
Scalable Algorithms for Scholarly Figure Mining and

Semantics

Sagnik Ray Choudhury

Information Sciences and

Technology

Pennsylvania State University

sagnik@psu.edu

Shuting Wang

EECS

Pennsylvania State University

sxw327@psu.edu

C. Lee. Giles

Information Sciences and

Technology

Pennsylvania State University

giles@ist.psu.edu

ABSTRACT
Most scholarly papers contain one or multiple figures. Often these
figures show experimental results, e.g, line graphs are used to com-
pare various methods. Compared to the text of the paper, figures
and their semantics have received relatively less attention. This
has significantly limited semantic search capabilities in scholarly
search engines. Here, we report scalable algorithms for generat-
ing semantic metadata for figures. Our system has four sequential
modules: 1. Extraction of figure, caption and mention; 2. Binary
classification of figures as compound (contains sub-figures) or not;
3. Three class classification of non compound figures as line graph,
bar graph or others; and 4. Automatic processing of line graphs
to generate a textual summary. In each step a metadata file is gen-
erated, each having richer information than the previous one. The
algorithms are scalable yet each individual step has an accuracy
greater than 80%.

CCS Concepts
•Information systems ! Information systems applications; In-
formation extraction; Digital libraries and archives; Information

retrieval; •Applied computing ! Graphics recognition and in-
terpretation;

Keywords
Figure Semantics; Vector Graphics

1. INTRODUCTION
Scholarly figures are abundant on the web. PubMed Central con-

tains more than 1.7 million figures[7]. We extracted more than
15 million figures from the PDFs in CiteSeerX repository. Most
of these figures (line graphs/ bar graphs/ pie charts) are generated
from data tables and can be treated differently from natural scene
images. Content based image retrieval engines such as Google Im-
ages maximize visual similarity between the query and result im-
ages. In contrast, in scholarly figure search the goal is to query the
data itself. One might be interested in the line graph that shows
a support vector machine (SVM) algorithm performs better than a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SBD’16, July 01 2016, San Francisco, CA, USA

c� 2016 ACM. ISBN 978-1-4503-4299-5/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2928294.2928305

Random Forest on Imagenet data. To support these “data based”
queries we define a metadata that combines both the context of the
figure and the original data table.

The system architecture is described in figure 1. We generate
metadata for a figure in increasing order of information richness.
For any figure the our initial metadata contains caption and men-
tion (the paragraph(s) that referred to the figure in the text). During
PDF generation, figures can be included in a raster graphics (PNG/
JPEG) or a vector graphics (PS/ PDF) format. For the vector graph-
ics we can extract the words inside the image without OCR[6]. The
next metadata contains these words.

Compound figures (figures containing multiple sub figures) are
not processed further because the subsequent algorithms expect a
single figure. These figures are easily detectable (section 4) but are
hard to segment[7].

Next we classify each “single” figure as a line graph, bar chart
or other. For line graphs and bar charts, the words inside the figure
can be classified in at least seven classes: 1. X axis value, 2. X
axis label, 3. Y axis value, 4. Y axis label, 5. Legend, 6. Fig-
ure label and 7. Other text. Therefore, for these figures a third
metadata is generated from the word class labels (section 6). This
allows SQL like queries such as “show me the figure where legend
contains SVM and X axis ranges from 0.1 to 0.8 and X axis label is
precision”. Many line graphs are used to demonstrate comparisons
between different experimental methods. Each curve represents a
method, usually denoted by a legend. For these figures, we sep-
arate out the curves, associate them with their respective legends
and classify each curve as having an increasing, decreasing or sta-
ble trend to produce the fourth and final metadata. For example, the
final metadata for figure 2a will contain the caption, mention, the
words and their class labels and sentences such as: “curve TextRank

has an increasing trend”.
Our system takes less than 15 seconds to process a single image.

All scalability experiments were done on a single thread of a multi
core laptop with 16 GB memory.

