactic structures of short and long queries
respectively and further corroborate the findings in Section
3. Where appropriate, we will discuss the related work of
these individual SQP tasks and their distinctions with the
traditional counterparts. Section 7 concludes this paper and
discusses future work.

2. THE WEB N-GRAM LANGUAGE MODEL
COLLECTION

On the outset, we describe the WEB N-GRAM LAN-
GUAGE MODELS COLLECTION (WNLMC) used in this work.
The collection is built from the high quality English web
documents®, in the scale of billions of pages and tril-
lions of tokens, served by Microsoft’s Bing search engine
(www.bing.com).

We first highlight several distinctive features of the WNLMC
collection. First, during its construction, special attention
has been paid to the different data sources (see Table 1).
The collection consists of several n-gram language models
built from two data sources. The document source language
models are derived from the text streams associated with
the documents from the crawl of the web. The body
language model is built from the segmented sentences from
the extracted raw text of web documents. The anchor model
is built using the extracted anchor text of the hyperlinks
and the title model using the titles of the web pages. In
addition to web documents, we also sampled search queries
from half-year worth of search query logs and built the query
language model. The raw text extracted from these different
sources goes through similar preprocessing steps to ensure
uniformity: the text is white-space tokenized and lowercased
(the trained language models are case insensitive), numbers
are retained (concepts such as windows 7 are included in
the models) and no stemming/inflection was performed.
Also note that in building the language models, sentence
boundaries® are preserved by adding special tokens [S] and
[/S]. N-grams appearing less than certain raw frequency
thresholds (see Table 1) are discarded from model training.
In application, words unseen in training are replaced by
the token [UNK] (whose probability is derived from the
smoothing process). The adoption of very low thresholds
4 permits infrequent n-grams to be included in the models.
As we will show in the sequel, language models built from
these data sources are very different in various applications.

Second, in addition to the observed raw frequency of n-
grams, smoothing is performed (made possible with the
cloud computing infrastructure) to yield very large scale n-

2These pages have the top PageRank scores computed from
the web map which is constructed from the web crawl.

3 A sentence boundary is to be understood broadly here. For
body text this is the natural sentence boundary. For anchor,
title and query, the entire sequence of words constitutes a
‘sentence’, even if it is not followed by a punctuation.

41T Corpus contains frequency counts with higher cutoff.

Table 1: Statistics of the web n-gram language models collection.

Dataset body anchor title query

#Unigrams 68,704,702 40,281,581 21,281,543 97,539,950
#Bigrams 789,522,728 292,821,791 200,245,295 473,585,620
#Trigrams 2,967,982,818 767,759,313 553,335,418 | 1,031,936,006
#Four-grams® N/A | 1,070,818,529 765,952,682 N/A
Total entries 3,826,210,248 | 2,171,681,214 | 1,540,814,938 | 1,603,061,576
Size on disk” 158GB 100GB 70GB 65GB
Count threshold 20 5 1 1

Order 4 anchor and title LMs are included in the size studies. As we show later,
order 4 LMs only yields small gains over order 3 LMs but are much larger.
b N-gram entries as well as other statistics and model parameters are stored.

gram language models (LM), the largest LMs we are aware
of to date. The main benefit of performing smoothing,
compared to using raw frequency in a mazimum likelihood
estimation (MLE) manner, is tiny (but non-zero) probability
is given to unseen n-grams. This has been shown to yield
significantly better prediction power in various applications
[31, 10]. Even though algorithms for building n-gram models
are widely known [10], as we mentioned earlier applying
them on the web scale (trillion-token corpus) is non-trivial.
The smoothing technique implemented in this work is based
on recent advances in web language modeling [25, 30].
Specifically, for a trigram model, a general formula in the
following form is usually used for smoothing:

P(w;|wi—ow;—1) =
{ C(wi—awi—jw;)—D(C(w;—2w;_1w;))

C(wi—2w;—1)
a(wi—2wi—1)P(w;|wi—1) otherwise
where C(-) is the raw count of the n-gram in the training
corpus and a(w;—2w;—1) is a normalization factor ensuring
probabilities sum up to 1. D(C(w;—2w;—1w;)) is a discount
function for smoothing. We use modified absolute discount-
ing® as the discount function, whose parameters can be
efficiently estimated and performance converges to that of
more elaborate state-of-the-art techniques like Kneser-Ney
(KN) smoothing [20] in large scale data [25]. This smoothing
process is implemented in a large distributed environment to
generate web-scale smoothed language models, though the
details of which are outside of the scope of this paper.

An up-to-date version of the web n-gram models is
available through the Microsoft Web N-gram Service (called
Bing It On N-gram Service). The web service delivers n-
gram statistics (counts, smoothed probabilities, etc) built
from various sources of the vast and evolving web data in
an on-demand manner.

