
PDFMEF: A Multi-Entity Knowledge Extraction Framework
for Scholarly Documents and Semantic Search

Jian Wu†, Jason Killian‡, Huaiyu Yang†, Kyle Williams†, Sagnik Ray Choudhury†,

Suppawong Tuarob‡, Cornelia Caragea*, C. Lee Giles†‡

†
Information Sciences and Technology
‡
Computer Science and Engineering

Pennsylvania State University, University Park, PA, 16802 USA
*
Computer Science and Engineering, University of North Texas, Denton, TX, 76203 USA

ABSTRACT
We introduce PDFMEF, a multi-entity knowledge extrac-
tion framework for scholarly documents in the PDF format.
It is implemented with a framework that encapsulates open-
source extraction tools. Currently, it leverages PDFBox and
TET for full text extraction, the scholarly document filter
described in [5] for document classification, GROBID for
header extraction, ParsCit for citation extraction, PDFFig-
ures for figure and table extraction, and algorithm extrac-
tion [27]. While it can be run as a whole, the extraction
tool in each module is highly customizable. Users can sub-
stitute default extractors with other extraction tools they
prefer by writing a thin wrapper to implement the abstracts.
The framework is designed to be scalable and is capable
of running in parallel using a multi-processing technique in
Python. Experiments indicate that the system with default
setups is CPU bounded, and leaves a small footprint in the
memory, which makes it best to run on a multi-core machine.
The best performance using a dedicated server of 16 cores
takes 1.3 seconds on average to process one PDF document.
It is used to index extracted information and help users to
quickly locate relevant results in published scholarly docu-
ments and to eciently construct a large knowledge base in
order to build a semantic scholarly search engine. Part of it
is running on CiteSeerX digital library search engine.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Information
filtering]; H.3.7 [Digital Libraries]: [Systems issues]; H.3.4
[Systems and Software]: [Performance evaluation (e-
ciency and eectiveness)]

General Terms
metadata extraction

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

K-CAP 2015, October 07 - 10, 2015, Palisades, NY, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3849-3/15/10$15.00

DOI: http://dx.doi.org/10.1145/2815833.2815834.

Digital libraries have completely changed the way re-
searchers search for relevant work in almost all knowledge
domains. In 2014 it was estimated that the total number
scholarly articles on the web in English was at least 114
million [19]. With unprecedented growth in the publication
of papers [20], authors find it dicult to read all relevant
papers in order to locate useful results. In some cases, an
author cites a paper just because he/she is interested in a
particular entity, such as the conclusion, an approach, a re-
sults table, and/or a figure. Having a scholarly search engine
that can utilize these entities would help in such a search
and could be the foundation of a semantic scholarly search
engine.

In general, a scholarly document consists of several of
these entities, if not all: a header, a text body, a bibliogra-
phy, figures, tables, math and algorithms (even chemical for-
mulae [26]). The header encapsulates a title, author names,
author aliations, author emails, an abstract, a publication
year, a venue (conference proceedings or journals), a vol-
ume number, pages, and/or series. The text body contains
all descriptive text including ASCII and non-ASCII charac-
ters. The bibliography is a list of publications cited by the
current paper, usually appearing at the end of a scholarly
document and can be named “bibliography”, “references”, or
even “notes”. Figures are very illustrative entities used to
present results with certain trends and are used more fre-
quently in modern papers. Tables are eective in presenting
structured data, such as experimental results. Algorithms,
usually expressed in pseudo-codes, are eective to present
a way to solve a computational problem. Math appears as
equations. Algorithms appear not only in computer science
papers, but also in other science domains, such as mathe-
matics and physics. Our goal is to construct a knowledge
base of each scholarly document that then can be encoded
in a scholarly document ontology.

There has been a great deal of eort in developing meth-
ods for extracting specific entities from scholarly documents.
For example, Apache PDFBox has been widely used to ex-
tract text and attributes of PDF documents. Similar tools
include Poppler [2] and PDFLib TET [1]. In crawl-based
digital libraries, the title and authors are important for clus-
tering near-duplicate papers based on the assumption that
no or very few research papers have exactly the same title
and authors. Existing open-source header parsers include
SVMHeaderParse [18] and GROBID [24]. There are bibli-
ography parsers such as ParsCit [13] (GROBID parses cita-
tions as well). Existing table extraction tools include Tabula

[3], automatic table extractors [22], and PDFFigures [9]. A
figure extraction tool [7] has been developed for general aca-
demic documents and for captions and figures in biomedical
PDF documents [23]. An algorithm extraction tool has all
been developed[27]. In addition, a crawl-based digital li-
brary search engine needs to filter returned documents by
classifying them as scholarly or not [5].

