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Abstract

We analyze a general model of multi-agent communication in which
all agents communicate simultaneously to a message board. A ge-
netic algorithm is used to evolve multi-agent languages for the preda-
tor agents in a version of the predator-prey pursuit problem. We show
that the resulting behavior of the communicating multi-agent system
is equivalent to that of a Mealy finite state machine whose states are
determined by the agents’ usage of the evolved language. Simula-
tions show that the evolution of a communication language improves
the performance of the predators. Increasing the language size (and
thus increasing the number of possible states in the Mealy machine)
improves the performance even further. Furthermore, the evolved
communicating predators perform significantly better than all previous
work on similar preys. We introduce a method for incrementally in-
creasing the language size which results in an effective coarse-to-fine
search that significantly reduces the evolution time required to find a
solution. We present some observations on the effects of language
size, experimental setup, and prey difficulty on the evolved Mealy ma-
chines. In particular, we observe that the start state is often revis-
ited, and incrementally increasing the language size results in smaller
Mealy machines. Finally, a simple rule is derived that provides a pes-
simistic estimate on the minimum language size that should be used
for any multi-agent problem.

1 Introduction

An important decision that needs to be made when designing a learning
multi-agent system is choosing the sensory information to the system. Pro-
viding too little information will result in faster learning but will not allow
the system to find an optimal solution. On the other hand, providing too
much information can significantly increase the learning time because of
the larger search space, though the optimal solution becomes possible.
Allowing agents to communicate and to learn what to communicate can
significantly ease the burden on the designer. This paper studies an ideal
case where each agent has access to a small set of local information and
through experience learns to communicate only the additional information
that is important.

While many researchers have shown the emergence of beneficial com-
munication in multi-agent systems, very few have looked into how commu-
nication effects the behavior or representational power of the multi-agent
system. The results of this paper contribute further to this area by looking
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at the relationship between the communication behavior of a multi-agent
system and the finite state machine that completely describes this behav-
ior. With this knowledge we can better understand how communication
increases the representational power of a multi-agent system.

1.1 Previous Work

The role of communication in multi-agent systems remains one of the most
important open issues in multi-agent system design [4]. There have been
several efforts to standardize communication protocols and languages to
facilitate coordination between agents, although these efforts are still rela-
tively immature. The Knowledge Query and Manipulation Language (KQML)
is a communication protocol for exchanging knowledge and information. A
description of KQML can be found in Labrou and Finin [13], but KQML is
still a work in progress and its semantics have not been completely defined.
The Knowledge Interchange Format (KIF) is a formal syntax for represent-
ing knowledge. The KIF language is a prefix version of first order predicate
calculus, and has been proposed as a standard for describing knowledge in
expert systems and intelligent agents. Speech act theory [19] views human
natural language as actions, such as requests, replies, and commitments.
Speech act theory standardizes the types of communication acts available
to agents. To a receiver agent understanding speech act protocols, the
message contained within the communication act may be non-standard,
but there is no ambiguity as to the type of message sent.

Previous work has shown that beneficial communication can emerge
in a multi-agent system. Ackley and Littman [1] show that agents can
evolve to communicate altruistically in a track world even when doing so
provides no immediate benefit to the individual. MacLennan and Burghardt
[14] use genetic algorithms to evolve finite state machines that cooperate
by communicating in a simple abstract world. Walker and Wooldridge [23]
study the emergence of conventions in multi-agent systems as a function
of various hard-coded strategy update functions, including update functions
where agents communicate to exchange memories of observed strategies
by other agents. Luc Steels [20] show that vocabulary can evolve through
the principle of self-organization. A set of agents create their own vocabu-
lary in a random manner, yet self-organization occurs because the agents
are coupled in the sense that they must conform to a common vocabulary
in order to cooperate through communication. Saunders and Pollack [17]
allow agents to communicate real-valued signals through continuous com-
munication channels. The signals decay over distance and an agent’s input
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on a channel reflects the summation of all the other agents’ signals along
that channel. Saunders and Pollack assigned these agents to a task in
which they need to follow a broken trail of food and show it was possible to
evolve agents that communicate the presence of food. Balch and Arkin [2]
assigned robot agents to 3 tasks (foraging, consuming, and grazing) and
showed that communication significantly improves performance on tasks
with little environmental communication, and that more complex communi-
cation strategies provide little or no benefit over low-level communication.