For a semantic scholarly search engine, the final goal is to en-
able very specific queries such as “Show me the figure where SVM
has better Precision/Recall curve than Random Forest on ImageNet
classification”. This system is a first step in that direction. More
information such as the experimental method and dataset can be
extracted in future.

2. RELATED WORK
This work is continuation of our previous work on figure meta-

data (caption/ mention) extraction[4] and search[5] with the final
goal of developing a complete architecture for analysis of schol-
arly figures[3]. Previous work has explored metadata extraction
for figures in PDF documents. Chen et al.[1, 2] reported a system

1

Input PDF

Figure,
caption,
mention ,
words

extraction

Raster
graphics

Vector graphics

<Caption>
<Mention>

Metadata 1

Compound
figure

detection
single figure Line graphs,

Bar Graphs,
Others

Classification

<Caption>
<Mention>
<Words>

Compound
figure

Metadata 2

Others

Line and bar

Figure Text
Classification
axes value,
legends
etc.

<Caption>
<Mention>
<Words>

<Word class
labels>

Bar Graphs

Metadata 3

Line graphs

Curve Separation,
Curve Legend Association ,

Natural language
summary

<Caption>
<Mention>
<Words>

<Word class
labels>

<Summary for
curves>

Metadata 4

Figure 1: System architecture.

called Diagram Flyer that allows faceted search on the classes of
figure text (axes values, legends etc.). However, they didn’t discuss
the necessary extraction and classification steps in detail. The focus
was on the search engine, ranking and query expansion. Linguistics
community has long been interested in natural language summary
generation for information graphics. While most work has focused
on bar graphs, some recent works by Wu et al.[16] and Greenbacker
et al[8] have explored line graphs. Most works have considered line
graphs collected from the web with a single curve in the plot region.
Lu et al.[12] have proposed algorithms for connected curve extrac-
tion from scholarly line graphs. But most scholarly graphs do not
follow such restrictive assumptions and our algorithm handles more
generic cases. Moreover, most previous work has not focused on
the scalability aspect of the problem. We report both the time and
the accuracy for each algorithm.

3. FIGURE EXTRACTION
Figures are extracted using a system known as pdffigures[6].

Pdffigures produces a JSON file containing the bounding box and
caption of the figure and a raster graphics by cropping out the nec-
essary region from the page. If the original figure was in a vector
graphics format, words inside the figure and their bounding boxes
are also extracted. The code is written in C++ and extremely scal-
able.

Pdffigures processes one PDF file in less than a second and can
be trivially parallelized. We extracted more than 15 million figures
from 6.7 million PDF files in CiteSeerX repository by running it
on a eight core machine for approximately 20 days. We chose a
subset of 10,000 papers published in top 50 computer science con-
ferences from 2004 to 2014 and manually examined 38,000 figures
extracted. Around 50% of these figures were compound figures.
22% were stand alone line graphs. These images were subsequently
sampled for various experiments in this paper.

Pdffigures has some system dependencies that can not be easily
resolved. Therefore we rewrote their algorithm in Scala. Scala is
a functional language running on the JVM stack with two advan-
tages: 1. All system dependencies can easily be resolved by Maven
and 2. The code can be easily integrated into popular parallel pro-
cessing architectures such as Apache Spark1. Our system extracts
both caption and mention for a figure. The code is available on
GitHub2.

4. COMPOUND FIGURE DETECTION
1https://spark.apache.org
2https://github.com/sagnik/pdffigures-scala

Features Random
Forest

SVM Logistic
Regression

Bag-of-Keypoints 0.7 0.76 0.73
Border Profile 0.78 0.75 0.77
Bag-of-Words 0.71 0.7 0.72
Character Delimiter 0.57 0.65 0.55
Overall 0.85 0.85 0.82

Table 1: Feature performance for compound figure detection.