3. WEB N-GRAM DATA ANALYSIS

In this section, we conduct an information theoretic
analysis of the n-gram models which quantify the differences
of the language styles on the web scale as we mentioned
earlier. Perplexity is a well known information theory metric
for evaluating how well the language model predicts the
test data. Formally, the perplexity between an empirical
distribution of the test data p and a language model ¢ is:

Perplexity(p, q) = 2f1(7:) (1)

®Interested reader can refer to [14] for more details.

if C(wifgwiflwi) >0

25000

20000 = ==t e

15000

Perplexity

10000 |

-

/ Body

5000

/. Title
Y
'} _ : Anchor
Rl .
: % - — i S Query

3 4
4
Order

Figure 1: Comparison of query word perplexity with
different orders of the language models of similar
sizes, derived from different data sources.

where H(p,q) déf—zs p(s)loggq(s) is the cross entropy
between the probability distributions p and ¢, i.e., the
average number of bits a test sentence s can be coded by
using the model gq. The lower the perplexity, the better
the prediction power of the language model. As we are
interested in query related applications, given a query s,
P is the empirical probability of s in the sampled query log
and ¢ is the joint probability computed from the language
model. Also note that we report the perplexity normalized
by the total query length.

Figure 1 illustrates the perplexity of language models
from different sources tested on a random sample of 733,147
queries from the search engine’s May 2009 query log. A
higher order language model in general reduces perplexity,
especially when we compare the unigram models with the n-
gram models. The query language model is undoubtedly the
most predictive for the test queries, though they are from
independent query log snapshots. Interestingly, although
the title model’s vocabulary is slightly more similar to
that of the test queries than anchor, a higher order (3-4)
anchor language model actually reduces perplexity more
(while a fourth order title language model results in slightly
higher perplexity than order 2 and 3). This suggests that
the ordering in the n-gram word structure captured by

2000

Perplexity

1000 Order 2

Order 3 T —

Order g —*—

104008 1a+009

Model Size (log scale)

Figure 2: Comparison of query word perplexity with
different sizes and orders of the anchor language
models (inset: perplexity of order 1 anchor LMs).

the anchor language model is more similar to the queries
than that by the title language model. Both anchor texts
and titles are quantitatively similar to the way one would
compose search queries, while the perplexity of the body
language model appears to be in a different league from these
others. Intuitively, this is because body texts are mostly
comprised of sentences conformed to the language grammar,
completed with functional words and covering the broadest
range of vocabulary, whereas queries, anchor texts and titles
are to different extents more succinct representations.

We also study the relationship of perplexity and the size
of the language model. We adjust the size of the anchor text
language models by applying different thresholds. In Figure
2, we observe that perplexity reduction is slower than log-
linear in terms of the language model sizes (for order 2,
3 and 4 models). Perplexity however does not appear to
saturate even with the largest billion-entry language model.
In fact, increasing model size allows the language model to
more accurately estimate the probability of rare n-grams.
This is in sharp contrast with increasing model order, which
exacerbates data sparsity due to the curse of dimensionality.

This information theoretic analysis motivates us to further
investigate the n-gram LMs through the lens of several query
centric applications. First of all, perplexity is a well-known
performance indicator of a LM. On the other hand, it is an
indirect metric per se for real world applications. A natural
question is how perplexity reduction as we have shown in
this section translates to accuracy improvements in various
query processing tasks. We are particularly interested in
how the three factors of the language models, i.e. model
order, size and data source, correlate with the performance
of the applications. For instance, which data source is most
suitable for a particular application and why that is the
case? Is there a turning point whereby further increasing the
order or the size of language models only offers diminishing,
if any, gains in accuracy? We will study three search
query processing tasks: we first look into the query spelling
correction problem using web n-gram LMs and then we zoom
into the structure of search queries.

4. QUERY SPELLING CORRECTION

Query spellers are commonly found in search engines that
significantly improve the information retrieval process. As
a user misspells a query (e.g. ‘white zinfandal’), a query
speller can suggest the correct spelling (‘white zinfandel’)
in real time. Though lexicon based approaches can handle
many of such typographical errors in a traditional word
processing setting, it’s much more challenging to correct
misspelt web search engine queries [12]. First, compiling
a high coverage dictionary for the web is near impossible
for the tremendous amount of proper nouns and a variety
of languages. Also, the web search query language is a
living language with new names and concepts constantly
being created at a speed far outpacing any static dictionaries
can be updated. Indeed, spelling candidates appearing more
frequently on the web than the original query could be valid
correction by the wisdom of crowds.