While many researchers have shown the emergence of beneficial com-
munication, very few have analyzed the nature of the communication and
how communication effects the behavior or representational power of the
multi-agent system. Gmytrasiewicz and Durfee developed a “Recursive
Modeling Method” to represent an agent’s state of knowledge about the
world and the other agents in the world [6]. Furthermore, Gmytrasiewicz,
Durfee, and Rosenchein used this framework to compute the expected util-
ity of various speech acts by looking at the transformation the speech act
induces on the agents’ state of knowledge[7]. Hasida et. al. [9] show that
with certain assumptions, communication can be treated as an n-person
game, and the optimal encoding of content by messages is obtained as an
equilibrium maximizing the sum of the receiver’s and speaker’s expected
utilities.

Finally, a description of some previous work on the predator prey pursuit
problem is provided in the next section.

2 The Predator Prey Problem

The predator-prey pursuit problem is used in this paper because it is a
general and well-studied multi-agent problem that still has not been solved.
The predator-prey pursuit problem was introduced by Benda et. al. [3] and
comprised four predator agents whose goal are to capture a prey agent
by surrounding it on four sides in a grid-world. This problem has been
used to study phenomena such as competitive co-evolution [16][18][10],
multi-agent strategies, and multi-agent communication. The rest of this
paragraph describes some previous studies on the latter two phenomena
that made use of the predator-prey pursuit problem. Haynes and Sen [10]
used genetic programming to evolve predator strategies and showed that
a linear prey (pick a random direction and continue in that direction for the
rest of the trial) was impossible to capture reliably in their experiments be-
cause the linear prey avoids locality of movement. Korf [12] studied a ver-
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sion of the predator prey problem in which the predators were allowed to
move diagonally as well as orthogonally and the prey moved randomly. Tan
[22] used reinforcement learning and showed that cooperating agents that
share sensations and learned policies amongst each other significantly out-
performs non-cooperating agents in a version of the predator-prey problem.
Nishimura and Ikegami [15] observe random swarming and other collective
predator motions in a predator prey game. Stephens and Merx [21] study
a simple non-communicating predator strategy in which predators move to
the closest capture position, and show that this strategy is not very suc-
cessful because predators can block each other by trying to move to the
same capture position. Stephens and Merx also present another strategy
in which 3 predators transmit all their sensory information to one central
predator agent who decides where all predators should move. This central
single-agent strategy succeeds for 30 test cases, but perhaps the success
rate would be much lower if the agents were to move simultaneously in-
stead of taking turns.

This paper uses an implementation which is probably more difficult for
the predators than in all previous work:

1. In our configuration, all agents are allowed to move in only four or-
thogonal directions. The predators cannot take shortcuts by moving
diagonally to the prey, as they do in [12].

2. All agents have the same speed. The predators do not move faster
than the prey, nor do they move more often than the prey, as they do
in [10].

3. All agents move simultaneously. Because the agents do not take
turns moving (e.g. [21]) there is some uncertainty in anticipating the
result of each move. In addition, moving the agents concurrently in-
troduces many potential conflicts, e.g. two or more agents may try to
move to the same square.

4. The predators cannot see each other and do not know each other’s
location. If this type of information is essential to getting successful
captures then the predators will have to evolve a language that can
represent such information.

The world is a two dimensional torus discretized into a 30x30 grid. Since
the world is toroidal, if an agent runs off the left edge of the grid it would
reappear on the right edge of the grid, and a similar behavior would be
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observed vertically. No two agents are allowed to occupy the same cell at
the same time. Agents cannot move through each other. If two or more
agents try to move to the same square they are all blocked and remain in
their current positions. At the beginning of each scenario the predators and
prey are randomly placed on different squares. Each scenario continues
until either the prey is captured, or until

�������
time steps have occurred

without a capture.
Two prey strategies are used in the simulations. The Random Prey

chooses it’s next action at each time step from the set N, S, E, W using a
uniform random distribution. The Linear Prey picks a random direction at
the beginning of a trial and continues in that direction for the duration of
the scenario. It has been shown that the Linear Prey can be a difficult prey
to capture [20], [10] because it does not stay localized in an area. In our
simulations this is an even more difficult prey to capture because the prey
and predators move at the same speed.

3 Communication

This paper studies a simple framework in which all predator agents com-
municate simultaneously to a message board. See Figure 1. At every iter-
ation, each predator agent speaks a string of symbols from a binary alpha-
bet � �����
	 . The communicated symbols are placed on the message board.
Each agent then reads all the strings communicated by all the predator
agents and determines the next move and what to say next. The strings
are restricted to have equal length � . We vary the length � of the strings and
study the effect on performance.