This module classifies a figure as a compound image or not us-
ing both visual features from the raster image and textual features
from the figure metadata. Features proposed by Pelka et al.[13] are
used. Two visual features are extracted from each image. In an of-
fline step, on average 300 SIFT features are extracted and clustered
into a visual words dictionary. During online feature extraction,
each image is represented as a frequency distribution over that dic-
tionary. The “Border Profile” feature denotes whether a horizontal
vertical separating boarder exists in the figure, i.e., whether there
exists a row or column with RGB value [0,0,0] or [255,255,255].

Two textual features are extracted from figure captions: bag-of-
words and characteristic delimiter. Stop words from the captions
are removed and all remaining words are stemmed. Words co-
occuring in both the compound and the non compound figures are
removed to keep the distinguishable words. Using the 800 figures
in the training set a dictionary with 463 words is created. Each
figure is represented as a vector of word frequency over the dictio-
nary. Characteristic delimiters are defined as symbols that separate
the sub figures (“(a)”). If such patterns exist, the feature is [1,1]
else [0,0].

For the experiment, bag of visual keypoints and text words were
reduced to 40 features using PCA . A Random forest classifier, a
linear kernel SVM and a logistic regression classifier were com-
pared for the binary classification. Five fold cross validation ac-
curacies for different set of features are reported in table 1. All
features have significant importance.

There are at most 300 SIFT feature extracted per image. Other
features are text based. Therefore, the feature extraction step is
extremely scalable: it takes less than one second per image. The
code and data is available on Github3.

5. CLASSIFICATION OF FIGURES
From the last module, we get a single figure in a raster graphics

format. This module classifies it one of the following classes: 1.

3https://github.com/sagnik/compoundfiguredetection

2

line graph, 2. bar graph or 3. other. Savva et al.[15]’s method is the
state of the art in this problem. As we extract SIFT features in the
last module, we tried using them for this task as well. They were
not suitable: the F-Score reduced by at least 10% in each class.

5.1 Codebook Generation
First, a codebook of image patches is generated. Each image is

converted into a grayscale image; resized into D⇥D pixels; main-
taining the original aspect ratio and padding white pixels whenever
necessary. For each image, randomly N points are chosen. For
each such point, a P⇥P pixels patch left cornered at the point is ex-
tracted. Patches with variance less than 10% of the image variance
are discarded. Selected patches are normalized and reshaped into a
1 ⇥ P2 vector.

For the experiment we used D=128, N=100 and P=6[15]. We
extracted patches from 498 images (166 from each of the three
classes) producing a 498⇥100⇥36 matrix. Then ZCA whitening
was used to remove non relevant correlations. For ZCA whiten-
ing, the original matrix was reshaped into a 498⇥3600 matrix by
concatenating all (100) 36 dimensional patch vectors for each im-
age. After ZCA whitening, the result matrix was reshaped into
a 49800⇥36 matrix and clustered in 200 clusters using K-means
clustering. These cluster centers were used as a dictionary of vi-
sual words.

5.2 Feature Extraction and Scalability Improve-
ments

The codebook generation is an offline step so it doesn’t affect the
scalability of the classification process. The next step is to represent
each image using the codebook. For that, Savva et al.[15] used a
dense sampling approach. For each pixel in a resized (128 ⇥ 128)
image, a 6 ⇥ 6 patch is created and standardized as before. For
each patch, a 200 dimensional one hot vector is created with all
zeros except the position of the closest cluster center. For each
quadrant of the image, these vectors are summed up and four such
vectors are concatenated to form a 800 dimensional vector.

The dense sampling step takes on average 92 seconds for a sin-
gle image using specialized KD trees4 for distance computation.
For each of the 1282 pixels the nearest cluster center is calculated,
which attributes to its inefficiency.

To improve the scalability, we experimented with two modifica-
tions. First, instead of the dense sampling, we randomly sampled
1000 points for the patch creation step. This took approximately 6

seconds on the same machine but affected the classification accu-
racy.