Another type of spelling error arises when the error results
in a valid word and this can only be solved using the context,
as illustrated in the following example:

Original query: woods and water reality
Candidate 1: woods and water reality
Candidate 2: woods and water realty
Candidate 3: words and water reality

where the first candidate (no correction) is a false negative
and the second candidate is the true positive. The inclu-
sion of the search results from the correctly spelt queries
improves the results’ quality without burdening the user
with re-issuing the correct query. N-gram language models
are capable of simultaneously handling typographical and
context-sensitive spelling correction tasks [16], since they
capture the n-gram probability as well as the context.
Context-sensitive spelling correction for document text
has been studied in NLP and recently applied with much
success in word processing products like Office [11]. Unlike
that setting where very limited memory necessitates model
compression and pruning [11], the distributed environment
in commercial web search engines can readily and efficiently
store and serve very large language models. This can yield
significant accuracy benefits compared to smaller language
models. The merits of very large scale text corpora
for spelling correction were noted in [4]. A smoothed
language model built from a giga-word English corpus was
used in [13] to correct errors made by English as second
language authors. The 1T Corpus was used in [6] for the
spelling correction of document text and observed improved
performance compared to using web page hit counts for
estimation. The challenges of web search query spelling
correction was elucidated in [12], which handled this task
with extracted unigrams and bigrams from search query
logs. We carry out an extensive study of the effects of
language models in this task, with different model orders
and sizes and extracted from documents and query logs.
Given a set of (at most 20) query spelling candidates found
with small edit distance, similar morphology or alternative
word breaking®, the query spelling correction task is recast
to rank the candidates such that the correct one is placed
in the top rank. We use the languages models to rank the

5The details of the candidate selection and decoding process
are outside the scope of this paper. For comprehensive
coverage, interested readers can refer to [18].

spelling candidates. Specifically, we use the joint probability
derived from the language models as a feature for ranking.
Given a length k query q = wiwa...wy, the joint probability
of the query q with respect to an order r language model is,

k+1
P(q) = Pwiws..wg) = [[Plwilwi—ri1wisr) (2)

i=1

where wg41 is the right sentence boundary [/S] and w; (i <
1) indicates the left sentence boundary [S].

For the context-sensitive query spelling correction task,
15,657 queries were randomly sampled from the query log
and human annotators examined each query to generate a
speller test set. After annotation, around 15% of all sampled
queries were found to require spelling correction (amounts to
2,349 queries in total). Our context-sensitive query speller
is evaluated on this set of queries that need correction. To
measure the performance of ranking the spelling candidates
for spelling correction, we use the precision@I metric’, i.e.
the percentage of spelling suggestions at rank 1 being true
positives. This is a sensitive metric in practical use.

63
62
61T
60
5971
B8
5T
56 [

Precison @ 1 (%)

551
541 / i
53 i

52

Model Order 2 —%—
Model Order 3 —
Model Order 4 —8—

1e+007 1e+008 1e+009 1e+010

Model Size (log scale)

Figure 3: Precision of the query speller using
different orders and sizes of anchor language models.

We examined the accuracy of the query speller by using
the query joint probability as a feature for ranking. Figure
3 illustrates the accuracy curves of the anchor language
models with different orders and sizes. As indicated by the
perplexity findings in Figure 2, increasing the size of order 2
to 4 models does improve precision. For instance, increasing
the size of the trigram models by an order of magnitude
(from 100M to 1B) improves precision by 5%. Furthermore,
we note that with the same model size (measured by the
number of n-gram entries), the language models containing
trigrams and four-grams significantly outperform the bigram
language models. Moreover, the accuracy of a higher order
language model saturates much slower than that of a lower
order model. Interestingly, we observe that the accuracy

"This is also the accuracy for the set of queries needing
correction. We focus on this set because considering the data
distribution, a baseline on all sampled queries can appear to
have high accuracy by not making any correction.

71.00%
£0.00%
67.00%
-
65.00%
(E'F W Anchor
2
@ 53.00% mTitle
g
-8
61.00% - M Bady
W Query
50.00% -
57.00%
55.00%
4 3 2
Model Order
Figure 4: Precision of the query speller using

language models of similar sizes from difference
sources with different orders.

curve of the four-gram language model crosses over that of
the trigram model at around 1 billion n-gram entries. This
means that it is advantageous in this case to use a trigram
language model unless we can afford to use a huge language
model in practice® (note the log-scale in the number of
entries). Also, the largest four-gram language model does
not appear to hit a performance ceiling, though further
improvement would require orders of magnitude more data.

Figure 4 showcases the precision of spelling correction
with language models of different orders and from different
sources. Note that here we set the language models
to be of similar sizes by adjusting the cutoff thresholds.
Using trigrams in the language models significantly improves
precision by 5% to 7% than using only unigrams and
bigrams. On the other hand, adding 4-gram entries only
slightly improves precision by around 0.5%. From the
perspective of data sources, the query language model
significantly outperforms the language models built from
document sources by 5% to 9%. This is not surprising
because although the test queries and the queries for
building the language models are drawn independently, they
are essentially ‘sentences’ from the same ‘query language’.
It is highly likely that the correctly spelt query components
appear more often in the query logs (some even in the
form of query rewrites for the misspelt one). Among the
document source language models, the anchor language
models perform better than title (order 3 and 4), and title
in turn outperforms body. This corroborates our perplexity
findings in the previous section, as anchor texts and queries
are oftentimes succinct representation (e.g. in the form
of noun phrase compounds) not necessarily adhering to
the grammar. Titles are more complete, while body texts
are most grammatically coherent. As indicated by the
perplexity, the joint probability computed from the body
language model is the least useful for ranking the spelling
candidates. These latter two sources are weaker for query
spelling correction as they are more dissimilar to the query
language model.