While there are many existing tools for extracting seman-
tic entities, there has not been a framework proposed to
integrate them all together. The Unstructured Information
Management Architecture (UIMA) provides a framework to
do text-based analysis by converting unstructured data into
structured data [16]. However, it focuses on text mining,
such as analyzing logs and clinical notes, through automatic
annotations. The framework here is aimed at eciently per-
forming multi-entity extraction using existing open-source
software, including but not limited to plain text, header, ci-
tations, figures, tables, and algorithms. This framework is
designed to be modular and scalable. It has built-in wrap-
pers for a selection of extraction tools, such as PDFBox, but
others can easily be substituted such as another text extrac-
tor, e.g., PDFLib TET, by writing a simple wrapper to im-
plement the interface. Parallelization is also configurable by
specifying the number of concurrent processes, allowing the
code to process a large corpus of scholarly documents on a
multi-core machine.

This paper is organized with Section 2 describing a typi-
cal metadata extraction system of CiteSeerX, that illustrates
challenges and the design of the new extraction framework,
including all modules and how we choose and implement an
extraction tool. In Section 3, we discuss design implemen-
tations. In Section 4, we run this framework on a random
sample of data and show its performance. Section 5 de-
scribes applications that could potentially make use of the
framework. Section 6 summarizes and discusses future work.

2. DESIGN

2.1 Current Design
The metadata extraction system of CiteSeerX includes

the following modules: text extraction, academic document
filter, citation extraction, and header extraction.The four
modules are assembled in a Perl script, with a Java wrap-
per. The wrapper acts like a job dispatcher. Once started
it creates a job folder and launches multiple threads, each
of which works on a batch job by retrieving a list of un-
extracted documents from the crawl database and then pro-
cessing by the Perl script. The text extraction module uses
PDFLib TET for plain text extraction; the academic docu-
ment filter implements a rule-based classifier, which looks for
keywords/phrases, such as “bibliography”, “references”, and
their variants from the full text [29]; the citation extraction
module uses ParsCit [13]; the header extraction module em-
ploys SVMHeaderParse (hereafter SVMHP). Both ParsCit
and SVMHP require plain text as input. The output of
ParsCit and SVMHP are further compiled into a single XML
file used for ingestion. The ingestion populates a production
database with new document metadata, adds documents
into a production repository, and indexes full text. The
extraction process has a very limited logging function. The
current extraction module has the following drawbacks and
limitations:

1. The Perl script is dicult to maintain and has poor
portability; Python would be better.

2. Although the rule-based document filter achieves a
generally high accuracy of 80%–90% [29], the recall
is below 80%, indicating that it misses a significant
fraction of scholarly documents. A sophisticated clas-
sification algorithm, such as the one developed by [5]
based on structural features and supervised machine
learning, would do better.

3. The SVMHP has been evaluated against other header
extraction tools [21], and the results indicate that
GROBID [24] outperforms other competitors. An in-
dependent evaluation is performed to verify the supe-
rior extraction performance of GROBID (see below).

4. The current extraction is limited to textual content.
It is desirable to integrate multiple extraction tools for
figures, tables, and algorithms.

5. The current extraction module has limited logging
function, making it dicult to trace the reason causing
a failed extraction.

6. The current design is optimized for TET, SVMHP, and
ParsCit, making it dicult to switch to other extrac-
tion tools. This ad hoc design significantly limits the
applicability of the extraction system.

2.2 New Design
Redesigning the extraction framework faces several chal-

lenges. First, the framework should be highly portable and
modular, i.e., it should be relatively easy to fit another
extraction tool into the framework and/or to plug/unplug
one or more modules from the framework, for example, us-
ing TET for plain text extraction instead of PDFBox, or
to remove the academic document filter. In most cases,
this requires developing an “adapter” or a thin wrapper to
a specific extraction tool, because dierent tools are writ-
ten in dierent programming languages, have dierent API
input/output requirements, etc. To accomplish this, the
framework should define an abstract interface to implement
the wrapper and that deals with input, output files, and re-
turning standard extraction status. Specifically, the wrap-
per makes a system call to run an application API (either
as a command line or as a service). The output and error
messages are retrieved and parsed by the wrapper to deter-
mine the status (successful or fail), which is used to control
the work flow and logged. The pluggable feature requires a
centralized design, so a module change needs minimal modi-
fication of the source code or configurations. Second, the de-
sign should consider information shared between modules to
make sure that the dependencies are generated before they
are used and the framework does not waste time to duplicate
some workload across multiple modules. This requires us to
define required and optional modules and arrange them in
a certain order. For example, while GROBID takes a PDF
file as input, other header extraction tools accept a plain
text. Because full text is a prerequisite for many extraction
tools, the framework by default always extracts full text at
the first place. Another example is that if GROBID is used
for both header and citation extraction, it only needs to be
run once when extracting headers, and the citation extrac-
tion module can work directly on its TEI output. Third, the

Figure 1: Proposed architecture. “Pi” represents in-
dividual process. The blue boxes enclose the frame-
works.

framework must handle exceptions from dierent extraction
tools and their results appropriately. For example, if the full
text contains zero line, it is treated as a failure extraction
even if an empty text file is generated.