For each pixel, our goal is to find out the cluster center that is
nearest by Euclidean distance. While there is no direct relation
between the Euclidean distance and the Cosine distance, they are
the same for unit vectors. Specifically, for two vectors x and y
with ||x||2=||y||2=1, ||x – y||22=2 – 2 cos\(x, y). The cosine angle
(cos\(x, y)) between two such vectors is x.yT. Therefore, if we
replace the Euclidean distance with the cosine distance, the dense
sampling step reduces to following operations: 1. Normalization of
row vectors for both the patch and the cluster matrix; 2. Multiplica-
tion of the cluster matrix and the patch matrix; and 3. Finding out
the indices of the maximum values in the rows of the result matrix.
Modern linear algebra libraries are optimized for matrix multipli-
cation, reducing the processing time per image to 6 seconds. The
accuracy does not change much because the direction of patch vec-
tors are more important than the absolute values.

4http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.
spatial.KDTree.html

5.3 Classification Experiments and Results
600 images were sampled for the classification experiment. Three

classifiers were used: 1. Linear kernel SVM, 2. SVM with RBF
kernel and 3. Random Forest with 100 decision trees. The Random
Forest classifier performed best. As the focus here is the fast fea-
ture extraction process rather than the classifier model, we report
the five fold stratified cross validation results using the Random
Forest classifier. All other results, code and data for this problem is
available on Github5.

Classification accuracies for three feature extraction methods were
compared: 1. Original dense sampling method by Savva et al.[15];
2. Random sampling of 1000 pixels; 3. Fast dense sampling using
Cosine distance and matrix multiplication. Fast dense sampling had
comparable accuracy with previous work, with a 15 times improve-
ment in the execution time. On a larger dataset of 2000 images, the
fast dense sampling method had F1-scores of 86%, 92% and 82%,
for line graphs, bar graphs and other figures, respectively.

6. FIGURE TEXT CLASSIFICATION
Input to this module is a set of text words extracted from line

graphs and bar charts. The text is classified in one of the following
seven classes: 1. X axis value, 2. Y axis value, 3. X axis label, 4.
Y axis label, 5. Legend, 6. Figure Label, and 7. Other text. Most
class labels are self explanatory. Sometimes plots contain words
to denote regions of particular importance. These words are called
“other text”.

This step creates a richer metadata that allows faceted search
on word labels. Also, for line graphs, the legend words can be
combined and associated with respective curves, as done in the next
module.

For a word wi, we have the text, location, and orientation (rota-
tion angle with the horizontal axis) on the image. Multiple features
are generated using this information.
1. Rotation of the word: Typically Y axis labels are placed verti-

cally and all other texts are placed horizontally.
2. Distance ratio from the image boundary: Axes values and la-

bels are typically placed close to the image boundary, whereas
legends are placed far inside the image.

3. Is number/ not: Axes values usually contain only digits, other
words contain both digits and other characters.

4. Number of words between wi and boundaries of the image: Usu-
ally, Y axis label is placed at the leftmost side of the image, Fig-
ure label is placed at the top, and X axis label is placed at the
bottom. Therefore, there should not be many words between
them and the image boundaries.

5. Number of words in a rectangle enclosing wi: The text density
is higher in the legend region compared to any other region.
Also, there should be less “pure” numbers in this region.

All features are real valued except the first and the third, which are
binary and enum, respectively. The features are designed to ignore
the dimension of the input image.

6.1 Experiments
We manually tagged 4363 words from 165 images with class la-

bels. A linear kernel SVM and a Random Forest based classifier
with 100 decision trees were compared. Random forest outper-
formed the other classifier in all evaluation measures. Five fold
stratified cross validation results are reported in table 3. Due to
space limitation we only report F1-scores. Detailed results, code
and data is available on Github6. Except for the class label “other
5https://github.com/sagnik/figure-classification
6https://github.com/sagnik/figure-text-classification

3

Feature Extraction Methods

Dense Sampling[15] Random Sampling Fast Dense Sampling

Figure Class Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Line Graph 81 86 83 75 82 78 83 86 84
Bar Graph 94 87 90 79 90 84 89 89 89

Others 76 76 75 79 63 69 82 79 80

Table 2: Figure classification results for multiple feature extraction methods using a Random Forest classifier.