8 Another reason that trigram models are sufficient for this
SQP task is the average length of queries is lower than 3.

S. QUERY BRACKETING

In the following two applications, we drill down and study
the structure of search queries. Automatically analyzing and
parsing search queries is an important step for developing
the proximity dynamic ranking features in search engines.
Proximity dynamic ranking can be regarded as a post
processing step of retrieval to promote or demote the ranking
of a web page based on the appearances of proximal query
terms. Naively favoring proximal query terms can be
misleading, however. Take the query ‘big blue sky’ as an
example, boosting the adjacent terms ‘big blue’ can lead to
many irrelevant pages about IBM (nicknamed ‘Big Blue’).
Thus the mere frequent co-occurrence of query terms is
insufficient to accurately yield salient proximal term ranking
features. As n-grams can properly account for the context,
we use language models to study query structures. We begin
with the analysis of length-3 queries in this section, which is
the minimal query length to contain certain syntactic sub-
structures useful for developing proximity features. It is
well known that web search queries are short?, in particular,
length 1, 2 and 3 queries each accounts for more than 20%
of the total query occurrences [1]. Hence the study of three-
word query is of much practical importance.

The query bracketing task is related to, though not the
same as'®, the noun compound bracketing task [23] in NLP.
The noun compound bracketing task can be summarized as:
given a three-word noun phrase (NP)11 ninsns, determine
the sub-NP structure either as left or right bracketing.
Consider the following example:

Left bracketing:
Right bracketing:

[sore gum] treatment
sore [gum treatment]

Since the treatment is for sore gum, left bracketing should
be chosen in this case. Previous works typically compare the
associations in the two types of bracketing and opt for the
one with the stronger association. Specifically, the adjacency
model compares the association of nins to nans whereas the
dependency model compares ning to mins. Unsupervised
methods with different corpus statistics have been studied in
the literature. Lauer et al. [23] derived the corpus statistics
from a small 8 million word corpus, and used a thesaurus
to esimate concept probability instead of word probability
due to the data sparsity problem. Later, the web page hit
counts from bigram queries have been used to achieve nearly
as good results [22] without recourse to the taxonomy as in
the previous more elaborate approach. More recently, the
experiments in [29] using the web counts derived from the
1T Corpus have shown additional improvement. However,
these methods used raw counts (some with un-smoothed
probabilities esimated in an MLE manner) and were applied
on the noun compounds from very clean corpora (e.g.
Grolier’s encyclopedia [23] and MEDLINE abstracts [24]).
Our work, on the other hand, uses smoothed web language
models and shows significant improvement for web queries
which are much more diverse.

°E.g. [26] showed that Excite’s average query length was
2.3, though users become more sophisticated over time [1].
10T a study of English queries, around 70% are found to be
noun phrases [5]. For instance, the query download adobe
flash is a verb phrase (VP).

" Three-word proper nouns such as “yellowstone national
park” are excluded from consideration in this problem.

In either of the bracketing models we mentioned, different
measures of word association can be applied. We adopt
some of the best known metrics as follows using the n-gram
language model:

e Conditional probability (CP). CP is the earliest as-
sociation measure used for bracketing [23]. Given a
word pair w; and wy, the strength of the head-modifier
relation is Pr(w; — wj|w;). Using the language
model, this is the bigram conditional probability,

CP(w;, w;) = P(w;|w;) (3)

e Pointwise mutual information (PMI). PMI(w;, w;) is a
widely used information theory metric that measures
the amount of information for the occurrence of w;
given the occurrence of word w;, formally defined as:

P(wiwj)
PMI(w;, w;) = log Plwn)P(wy) (4)
To demonstrate the difference between smoothed lan-
guage models and raw web counts as applied in
pervious work, we also experiment with the MLE
version of the PMI measure. Let C'(w) denote the raw
frequency count and N the corpus size,

Clwiw;)/N
C(w;)/N - C(w;)/N
C(wiwj)
Clwi)Cluwy) %)

PMIMEE (w; w;) = log
x log

e Chi-square test statistic (X2). Treating the occurrences
of w; and w; as random variables, x* can be used
to measure their (in)dependence. Let O; denote the
‘observed’ count'? and E; the expected count in the
2 x 2 contigency table (of cooccurrence). x? is defined

as,
~ (0~ B’
2 _ 1 — Eq
=3 (6)
=1
Table 2: Query bracketing annotation examples.

Square brackets are added to the original queries
to indicate the choice of bracketing.

Query Label

[sore gum] treatment Left(Strong)
solar [security lights] Right(Strong)
[healthcare management] internships | Left(Weak)
free [invoice template] Right(Weak)

For this query bracketing task, 1,028 three-word queries
with either right or left bracketing (excluding three-word
proper noun queries) were sampled from the query log and
annotated. In addition to the annotation of bracketing,
we also differentiate between strong bracketing and weak
bracketing. Three-word queries with strong bracketing
structure are considered more important for the purpose
of developing proximity features. In all, 725 or 70.5% of
these three-word queries were identified as strong bracketing.