3.1 Equivalence to a Finite State Machine (FSM)

This type of communication may be represented as shown in Figure 1,
where �
��� 	 is the set of homogenous predator agents, ����� 	 are the ac-
tions of the predators, and �
����� 	 is the set of environmental inputs, where� is the number of inputs and � is the number of communicating agents.
The message board can be interpreted as a set of state nodes.

The entire set of agents can be viewed as one finite state machine with
the set of possible states specified by the state nodes ��� ��� 	 . The whole
multi-agent system is equivalent to a finite state automaton with output, oth-
erwise known as a finite state transducer. One type of finite state transducer
is the Mealy finite state machine, in which the output depends on both the
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Figure 1: Multi-Agent Communication as a single Finite State Machine. � is
the length of the communication strings.

state of the machine and its inputs. A Mealy machine can be characterized
by a quintuple

������� ��� ��	 ��
�����

, where

�
is a finite non-empty set of input

symbols,
�

is a finite non-empty set of states,
	

is a finite non-empty set of
output symbols,



is a “next-state” function which maps

��� ��� �
, and

�
is an output function which maps

��� ��� 	
.

It is easy to show that the multi-agent system is a Mealy machine by
describing the multi-agent system in terms of the quintuple

�
. The input

set
�

is obtained from the set �
��������� ������� ��� ��� � � � ��������� � ��� 	 of all possible con-
catenated sensor readings for the predator agents (for all possible values of
� ). A description of the sensor readings is provided later in this paper. The
states

�
are represented by concatenation of all symbols in the message

board. Since the communication strings comprise binary symbols � �����
	 ,
the maximum number of states ������� ��!"� in the Mealy machine is therefore
determined by the number of communicating agents � and by the length �
of the communication strings: ������� ��!"� �$# � � . The output set

	
is obtained

from the set ���%���
�&� ����� �&�(' � � �
� ��������� � �)' 	 of all possible concatenated ac-
tions for all the communicating agents, where * is the number of bits re-
quired to encode the possible actions for each agent (for all possible values
of � ). In the general case where the actions do not have to be encoded as
binary bits, the output set is simply the set ���+�
� ������� � � 	 of all possible con-
catenated actions for the � communicating agents. The next state function
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and output function

�
are determined by the agents’ action and commu-

nication policies. The policies themselves may be FSMs or something with
even more representational power, in such a case the multi-agent FSM is a
hierarchical FSM.

3.2 Communication Can Help in Partially Observable Environ-
ments

From Figure 1 it is clear that communication allows the agents to use state
information. This state information is contributed by all communicating
agents and represents the state of the entire multi-agent system.

Although each individual agent may maintain its own state information,
such information will be limited by the available sensors of the agent. When
an agent’s next optimal action depends on information that is hidden from
an agent’s sensors we say that the agent suffers from the hidden state
problem. Figure 2 shows an example of a typical hidden state problem that
is very common in the predator-prey simulations reported in this paper. In
this figure, predator

�
sees the same sensory information for two different

scenarios due to the fact that predators cannot sense each other directly.
In scenario � , predator

�
attempts to move South but is blocked by predator�

in its path, while in scenario
�

predator
�

is attempting to move South and
is not blocked.

Communication allows agents to “tell” each other environmental infor-
mation that may have been observable only to a subset of the agents. Ob-
viously, communication will be of little use in this respect in the limit when
the same set of information is observable to all agents. The message board
can be viewed as part of the environment. With this equivalent interpreta-
tion, the message board disambiguates the environmental states observed
by each agent by providing information that may have been hidden other-
wise - assuming the agents are able to communicate effectively.

It is very rare for all agents to have access to the same amount of in-
formation. This is due to the fact that an individual agent will usually have
its own internal state that is not observable by other agents. If an agent’s
state helps determine its behavior, communication may be instrumental in
allowing the agents to converge on an optimal plan of action. Thus, even if
all agents have access to all possible environmental information, communi-
cation may still be helpful by allowing agents to communicate their internal
state information.
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Figure 2: An example hidden state problem. Predator
�

sees the same
sensory information for both scenarios � and

�
, but in fact scenario

�
is very

different from � : in scenario � predator
�

is blocked, while in scenario
�

it is
not. This hidden state problem is due to the fact that the predators cannot
sense each others’ locations.

9



4 Experimental Setup

A genetic algorithm is used to evolve predators that communicate. A set
of experiments is performed with communication strings of varying length
� . As the length � increases, the number of strings that are available for
communicative acts increases exponentially.

In the sections that follow, GA predators are labeled as GaPredator( � ),
where � is the length of the communication strings. A communication string
of length zero means the predators are not communicating.