Classification Models

Text Class Linear Kernel SVM Random Forest

X axis label 82 92
X axis value 91 95
Y axis label 97 97
Y axis value 91 94

Legend 81 92
Figure label 58 78
Other text 5 58

Table 3: Classification results for text words inside a figure.

class”, most results are satisfactory. Since only text based features
are extracted, this step is extremely scalable, averaging less than
one second per image.

7. NATURAL LANGUAGE SUMMARY FOR
A LINE GRAPH

This module takes the location and (word, class label) pairs for a
line graph as input. First an SVG image for the figure is created and
the curves are extracted. Then legend words are combined to create
legend strings and associated with the respective curves. Finally,
curves are analyzed to identify the trends and combined with the
previous metadata to produce the final metadata for a line graph
(see figure 2).

7.1 SVG Conversion and Curve Separation
A line graph can contain one or multiple connected or discon-

nected curves drawn with separate markers or colors. Previously,
researchers have proposed various methods for this problem. Lu et
al.[12] proposed a primitive chain code (PCC) based algorithm for
extraction of connected line graphs. Another work[10] proposed
connected component analysis.

Most previous approaches used raster graphics for this problem.
Figures can be embedded in a PDF as a raster or vector graphics
format. In our dataset of CS papers we found almost 75% figures
were included in a vector graphics format. A raster graphics is a
set of pixel values (binary data) whereas a vector graphics is a set
of commands. Figures included as raster graphics can be scalably
extracted as the whole image data is embedded in the PDF. Vector
graphics are hard to extract because PDF itself is a vector graphics
format and the commands for drawing the figure are interleaved
with other PDF commands. Existing methods for vector graphics
extraction[6, 14] first extract the bounding box of a figure, then the
PDF page containing the figure is rasterized (converted into a raster
image) and the necessary region is cropped.

Resolution of the resultant image heavily depends on the PDF to
image conversion time. For the classification algorithms described
before, an image of low resolution suffices. However, the data ex-
traction algorithms expect an image of much higher resolution (at

least 70 ppi). Such conversions take 50-60 seconds on average on
a standard desktop machine. This severely limits the scalability of
the process.

This motivated us to extract the figures as SVG images. SVG is
a widely used XML based vector graphics format. Other than the
scalability issue, this provides another benefit. PDF and SVG are
both vector graphics formats. When any image in a vector graphics
format is embedded in a PDF, the commands are just transformed.
When the same PDF is converted into an SVG, an inverse conver-
sion happens. All paths or characters in the original image can
be restored from the converted SVG, albeit the commands might
change because in any vector graphics format the same shape can
be drawn by multiple commands. This can be considered as a “loss
less” conversion. Whereas if a PDF is rasterized, all commands
are lost, making it a “lossy” conversion. This loss less conversion
benefits the curve extraction process greatly.

We first split the input PDF into pages. Then the page containing
the figure is converted into an SVG image using a popular conver-
sion tool called InkScape7. We experimented with multiple such
tools; SVGs created by InkScape were found to be most visually
similar to the original PDF.

An SVG may contain many commands, of which the most im-
portant ones for our purpose are “text”, “path” and “image”; the
operators for painting text characters, graphics paths and raster
images. A path command can contain multiple operators, used
for small operations such as drawing a straight line or a Bézier
curve. Similarly a text command may contain multiple “tspan” ele-
ments, each with multiple characters. Another important command
is “transform”, which changes the coordinate system of the painting
operators using operations such as scale, rotate or multiplication by
a transformation matrix. SVG also provides a grouping command
“g” that combines multiple paint commands into a group so that a
transform command can be applied on the group as a whole. This
creates a hierarchical tree structure, as commonly found in most
XML files.