12The modified discounted count, computed as part of the
smoothing process as mentioned in Section 2, is used here.

Table 3: Accuracy of query bracketing using the
adjacency model with different word association
measures. Baseline predicts the majority label (i.e.
left bracketing). MLE denotes using raw web count.

Dataset| Association | anchotl title | body | query
[Baseline] 66.3%
PMI 92.0% [90.9% | 93.3% | 91.0%
Strong PMIMEEL | 86.3% | 84.0% | 86.2% | 84.7%
x> 90.6% | 90.0% | 91.1% | 90.7%
Cond. Prob. | 88.1% | 86.9% | 86.9% | 85.9%
[Baseline] 60.8%
Strong PMI 90.2% | 89.5% | 90.9% | 88.9%
+ PMIMEEL | 845% | 83.1% | 84.7% | 83.0%
Weak x> 88.6% | 88.3% | 89.6% | 89.3%
Cond. Prob. | 86.3% | 85.2% | 84.5% | 84.1%

Table 2 shows the sample queries from the test set with
different types of bracketing. After annotation, we found
that slightly over 60% of these queries were left bracketing
and this is chosen as the baseline as in previous work [22].

Table 3 demonstrates the performance of the adjacency
model using different word association measures and on two
different query datasets. For the query bracketing task, we
see that the adjacency model can very accurately determine
the bracketing of three-word queries. The best feature
achieves more than 93% accuracy and is thus very close
to human annotation. We found that the adjacency model
is more suitable for query bracketing than the dependency
model which lags a few percentage points behind in accuracy,
as not all queries are noun compounds and the relative
merits of the two models are data dependent [29].

We summarize the bracketing results in Table 3 as follows:

First, as aforementioned, using the smoothed language
models has significant performance advantage over using raw
web counts as in previous work [22]. For instance, PMI with
a smoothed language model reduces bracketing error by 42%
than that estimated in a maximum likelihood fashion using
web counts (6% to 7% accuracy gain).

Second, as expected, bracketing queries marked as weak is
more difficult than those marked as strong (overall, accuracy
deteriorates by around 2%). This implies that we can choose
to apply the bracketing result as a proximity feature only
when the model is confident enough (e.g. requiring the ratio
of the word association features to be above some threshold);
otherwise refrain from supplying such a feature.

Among the language models from different sources, we
again find that anchor achieves better accuracy than title.
Interestingly, body yields quite competitive results and some-
times outperforms anchor. We hypothesize that because
the bracketing task is essentially analyzing the syntactic
structure of a short three-word query (which typically
appears in the form of a noun phrase), body captures such
grammatical information to the best extent than the others
in its language model. We also find that the query language
model underperforms the body language model for analyzing
the sub-query bracketing structure.

Finally, we find that pointwise mutual information to be
the best word association feature for this task. Conditional
probability, on the other hand, is the weakest as was found
in previous work.

6. LONG QUERY SEGMENTATION

For the final SQP task, we turn our attention to analyze
long queries (defined in this work as those with length
greater than or equal to 4). Long queries account for more
than 20% of the query mass and are often used by the user
to convey more sophisticated information requests. Unfor-
tunately, in practice the performance of many commercial
search engines deteriorates with such complicated queries.
Query segmentation aims to break the long query into
semantic concepts which are conducive to the improvement
of search results.

Despite the importance of this task, related research in
this area is relatively little. For the goal of generating query
substitutions, pointwise mutual information based on query
terms was used in [19] to segment queries. Similar term
based PMI was used in [21] to find high quality sub-queries.
[28] suggests that term-based PMI is not appropriate to
capture the correlation in long entities and proposed a
segment based segmentation approach. Raw web frequency
and EM were used to estimate the model parameters. We
adopt a similar rationale for segmentation, but using web
n-gram language models which significantly simplify the
segmentation model. [7] proposed a supervised approach for
segmenting noun phrase queries, yet this requires developing
a large gold standard and well designed feature sets from
queries that are widely different. In contrast to the flat
query segments produced from these previous works, the
segmentation technique proposed in this section generates
a parsing tree structure, which is more useful both for
human interpretation and for developing proximity ranking
features. We also note that unlike many of these previous
works or the NLP literature on parsing, the ultimate goal
of this SQP task is not to correctly parse the long query
but to improve the retrieval performance of long queries.
Therefore, the query segmentation task is a means (but not
an end) to either spawn meaningful segments for dynamical
ranking as aforementioned, or generate short query rewrites.

raleigh serengeti mountain bike canadian tire

raleigh serengeti mountain bike canadiantire

raleigh serengeti mountain bike

Figure 5: An example of segmenting a long query
and representing it in a segmentation tree structure.