The performance of grown predators (see Section 4.2 below) is also
compared. These predators are labelled as GaPredator( ��� � � � 
 , where � �
is the string length before the agent is grown, and � � is the length it was
grown to.

Separate populations of GaPredator(
�
), GaPredator(

�
), GaPredator(

#
),

GaPredator(
� � �

), and GaPredator(
� � #

) predators are matched against
the Random and Linear preys. The initial GaPredator(

� � �
) population

is grown from the GaPredator(
�
) population with the best average fitness,

and similarly the initial GaPredator(
� � #

) population is grown from the
GaPredator(

� � �
) population with the best average fitness.

4.1 Encoding Predator Strategies

The behavior of each evolved predator is represented by a binary chromo-
some string. The length � of the chromosome string is a function of the
number of possible states ������� ��!"� observable by the predator based on its
sensory information, and the number of actions

� ���(����� � � .
The sensory information available to the predators comprise the range

and bearing of the prey, and the contents of the message board. The range
(measured in terms of Manhattan distance) and bearing are discretized
into ����� �	��! ��


and �
� ! ����� �	� ���
sectors, as detailed in Table 1. The

number of symbols on the message board is � � , where � is the number of
predator agents. The message board can have � � !"� � ����!"� � # ��� possible
messages. The total number of states that can be sensed by a predator
is therefore � ����� ��!"� � ����� �	��!��
� ! ����� �	� � � !"� � ����!"� . The actions comprise the
moves ��� � � ��� ��� 	

, and speaking a string of length � at each iteration..
The number of binary bits required to represent the



moves are

� ������!"� � #
.

Thus, the total number of action bits is
� ���(����� � � � � ������!"��� � . We arrive at

the following equation for the chromosome length � ��� of a GA predator that
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Distance of Prey from Predator (# of cells) Range Sector
0 0
1 1
2 2
3+ 3

Bearing
�

of Prey from Predator (radians) Bearing Sector
� � ���

��� �
� 0

�
� �

��� � �
� 1� �

� �
���	� �

� 2
� �
�
�

����� �
� 3

� �
�
�

���	
 �
� 4


 �
� �

��� ��� �
� 5��� �

� �
��� � � �

� 6� � �
� �

��� � � �
� 7

Table 1: Discretization of predator-prey range and bearing. Range is mea-
sured in Manhattan distance.

communicates with strings of length � in a team of � predators:

� ��� � � ���(����� � � � ����� ��!"�
� ��� � � � ������!"� � � 
 ����� �	��!��
� ! ����� �	� # ��� (1)

so the chromosome length increases exponentially with communication
string length � and number of agents � .

4.2 Growing GA Predators - Coarse to fine search

To improve efficiency, it would be useful to grow the predators. Growing
means taking a population of predators that have already evolved a lan-
guage from a set of possible strings, and evolving them further after in-
creasing the set of possible strings they are allowed to communicate. This
re-uses the knowledge acquired by predators that were limited to a smaller
language. This is effectively a coarse-to-fine search; as we increase the
search space by increasing the number of possible strings, the agents can
refine the language and communicate other useful, but possibly less criti-
cal, information.

By growing the language in these experiments we are making it adap-
tive. Luc Steels [20] defines an adaptive language as one that “expands or
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changes in order to cope with new meanings that have to be expressed.”
When a population of GA predators with chromosome length � ��� is

grown to a length of � � � � � ��� , each new chromosome is encoded such that
the behavior of the new predator is initially identical to that of the chromo-
some it was grown from. The portions of the larger chromosome that are
new are not visited initially because the predator is making exactly the same
decisions as before and will therefore see the same set of sensory states.
During the evolutionary process new sensory states will be visited and the
agent will evolve accordingly.

In addition, the population size of the grown � � � � � ��� predators is always
twice the population size of the � ��� predators they were grown from. Half
of the population of � � � � � ��� predators are grown from the � ��� predators,
the other half are generated randomly. In this manner the grown predators
don’t rely solely on mutation for introducing new genetic material to the
genes that were copied from the predators with chromosome length � ��� .
They can obtain new genetic material through crossover with the randomly
generated individuals.

4.3 Evaluating the Fitness of Evolved Predators

The fitness of each evolved strategy is determined by testing it on
� ���

ran-
domly generated scenarios with different starting locations for the predator
and prey agents. The maximum number of cycles per scenario is

�������
, after

which the predators are considered to have failed. Since the initial popula-
tion is randomly generated, it is very unlikely that the first few generations
will be able to capture the prey. We attempt to speed up the evolution of fit
strategies by rewarding those strategies that at least stay near the prey and
are able to block the prey’s path. The fitness � � of individual � is computed at
the end of each generation as follows, where ���	��
 � �������

is the maximum
number of cycles per scenario, � � � ���

is the total number of scenarios for
each individual, and � � is the number of captures:

� If � � � �
, �	� � ��
 �������� � ��
 ���������� ��! where " ����� is the average distance of

the all



predators from the prey during the scenarios, and � � is the
cumulative number of cycles that the prey’s movement was blocked by
an adjacent predator during � scenarios. The fitness of non-capture
strategies can never be greater than

�
.