Given a figure bounding box, we need a set of SVG paths and
characters that are inside. Bounding box for a path command is
the rectangle enclosing the bounding boxes of the constituent op-
erations. However, the SVG standard doesn’t provide such bound-
ing boxes; they must be calculated. For the text commands, the
bounding box for each character needs to be inferred from the font
information. If the command has a transform operator, that should
be taken into account as well. Also, the commands might belong
to one or multiple groups, each with their own transform operation,
changing the final bounding box coordinates.

We wrote an SVG parser to solve these problems. The parser
takes an SVG produced by InkScape as input and separates out path
and text commands. Next, the groups for each such command are
identified, effectively reducing the hierarchical tree structure into
a flat representation. Specifically, we create a dictionary with the

7https://inkscape.org/en/

4

(a) Legend word identification. (b) Extracted curve. (c) Extracted curve. (d) Curve legend association.

Figure 2: Some steps of our figure summarization pipeline on a line graph extracted from Hassan et al.[9]. The original figure compares
precision recall values for unsupervised methods in key phrase extraction. Figure 2a shows the legend words classified and combined.
The curves in the original image are overlapping and can not be separated even by the human eye, whereas our algorithms separates them
perfectly, as seen in figures 2b and 2c . Other extracted curves are not shown due to space limitations. Figure 2d shows an example of curve
legend association. While some texts are wrongly classified as legends in figure 2a, those errors are removed in the association step.

path and text command ids as keys and the group command ids as
values.

Next, each path command string is parsed into a sequence of
painting operations. SVG paths follow a context free grammar ex-
pressed through EBNF (Extended Backus-Naur Form)8. We de-
signed a parser combinator for the parsing task. The parsers are
regular expression based and capable of parsing a single operation.
The combinator accepts a sequence of such parsers and returns a
new parser as its output. This approach is extremely modular and
scalable.

Next, the bounding box for each operator is calculated. While
that is trivial for some operators (lines/ vertical lines), operations
such as ellipse or Bézier curves need to converted into their para-
metric representations. Bounding box of characters are inferred
from the font information available in the “style” attribute of a text
command.

The next module is a parser combinator for transform commands.
Similar to the previous one, it parses the command string into a
sequence of transform operations and each such operation is con-
verted into a transformation matrix. Finally, bounding box for a
path or character is calculated by combining the bounding boxes
of constituent operations and multiplying that with all transforma-
tion matrices for that path or character (from the path itself and the
groups it belongs to) in sequence.

More details about the algorithm can be found from our open
source repository9.

Our curve extraction system works on color line graphs. 40%
of all line graphs in CS papers are such graphs. These are indeed
easier instances of the problem. But extraction from raster graphics
can be challenging even for such graphs, especially for overlapping
curves. For example, the curves in figure 2a can not be segmented
even by the human eye. However, after the SVG creation, such
extraction problems reduce to simple text processing.

Each curve in a line graph can consist of one or multiple SVG
paths. Each such path is an XML node and the color information
is available in the “style” attribute. The text in the plots is usually
written in black, background is almost always white or gray and
curves themselves are rarely drawn in black. Therefore, we extract
paths painted with non black colors using simple regular expres-
sions. Even if a black curve is present, the failure in its extraction
wouldn’t affect the accuracy for the other curves. Since by the SVG

8https://www.w3.org/TR/SVG/paths.html#PathDataBNF
9https://github.com/sagnik/svgimagesfromallenaipdffigures

conversion we recover the original vector graphics back, overlap-
ping curves are extracted perfectly, which will be impossible to do
with a raster graphics.

While the current system uses only the color information, SVG
paths may contain other features such as stroke-width or stroke-
opacity. In the future, we plan to use them in a more advanced
clustering algorithm for handling black and white line graphs.