We begin with an example to motivate our proposed
method for long query segmentation. As we observed from
query logs (also found by previous work [5]), long queries are
usually constructed as a concatenation of keywords/concepts
(primarily noun phrases), each qualifying a certain aspect of
the information request. Figure 5 illustrates an example long
query which is constituted by an interested item (raleigh
serengeti mountain bike) and a shopping site (canadian
tire). Hence segments, instead of terms, are good units
for analysis. Moreover, each segment may have its own
substructure that can be best represented in a parsing tree
structure (termed segmentation tree). In this example, the

segment raleigh serengeti qualifies the brand of the item
rather than the shopping site. A segmentation tree also
offers the flexibility for the practitioner to choose the de-
sired granularity of segmentation (e.g., whether to segment
raleigh serengeti mountain bike into two parts).
Similar to using the different measures of word association
for query bracketing in the previous section, we can use
the degree of independence of the segments as a criterion
for segmenting a long query. Take the PMI metric as
an example. Given a long query q = wiws...wi and a
segmentation boundary ¢(2 < ¢ < k) which segments q
into q; = wiwsz...wi—1 and q, = WiWi41... Wk, we define the
segment-based pointwise mutual information (SPMI) as,

SPMI(q, t) = log % (7)

With the Markov property and using an order r language
model, we can derive the SPMI metric as the following (see
detailed derivation in Appendix):

min{r—2,k—(r—2)} (|)))
SPMI(q, t) = > log PRl Wtdizril - Wetizl
i—o P(Wetilwe. witi—1)
(8)
Hence SPMI measures the degree of independence of the
segments by evaluating the cumulative discrepancy between
the probability of the n-grams spanning across the boundary
and those separated by the boundary.

We opt to use a best first approach, similar to those used
for growing decision trees, to generate the segmentation tree
for a long query. Formally, let C denote the set of tree nodes
considered for splitting in a segmentation step. The chosen
tree node n* by the best first approach is,

SPMI(g(n),t) 9)

n* = argmin min
nec 25<t<[q(n)|

where gq(n) denotes the query segment of node n. The
chosen node n* is then segmented to a non-empty left
and right node. The algorithm runs in iterations until
the minimum SPMI reaches a termination threshold. In
practice, a good way to determine the termination threshold
is to observe the ROC curve of the algorithm on a held
out set and choose the one satisfying certain criteria (for
instance, optimal tradeoff between true positives and false
positives). We will return to this point in the experiment.

For this SQP task, we randomly sampled 2,086 queries
from the search query log. As our goal is to improve the
search results of long queries, independent human judges
were asked to discover and annotate important phrasal
segments from these queries. 1,462 queries with at least
one annotated segment agreed upon by the human judges
were retained for evaluation. In total, we obtained 1,863
valid annotations which our evaluation is based upon.

Since the proposed segmentation algorithm produces a
tree structure, we identify the different cases where the hu-
man annotated segment matches those in the segmentation
tree:

e Fxact match: the annotated segment exactly matches

a node of the segmentation tree. A special case is ezact
leaf match, where the match occurs in a leaf node.

e Cover: a leaf node covers the annotated segment.

g

Exact Lol
Exact
07 Cover ——+—

Match Rate
Y
v

Violation Rate

Figure 6: Segmentation performance using trees of
different granularity (anchor language model).

e Violation: the annotated segment spans across differ-
ent nodes (and not matching any particular node) in
the tree.

We note that exact leaf match is the most preferred
case. Eyeballing the results, exact match in the internal
nodes usually identifies the detailed structure of the human
annotated segment (since human annotation focuses on the
precision rather than the recall of the segments). Hence
both the matching node and its offsprings are appropriate
as proximity features. For instance, in our example the
segment raleigh serengeti mountain bike is tagged by
human judges. However, the two sub-segments raleigh
serengeti and mountain bike can also be useful proximity
features . On the other hand, proximity features from the
violation cases are detrimental for dynamic ranking while
those from the cover cases are neutral to the results.

We vary the different thresholds of SPMI to generate
segmentation trees with different levels of granularity using
the anchor language model. As shown in Figure 6, the
coarsest segmentation trees have the most cover cases. As
we let the trees to be finer grained, the segmentation
trees start to reveal the important segments human judges
annotated. Most of the cover cases convert to exact matches
as shown by the sharp growth of exact (leaf) match rates. A
turning point appears at around 0.12 violation rate, where
the exact leaf match rate peaks and starts to deteriorate.
Exact match rate also grows slower than the violation
rate after this point. Setting the violation rate at this
point, the algorithm can discover about 70% of the human
annotated segments deemed important (50% found as leaf
nodes exactly matching human judgments).

We further investigate the segmentation performance
using language models from different document sources'®.
Figure 7 illustrates the tradeoff between violation rate and
exact match rate. Similar to a ROC curve, the curve covers
the most area underneath it is the best. Among the language
models, anchor clearly yields the best performance. This is
because anchor texts are usually single or a combination

13The query language model yields slightly inferior results as
in the previous task for similar reasons.

55 | i
T w0 2
E ._"/ ‘//
5 / >
£ af y, ,/
¥ g
= S
P =
2 af A
> //
e
,/ Anchor —
Br / Title
¥ Body —
2 3 4 5 6 7 8

Violation Rate (%)

Figure 7: Tradeoff between the exact match rate
and the violation rate for long query segmentation
using different n-gram language models.

of keywords, most similar to the way long queries are
composed. The performance difference of the body and title
language models are not particularly clear cut in this case.