� If
�
� � � � � , �	� � � � .
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Predator Population Size Mutation Rate
GaPredator(

�
)

� ��� � � � �
GaPredator(

� � ��
 # ��� � � ��� �
GaPredator(

��
 # ��� � � ��� �
GaPredator(

� � # 
 � ��� � � ����� �
GaPredator(

# 
 � ��� � � ����� �
Table 2: Population Size and Mutation Rate GA parameters used in the
simulations.

� If � � � � , �	� � � �
� ������� �!�
����� � �

, where �	� is the number of cycles required

to capture the prey at scenario 
 .

4.4 GA Setup

The following GA parameters were found experimentally to be most effec-
tive. We use

#
-point crossover with a crossover probability of

� � 
 . The idea
behind multi-point crossover is that parts of the chromosome that contribute
to the fit behavior of an individual may not be in adjacent substrings. Also,
the disruptive nature of multi-point crossover may result in a more robust
search by encouraging exploration of the search space rather than early
convergence to highly fit individuals. For a discussion of

#
-point crossover

and generalized multi-point crossover schemes see [11]. A Tournament
selection scheme [8] with a tournament size ����
�� of 5 is used to select
the parents at each generation. In Tournament selection, ����
�� individuals
are chosen randomly from the population and the best individual from this
group is selected as a parent. This is repeated until enough parents have
been chosen to produce the required number of offsprings for the next gen-
eration. The larger the tournament size, the greater the selection pressure,
which is the probability of the best individual being selected compared to
the average probability of selection of all individuals. The population size *
and mutation rate depends on the length of the communication string be-
cause the search space increases exponentially with the communication
string length. The larger search space translates into longer chromosome
lengths. As a general rule, longer chromosome lengths warrant a larger
population size and smaller mutation rate. The population sizes and muta-
tion rates used in the experiments are listed in Table 2.� �

trials are performed, with the population initialized randomly at the
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beginning of each trial. The following is a brief description of the algorithm:

1. Repeat the following for
� �

trials on selected prey:

(a) Randomly generate a population of * individuals.

(b) Repeat until there is no improvement after
# ���

generations:

i. Simulate each predator strategy on
� ���

scenarios and evalu-
ate its fitness based on the performance on those scenarios.

ii. Select * individuals from the current population using Tour-
nament selection, pair them up, and create a new population
by using

#
-point crossover with mutation.

(c) The best strategy found over all generations is used as the solu-
tion of this trial. The fitness of this strategy is then recomputed
by testing on

� �����
new randomly generated scenarios.

2. The strategy that performed best over all
� �

trials is used as the solu-
tion.

5 Results

Figure 3 shows the best average capture times (over 1000 randomly gen-
erated scenarios) and the cumulative number of evolutionary generations
that were needed to achieve such capture times. If

� � � 
 is the number of
generations that a GaPredator( � ) population was evolved, and

� � � � � � � 

is the number of generations that a GaPredator( ��� � � � ) population was
further evolved after it was grown from �(� to � � , then the cumulative gener-
ations for the best GaPredator(

� � �
) and GaPredator(

� � #
) populations

are computed as follows:

�
�������
� � ��� ��! � � � ��
 � � � � 


�
� � � � ��


�
�������
� � ��� ��! � � � # 
 � �

�������
� � ��� ��! � � � ��

�
� � � � # 


Below is a summary of the performance and convergence results:

� As the length of the communication string increases, the capture time
decreases. However, the best capture performance of GaPredator(1)
against the Random prey is comparable to the best performance of
GaPredator(2) and GaPredator(

� � #
), which indicates that a com-

munication string of length 1 was sufficient against the Random prey.
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Figure 3: Best capture times and the corresponding number of evolutionary
generations required to evolve the communicating predators against Ran-
dom and Linear preys, at communication string lengths 0, 1, and 2.

� The evolutionary generations required increases with the length of the
communication string.

� The capture performance of grown predators is comparable to the
performance of the equivalent non-grown predators, but requires sig-
nificantly less evolution time. Thus, incrementally increasing the lan-
guage size is an effective coarse-to-fine method which reduces the
search time.