7.2 Legend Word Combination and Curve Leg-
end Association

Words classified as “legend” are horizontally combined together
to form legend strings. Two words in the same vertical position
are combined if there doesn’t exist any image pixel between them.
To check the presence of an image pixel, the extracted SVG curves
are rasterized with a low resolution. A word can have multiple
such words as combination candidates. The one with the minimum
horizontal distance is chosen. The combined string is put into the
queue of words, leading to an iterative algorithm. Our algorithm
would fail on multi line legends but they are extremely rare.

Usually for each legend some pixels can be found to the left or
right, from the curve associated with it. Such regions can be easily
identified, but there are multiple problems with this approach. Our
curve extraction algorithm does not extract black curves. There-
fore, legends for those curves should not be associated with any
other curve. Also, all legend strings can be in the same horizontal
line. In the previous steps some words can be wrongly classified
and combined as legends (see figure 2a). In these cases a legend
string can have multiple curves as candidates.

We cast this as a bipartite matching problem. We define a cost
function between a curve C and a legend L as the horizontal dis-
tance between L and the pixel from C closest to L. If no pixel from
the curve exists within a rectangle of width 20 to the left or right
of the legend, the cost is infinity. If the number of extracted curves
and legend strings are not equal, the matrix is padded with infin-
ity values as necessary. Then the Munkres assignment algorithm is
used to minimize the total cost of the assignment[11].

7.3 Natural Language Summary Generation
Line graphs are generated from data tables and each pixel on

a curve is a data point (x,y). For a pair of points P(x1, y1) and
P(x2, y2) on a curve such that x2=x1+1; if y2>y1, we say that the
curve has an increasing trend at that point. Similarly, if y2<y1, the
curve has a decreasing trend and if y2 = y1, the curve has a stable
trend. Trends for all data points are summed up. If the number

5

of points for a particular trend � 50% of total points, we infer the
curve has that trend overall. Else, we report the percentage of each
trend in the curve, such as Curve X has x% increasing, y% decreas-

ing and z% stable trend. In the future more advanced algorithms
can be incorporated. An example summary for a line graph is avail-
able online10.

7.4 Experiments and Scalability
For these experiments we randomly chose a set of 200 color line

graphs. For curve extraction, we define precision as number of
curves correctly extracted/ total number of curves extracted. The
recall is defined as number of curves correctly extracted/ actual
number of curves. Precision for curve extraction process is 90.08%
and the recall is 88%. Our algorithm does not extract curves drawn
with black color. This lowers the recall value. Due to the color
based separation, sometimes the algorithm extracts grid lines and
other non relevant visual elements as curves. This causes the de-
crease in precision. For curve legend association the precision as
defined as the number of cases where the curve is correctly associ-
ated with the legend/ total number of curve legend associations.
The precision for our dataset is 81%. The legend combination
step is mostly correct. For the curves that were extracted correctly,
legends were associated correctly as well. Curves extracted erro-
neously in the last step contributes to the reduction of precision.

One important aspect of our method is the scalability. Given a
figure location and the words inside the figure, it takes on average 4-
5 seconds to extract the SVG, and 1-2 seconds to produce the curve
summary, including all steps for classification, word combination
and legend curve association. This is a huge scalability improve-
ment over standard raster processing methods where it takes 50-60
seconds just to produce the required raster image. Code and data
for these experiments are available on Github11.

8. CONCLUSION AND FUTURE WORK
Scholarly papers contain many figures that are usually ignored

in traditional search and data extraction analysis. We report a scal-
able architecture for analysis of such figures. Figures are extracted,
classified and processed to produce a natural language summary.
In each step, a searchable metadata is generated. For some tasks
we show an improvement in the running time of existing algo-
rithms. Previous work attempted to automatically extract the curves
from scholarly line graphs. We show that the process can be made
more scalable as well as accurate by adopting a different paradigm.
While the current focus is on line graphs, other types of scholarly
figures can be semantically indexed later.

9. ACKNOWLEDGEMENTS
We gratefully acknowledge partial support from the National

Science Foundation and Qatar Foundation.