7. CONCLUSION

The vast world wide web offers a tremendous amount of
treasure freely available in the wild. This work chooses
the n-gram language model, a representation that has
found many successful applications in IR and NLP, to
capture the web language information hidden in the massive
unlabeled and unfiltered web data. Enabled by the recent
advances in web-scale language modeling techniques, we
built language models from web document sources including
the anchor texts, the titles and the document bodies, as
well as from search queries. We conduct a large-scale
information theoretical analysis on these language models
to quantitatively examine the language differences in these
data sources with different orders and sizes. We find that
web search queries are composed in a way most similar to
how authors summarize documents in anchor texts or titles.

In practice, web language models can be applied in a
variety of document and query processing tasks in a web
search engine. This work focuses on three Search Query
Processing (SQP) tasks. Through the lens of context-
sensitive query spelling correction, we observe how the
difference of language translates to that of the accuracy in
a real-world application. This suggests that the alternative
data sources can be even more effective than the document
bodies that have been used in past work. We further analyze
the sub-query bracketing structure for three-word queries
and propose a novel hierarchical long query segmentation
method using web language models. The methods inves-
tigated in these SQP tasks are all unsupervised methods
driven by the unlabeled web data that are abundantly
available. As such, they can be readily and efficiently applied
in the real world.

Our exploration yields several guidances for practice. We
show that a theoretical measure — perplexity — to be a good
accuracy indicator for these tasks and hence can be used to
intelligently allocate engineering resources in practice. We

demonstrate that smoothed n-gram models can significantly
improve accuracies compared to web counts. With very large
scale empirical studies, we also find that trigram models
can significantly outperform unigram/bigram models, yet
increasing the order of the language model beyond three
generally yields diminishing returns in practice. Another
important dimension — size — is explored in this work, which
is often overlooked in past work. We find that increasing
the sizes of the language models can both reduce the model
perplexity and improve the accuracy in query-related tasks
such as spelling correction. Unlike the order of the model,
improvement from the power of the size of data does not
appear to be easily capped even at the current web scale.
We identify several avenues as future directions. First,
we are investigating how these applications of web language
models, in conjunction with other modules such as dynamic
ranking, can improve the relevance of search results, which
is probably the utmost important indicators of user search
experience. Besides these search query processing tasks,
we will also leverage these different web-scale language
models in many more document and query processing
applications, such as document classification, OCR and
machine translation. Finally, we advocate with Lapata [22]
that the web language models can be a baseline for various
IR/NLP research and the research on the modeling of the
living web language per se can be a fruitful direction.

Acknowledgments

The authors would like to thank Zijian Zheng for the very
helpful suggestions and collaboration.

8. ADDITIONAL AUTHORS

C. Lee Giles (Information Sciences and Technology, Penn-
sylvania State University, USA, email: giles@ist.psu.edu).

9. REFERENCES

[1] Hitwise 2009 press releases, 2009.

[2] Special issue on web as corpus. Computational
Linguistics, 29(3), September 2003.

[3] E. Agichtein, E. Brill, and S. Dumais. Improving web
search ranking by incorporating user behavior
information. In Proceedings of 29th international ACM
conference on Research and development in
information retrieval (SIGIR), pages 19-26, 2006.

[4] M. Banko and E. Brill. Scaling to very very large
corpora for natural language disambiguation. In
Proceedings of 39th Annual Meeting on Association for
Computational Linguistics (ACL), pages 26-33, 2001.

[5] C. Barr, R. Jones, and M. Regelson. The linguistic
structure of english web-search queries. In Proc. of
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1021-1030, 2008.

[6] S. Bergsma, D. Lin, and R. Goebel. Web-scale n-gram
models for lexical disambiguation. In Proceedings of
the 21st International Joint Conference on Artificial
Intelligence (IJCAI), pages 1507-1512, 2009.

[7] S. Bergsma and Q. I. Wang. Learning noun phrase
query segmentation. In Proceedings of the Joint
Conference on Empirical Methods in Natural Language
Processing (EMNLP) and Computational Natural
Language Learning (CoNLL), pages 819-826, 2007.

[8] T. Brants and A. Franz. Web 1T 5-gram corpus
version 1.1. Technical report, Google Research, 2006.

[9] T. Brants, A. C. Popat, P. Xu, F. J. Och, and
J. Dean. Large language models in machine
translation. In Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing
(EMNLP) and Computational Natural Language
Learning (CoNLL), pages 858-867, 2007.

[10] S. F. Chen and J. Goodman. An empirical study of
smoothing techniques for language modelling.
Computer Speech and Language, 13(10):359-394, 1999.

[11] K. Church, T. Hard, and J. Gao. Compressing trigram
language models with Golomb coding. In Proceedings
of EMNLP and CoNLL, pages 199-207, 2007.