� The evolved communicating predators perform better than all pre-
viously published work to our knowledge. A previous work whose
experimental setup is most similar to our work is perhaps Haynes
and Sen [10], although their setup makes the predators’ job easier
because they are allowed to move more frequently than the prey.
Haynes and Sen and other previous work [12] on similar preys re-
port results as a percentage of trials that lead to capture, whereas
the results reported here show

� ���
% capture rate when the predators

are allowed to communicate.

5.1 Analysis of Evolved FSMs and Communication

This section describes and analyzes the differences in the evolved FSMs
as a result of the communication language size.
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The Mealy machines were obtained by “listening” to the predators talk-
ing during actual trials, as opposed to analyzing the predators’ GA string to
determine what they would say for each possible sensory permutation. This
way we only account for states and links on the multi-agent Mealy machine
that are ever visited, and ignore states and links that do not contribute to
the behavior of the predators because they are never visited anyway.

After obtaining the communication activity of the predators, the states
of the Mealy machine are constructed by concatenating the words spoken
by all predators on the message board. A different multi-agent state is as-
sociated with each unique concatenation. The links represent transitions
between multi-agent states (i.e. transitions in the content of the message
board) at each time step as a result of the inputs sensed from the environ-
ment.

Figures 4, 5, 6, and 7 show the best evolved Mealy machines for non-
communicating and communicating predators that were evolved against the
Linear prey. The Mealy machines are depicted using what we call Scaled
Finite State Diagrams (SFSD). SFSDs provide more information than stan-
dard finite state diagrams by representing the relative importance of links
and nodes in a visual manner. A Scaled Finite State Diagram is described
as follows:

� Links are combined to meta-links. A meta-link is an aggregate of all
links that connect the same two nodes together, irrespective of their
input/output pairs. This simplifies the figures because otherwise the
individual links are so numerous that they would completely fill all the
space. Also, note that the links are directional, and the end with the
arrow points to the next state.

� The thickness of a meta-link indicates the number of individual links
that were combined to form the meta-link. A thick meta-link means
that many individual links with different input/output pairs were com-
bined to form that meta-link.

� The size of a node indicates its attractiveness and significance. This
is measured by the number of incoming links that are connected to
that node. A large state node indicates that many environmental input
combinations from various states would move the multi-agent system
to this state.

Each node is labeled by a number, which is computed by concatenating
all the communicated words on the message board and using the language
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Figure 4: Finite State Machine of non-communicating GA predators. All the
links have been combined into one meta-link for simplicity. In other words,
when the predators are not communicating they act like a FSM with one
state and many links, one link for each possible input combination.

size as the base power. The start node is labeled “
�
” because at the start

of each scenario the message board is initialized to all zeroes.
Observation of the evolved Mealy machines indicate the following:

� The start state is always very significant in the evolved Mealy ma-
chines.

� Growing a language results in a Mealy machine with fewer states
than an evolved language that was not grown. Compare Figures 6
and 7, and see Table 3, which shows the average number of states
in the best Mealy machines over ten trials as a function of com-
munication size. For example, the average number of states in the
evolved GaPredator(2) machines was 252, while for the grown preda-
tors GaPredator(

� � #
) the average was only 87. Intuitively this

makes sense: the grown FSMs were forced to initially make do with
fewer possible states, and as new states became available they were
added only when doing so improved performance, or at least did not
detract from the performance.

� The size of the Mealy machine appears to increase with the difficulty
of the problem. See Table 3. For example, the Mealy machines
evolved against the Random prey are smaller than the Mealy ma-
chines evolved against the more difficult Linear prey. Also, note that
the Mealy machine for GaPredator(

� � #
) (see Figure 7) only uses

87 out of 256 possible states, which indicates that increasing the lan-
guage size (and thus the number of possible states) would not im-
prove results; it would only increase the number of required evolu-
tionary generations unnecessarily.
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Figure 5: Finite State Machine of best communicating GAPredator(1)
evolved against the Linear prey. All 16 possible states are used. The FSM
on the right is the same machine on the left, except the machine on the
right is represented as a Scaled Finite State Diagram (SFSD). States 0, 2,
4, 5, 6, and 8 are more significant than the other states.

Figure 6: Finite State Machine of best communicating GAPredator(2)
evolved against the Linear prey. All 256 possible states are used.
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Figure 7: Finite State Machine of best communicating GAPredator(
� � #

)
evolved against the Linear prey. Only 87 out of 256 possible states are
used, but the start state (state 0) is much more significant than all other
states.