10. REFERENCES
[1] S. Z. Chen, M. J. Cafarella, and E. Adar. Searching for

statistical diagrams. Frontiers of Engineering, National

Academy of Engineering, pages 69–78, 2011.
[2] Z. Chen, M. Cafarella, and E. Adar. Diagramflyer: A search

engine for data-driven diagrams. In Proceedings of the 24th

International Conference on World Wide Web Companion,
pages 183–186. International World Wide Web Conferences
Steering Committee, 2015.

10http://personal.psu.edu/szr163/hassan/hassan-Figure-2.html
11https://github.com/sagnik/svg-linegraph-processing

[3] S. R. Choudhury and C. L. Giles. An architecture for
information extraction from figures in digital libraries. In
Proceedings of the 24th International Conference on World

Wide Web Companion, WWW 2015- Companion Volume,
pages 667–672, 2015.

[4] S. R. Choudhury, P. Mitra, A. Kirk, S. Szep, D. Pellegrino,
S. Jones, and C. L. Giles. Figure metadata extraction from
digital documents. In Document Analysis and Recognition

(ICDAR), 2013 12th International Conference on, pages
135–139. IEEE, 2013.

[5] S. R. Choudhury, S. Tuarob, P. Mitra, L. Rokach, A. Kirk,
S. Szep, D. Pellegrino, S. Jones, and C. L. Giles. A figure
search engine architecture for a chemistry digital library. In
Proceedings of the 13th ACM/IEEE-CS joint conference on

Digital libraries, pages 369–370. ACM, 2013.
[6] C. Clark and S. Divvala. Looking beyond text: Extracting

figures, tables, and captions from computer science paper.
2015.

[7] A. García Seco de Herrera, H. Müller, and S. Bromuri.
Overview of the ImageCLEF 2015 medical classification
task. In Working Notes of CLEF 2015 (Cross Language

Evaluation Forum), September 2015.
[8] C. F. Greenbacker, P. Wu, S. Carberry, K. F. McCoy, and

S. Elzer. Abstractive summarization of line graphs from
popular media. In Proceedings of the Workshop on

Automatic Summarization for Different Genres, Media, and

Languages, pages 41–48. Association for Computational
Linguistics, 2011.

[9] K. S. Hasan and V. Ng. Conundrums in unsupervised
keyphrase extraction: Making sense of the state-of-the-art. In
Proceedings of the 23rd International Conference on

Computational Linguistics: Posters, COLING ’10, pages
365–373, Stroudsburg, PA, USA, 2010. Association for
Computational Linguistics.

[10] W. Huang and C. L. Tan. A system for understanding imaged
infographics and its applications. In Proceedings of the 2007

ACM Symposium on Document Engineering, DocEng ’07,
pages 9–18, New York, NY, USA, 2007. ACM.

[11] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2:83–97,
1955.

[12] X. Lu, S. Kataria, W. J. Brouwer, J. Z. Wang, P. Mitra, and
C. L. Giles. Automated analysis of images in documents for
intelligent document search. IJDAR, 12(2):65–81, 2009.

[13] O. Pelka and C. M. Friedrich. Fhdo biomedical computer
science group at medical classification task of imageclef
2015. Working Notes of CLEF, 2015, 2015.

[14] S. Ray Choudhury, P. Mitra, and C. L. Giles. Automatic
extraction of figures from scholarly documents. In
Proceedings of the 2015 ACM Symposium on Document

Engineering, DocEng ’15, pages 47–50, New York, NY,
USA, 2015. ACM.

[15] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala,
and J. Heer. Revision: Automated classification, analysis and
redesign of chart images. In Proceedings of the 24th annual

ACM symposium on User interface software and technology,
pages 393–402. ACM, 2011.

[16] P. Wu, S. Carberry, S. Elzer, and D. Chester. Recognizing the
intended message of line graphs. In Diagrammatic

Representation and Inference, pages 220–234. Springer,
2010.

6