[12] S. Cucerzan and E. Brill. Spelling correction as an
iterative process that exploits the collective knowledge
of web users. In EMNLP, pages 293-300, 2004.

[13] M. Gamon, J. Gao, C. Brockett, A. Klementiev,

W. Dolan, D. Belenko, and L. Vanderwende. Using
contextual speller techniques and language modeling
for ESL error correction. In Proc. of IJCNLP, 2008.

[14] J. Gao, J. Goodman, and J. Miao. The use of
clustering techniques for language modelling -
application to Asian languages. Computational
Linguistics and Chinese Language Processing,
6(1):27-60, 2001.

[15] J. Gao, W. Yuan, X. Li, K. Deng, and J.-Y. Nie.
Smoothing clickthrough data for web search ranking.
In Proceedings of the 32nd international SIGIR
conference on Research and development in
information retrieval (SIGIR), pages 355-362, 2009.

[16] A. R. Golding and Y. Schabes. Combining
trigram-based and feature-based methods for
context-sensitive spelling correction. In Proceedings of
the 34th ACL, pages 71-78, 1996.

[17] A. Halevy, P. Norvig, and F. Pereira. The
unreasonable effectiveness of data. IEEFE Intelligent
Systems, 24(2):8-12, 2009.

[18] X. Huang, A. Acero, and H.-W. Hon. Spoken
Language Processing: A Guide to Theory, Algorithm
and System Development. Prentice Hall PTR, 2001.

[19] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In Proc. of 15th
World Wide Web (WWW), pages 387-396, 2006.

[20] R. Kneser and H. Ney. Improved backing-off for
M-gram language modeling. IEEE International
Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 1:181-184, 1995.

[21] G. Kumaran and V. R. Carvalho. Reducing long
queries using query quality predictors. In Proc. of
32nd international conf. on Research and development
in information retrieval (SIGIR), pages 564-571, 2009.

[22] M. Lapata and F. Keller. The web as a baseline:
Evaluating the performance of unsupervised
web-based models for a range of nlp tasks. In Proc. of
Human Language Technologies - North American
Chapter of the Association for Computational
Linguistics (HLT-NAACL), pages 121-128, 2004.

[23] M. Lauer. Corpus statistics meet the noun compound:
some empirical results. In Proceedings of the 33rd
annual meeting on Association for Computational
Linguistics (ACL), pages 47-54, 1995.

[24] P. Nakov and M. Hearst. Search engine statistics
beyond the n-gram: Application to noun compound
bracketing. In Proc. of 9th Conf. on Computational
Natural Language Learning, pages 17-24, 2005.

[25] P. Nguyen, J. Gao, and M. Mahajan. MSRLM: a
scalable language modeling toolkit. Technical report
TR-~2007-144, Microsoft Research, 2007.

[26] A. Spink, D. Wolfram, M. B. J. Jansen, and
T. Saracevic. Searching the web: the public and their
queries. Journal of American Society for Information
Science and Technology, 52(3):226-234, 2001.

[27] K. Svore and C. Burges. A machine learning approach
for improved bm25 retrieval. In Proceedings of 18th
ACM Conference on Information and Knowledge
Management (CIKM), pages 1811-1814, 2009.

[28] B. Tan and F. Peng. Unsupervised query segmentation
using generative language models and Wikipedia. In
Proceeding of the 17th international conference on
World Wide Web (WWW), pages 347-356, 2008.

[29] D. Vadas and J. R. Curran. Corpus statistics meet the
noun compound: some empirical results. In
Proceedings of 10th Conference of the Pacific
Association for Computational Linguistics
(PACLING), pages 104-112, 2007.

[30] K. Wang and X. Li. Efficacy of a constantly adaptive
language modeling technique for web-scale
applications. In Proceedings of IEEFE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4733-4736, 2009.

[31] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Transactions on Information Systems,
22(2):179-214, 2004.

APPENDIX
A. DERIVATION OF THE SPMI METRIC

Using an order r n-gram LM with the Markov assumption,

k
P(q) = P(w1w2-~~wk) = HP(wi|wi,T+1..wi,1)

i=1
With a segmentation boundary ¢, the probability of the

left and right segments can be written similarly. Given the
following SPMI definition:

SPMI(q, t) = log PP (@ar) (10)

(a)P(ar)
we can write out individual terms as below,
log [15, P(wilwi—ri1-wi-1)
H:;i P(wi ‘wi7r+1..wi71) H?:t P(wi\wi,TH ..wi71)

Note that most terms cancel out and only at most r — 2
terms behind the segmentation boundary remain, i.e.

log

Pwi|wg—py1-wi—1)P(wigr|wi—rqa..wi). .. P(Wigr—2|wi—1..Weyr—3)

P(wi)P(weyr|we)... P(wiyr—2|we. . wiqr_3)
Simplifying and noting the query’s right boundary, we get

the desired result:

min{r—2,k—(r—2)}

SPMI(q, t) =

lo PWiti|Weti—ry1-Wetio1)

i=0 P(Wes|we. Weti—1)

O