Predator PREY
Random Linear

GaPredator(
�
)

� �
GaPredator(

� � �
)

� ���
GaPredator(

�
)

� # ���
GaPredator(

� � #
)

� ���

GaPredator(
#
)

� # # � #
Table 3: Average number of states in best predators’ multi-agent Mealy
machine over ten trials as a function of prey and communication size.
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5.2 Evolved Languages

Table 4 shows an excerpt of the language evolved by the best GaPredator(
� �

�
) agents. This excerpt was obtained by clustering the observed commu-

nication activity using the Minimal Spanning Tree algorithm and displaying
some of the larger clusters. As an example, the first line is interpreted as
follows: “If the prey is to the far north of me (range of 2, bearing 2) and the
message board consists of the symbols (0,0,0,0), speak the symbol “0” and
move North.”

The Minimal Spanning Tree (MST) algorithm is a hierarchical cluster-
ing method. Initially, each distinct communication instance is assigned a
separate cluster. A communication instance consists of the following in-
formation: the agent’s sensory information, the contents of the message
board, what the agent decides to say, and how the agent decides to move.
The MST algorithm proceeds iteratively, at each stage joining the two most
similar clusters until a stopping criteria (usually until there is only one clus-
ter left). The similarity between clusters was measured using a distance
metric that weighted the agents’ move and sensor information more than it
weighted the contents of the message board.

An important observation from the evolved languages is that it is very
difficult, if not impossible, to explain the evolved languages. Looking at Ta-
ble 4, one would be hard-pressed to say, for example, what the symbol “0”
means to the predators since there does not appear to be a pattern to its us-
age. However, the evolved languages are obviously very suitable because
it allows the predators to outperform all previous work on similar preys. We
thus conclude that allowing the agents to evolve their own communication
language is very useful, since it would have been very difficult for a human
designer to construct a similar language that can perform as well.

Also, the evolved languages are tightly coupled with the learning prob-
lem and cannot be re-used on a different problem. The languages are
integrated with the strategies and available actions of the agents in their
environment. Therefore, the portability of the evolved languages is depen-
dent on the portability of the evolved multi-agent strategies.

5.2.1 Semantic Density

Let us define the semantic density of a language as the average number of
meanings assigned to each word of the language. The semantic density



can be computed as
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Input(Range/Bearing) MessageBoard Say Move
2 / 2 0 0 0 0 0 North
2 / 3 0 0 1 0 0 West
2 / 1 0 0 0 1 0 East
1 / 6 1 0 0 1 1 South
1 / 1 1 1 1 1 1 South
1 / 6 0 1 1 1 1 West

Table 4: Excerpt of the language evolved by best GaPredator(
� � �

) agents


 � �

�
�

where � is the total number of meanings represented by the language, and
� is the number of words in the language.

We can compute an upper bound ��� on the number of possible useful
meanings that the predator agents can communicate. We make the fol-
lowing simplifying assumption: the space of useful meanings that a preda-
tor can possibly communicate includes only the agent’s sensory informa-
tion and its next move. This assumption is justified in our simulations be-
cause the agents do not have any internal state information that need to
be communicated (our predators do not maintain any internal state), and
the agents’ plan of action applies only to the current time step. Account-
ing for the environmental information observable for each agent and the 4
actions (N,S,E,W) that an agent can take, we get the following equation for
the upper bound on the number of useful meanings:

��� � 
 ����� �	��!��
� ! ����� �	� � � # � �

where ����� �	��! � 

is the number of discrete ranges from the prey, and

�
� ! ����� �	� � �
is the number of discrete bearings to the prey. ��� represents

the maximum number of unique meanings that a predator agent can possi-
bly communicate regarding its sensory information and its next action.

Assuming that the agents use all the words available to them, an upper
bound on the semantic density of the evolved languages in our simulations
is simply


 � � ���

�
� � # �

# � � # � ��� � � �
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where � is the length of the binary communication string. Effectively,

 � is

the maximum average number of meanings that need to be assigned to
each word to allow for an optimal multi-agent strategy that has access to all
available local information.

However, a tighter bound can be obtained by observing traces of the
sensory input and movements of all the predators during actual runs. Ba-
sically, we observe that in all runs the number of words used is still �

�
# � , however the number of possible meanings � � is less than the limit
 ����� �	��!��
� ! ����� �	� because not all combinations of sensory input and actions
are experienced by the agents. In other words, the observed upper bound
on the density


 �
� appears to be much less than the theoretical upper bound
 � . This is illustrated in Table 5, which shows the theoretical upper bound

density

 � and the average observed


 �
� for the best predators at each com-

munication string length. The interpretation of

 �
� is slightly different from

the interpretation of

 � : whereas


 � is an upper bound that allows for an
optimal strategy using all available local information,


 �
� is an upper bound

that allows for the best evolved strategy observed, which may or may not
be the optimal strategy.

Table 5 indicates that the theoretical upper bound on semantic density is
rather large, and it is perhaps unrealistic to expect that a word can have so
many meanings in an evolved language. Determining the actual semantic
density is a difficult data-mining problem and will not be presented in this
paper. One would need to first mine for semantics from the data consisting
of the sensory logs of each agent and their actions recorded during all runs.
Instead, we make the following observations in support of the notion that a
relatively high semantic density may in fact be realistic:

� First, it should be noted that the observed upper bounds on semantic
density are much less than the theoretical upper bounds, as shown in
Table 5.

� There does appear to be heavy re-use of symbols (or words) in the
evolved languages. A symbol is used differently depending on the
state of the message board. For example, the symbol “1” is used
differently when the state of the message board is 1001 versus 0111
in Table 4. Thus the evolved languages are compact and are able
to represent more concepts than the

# � possible symbols available to
each agent.

� This re-use of words is also observed in natural languages. It is anal-
ogous to contexts. For example, in the English language the word
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“drive” can mean a compulsion to do something, or it can mean a
device for storing information, or it can mean to guide or control (e.g.
“drive a vehicle”), depending on the context. In fact, the word “drive”
can be a noun or a verb, and according to an on-line dictionary [5] the
verb form can have at least

� #
meanings.

� In the communication framework studied in this paper, the content of
the message board, or equivalently the state of the Mealy machine,
determines the context for the spoken symbols. Therefore, the max-
imum number of contexts per word is equivalent to the number of
states in the evolved Mealy machine, and this places a structural up-
per bound on the semantic density that can be represented by the
multi-agent system. Table 5 shows that for most cases the evolved
Mealy machines can more than accommodate the upper bounds on
semantic density because the average number of states in the Mealy
machines are greater than the semantic density upper bounds. In
fact, the cases where the observed upper bound on semantic density
 �
� is greater than the number of states are exactly the cases where a

larger language improved performance in our simulations. For exam-
ple,


 �
� against the Linear prey with communication strings of length

�
is greater than the number of possible states, and in our simulations
increasing the communication length to

#
improved capture perfor-

mance.

� Thus, one pessimistic estimate for the minimum communication string
length � is the following rule:

Increase � until � ����� ��!"� � 
 � ,

where � ����� ��!"� �$# ��� is the number of possible states (semantic con-
texts) in the Mealy machine that represents the multi-agent strategy,
and � is the number of communicating agents. The value of


 � will be
different for each problem, and indeed it may be difficult to estimate
in problems where one does not know the space of local information
available to each participating agent or when the agents maintain in-
ternal state information. The number � ����� ��!"� can easily be rewritten as
a function of the number of words

�
in the language. For example, in

our experiments
� � # � , and � can be expressed as ������� ��!"� � � � .

Thus, our simple rule can be rewritten as
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Predator

 � 
 �

� against Linear Prey

 �
� against Random Prey � �

GaPredator (0) 128 1
GaPredator (

� � �
) 64 38 10 16

GaPredator (1) 64 38.5 16 16
GaPredator (

� � #
) 32 19.75 10 87

GaPredator (2) 32 20 20 252

Table 5: The theoretical upper bound

 � on the meaning density and the

average observed upper bound

 �
� for the best predators. � �

is the average
number of states in the evolved multi-agent Mealy machines, shown here
again for convenience.

Increase the number of words in the language until � � 
 � .

6 Conclusions

A multi-agent system in which all the agents communicate simultaneously
is equivalent to a Mealy machine whose states are determined by the con-
catenation of the strings in the agents’ communication language. Thus,
evolving a language for this type of communicating multi-agent system is
equivalent to evolving a finite state machine to solve the problem tackled
by the multi-agent system. The simulations show that a genetic algorithm
can evolve communicating predators that outperform the best evolved non-
communicating predators, and that increasing the language size improves
performance. A method is introduced for incrementally increasing the lan-
guage size that results in a coarse-to-fine search that significantly reduces
the time required to find a solution. Furthermore, a simple rule is derived
for estimating the minimum language size that should be used for any multi-
agent problem.

Future work could focus on the semantics of the evolved languages. In
addition, more elaborate ways towards generating an adaptive language
can be explored. Finally, it would be an important step to extend the analy-
sis introduced here to other forms of multi-agent communication structures,
such as a system of agents that communicate asynchronously, or only to
their nearest neighbors.
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