The high level design of the proposed framework is de-
picted in Figure 1. A and B are very similar except that
they support dierent input modes. In Mode A, the Job
Loader loads documents directly from the file system, i.e., a
folder containing PDF documents to be extracted. This is a
convenient way to run a batch extraction job without setting
up the crawl database and repository. The Job Loader then
creates a Job Pool, which works like a set or dictionary with
document paths (or derived equivalents) as keys. Each pro-
cess has a Job Controller (“J”) and ends with a a Job Cleaner
(“R”), which cleans temporary files, integrates extraction re-
sults and writes extraction status to log files. The “J” mod-
ule switches the process between on and o. The Central
Job Control works like a commander, which reads external
command, e.g., a stop command, from users by periodically
checking the settings in a configuration file. The signal is
then passed to each job controller, which stops fetching new
documents after the current job list is finished. This soft-
termination feature is especially helpful when the framework
is running in Mode B, because it retains the integrity of
extraction jobs by avoiding partially extracted documents.
When the framework is brought up again after a shutdown,
it does not rerun the same documents it had run before, and
it does not deal with documents that are partially extracted
without status updated in the database. In Mode B, the
document list is retrieved from the database and the job
cleaner reports extraction status of each document to the
database.

Because working in Mode B requires extra coding which
depends on specific database schemas, we focus on design
and experiments on the framework itself. Database queries
are usually much faster than extraction, so they are generally
not bottlenecks.

In the extraction framework, each process executes a num-
ber of extraction modules (EMs). The current default set-

Figure 2: The PDFMEF flowchart.

tings include a text extraction module (TX), a scholarly doc-
ument filter (SDF), a header extraction module (HX), a ci-
tation extraction module (CX), a table extraction module
(TBX), a figure extraction module (FX), and an algorithm
extraction module (AGX). Two design options are consid-
ered. In the first design option, within each process, the EMs
are arranged sequentially, i.e., each EM is invoked one after
the previous one is finished. In the second design option,
within each process, each EM is called by a subthread and
EMs are executed in parallel. We choose the first. This is
because of the substantial time dierence it costs to execute
dierent EMs. For example, depending on the extractor,
citation extraction can be ten times slower than header ex-
traction (see experiment results below). If we choose the
second design option, the subthread executing the header
extraction will be idle while the citation subthread is work-
ing. In contrast, the sequential arrangement utilizes CPUs
more eciently and it is easier to scale it up by adding more
cores. The sequential arrangement is also easier to imple-
ment because there is no need to deal with synchronization
issues. For example, as the table extraction is based on full
text, it has to keep idle until full text is extracted. The
flowchart of the sequential design are depicted in Figure 2
(job controller and job cleaner are not displayed). The full
text and header EMs are required, the other EMs are op-
tional. In the next section, we discuss default extraction
tools for each EM.

2.3 Full Text Extraction
Commercial text extraction tools such as PDFLib TET

was believed to perform better than open source counter-
part, e.g., Apache PDFBox. However, both of them have
been under active development, so it is reasonable to evalu-
ate them based on their current versions.

The testing sample is comprised of 1000 PDF documents
randomly selected from the crawl database of CiteSeerX,
so the sample contains non-academic documents. Because
building a ground-truth for text extraction is not feasible

Figure 3: TET vs. PDFBox on numbers of extracted
characters, words, and lines.

due to extremely complicated formatting of PDF files and
the lack of standard transformation schema from PDF files
to text files, we only perform baseline comparison of one
against the other. For this paper, we compare the number of
extracted PDF files, number of lines, characters, and words
for each extracted PDF file. We use the most recent releases
of TET (version 4.4) and PDFBox (version 1.8.6) at the time
of writing. We then use the Linux built-in wc command to
count lines, characters, and words. The results are tabu-
lated in Table 1. This table implies that PDFBox 1.8.6 has
a better performance in terms of the number of extractable
PDF files, although there are 40 files that neither of them
can extract. In fact, there is only one file that TET can ex-
tract but PDFBox cannot, but there are 17 files otherwise.
In Figure 3, we compare the number of characters (Nchars),
words (Nwords), and lines (Nlines) of files extractable by
both of them. This chart indicates that PDFBox extracts
more characters and lines than TET, but extracts less words
for most of documents. Given the current results, it is dif-
ficult to conclude whether TET or PDFBox can absolutely
beat the other. We implement both of them in the frame-
work. Because TET is a paid software and PDFBox has a
free license, we will experiment on PDFBox only.

Either TET or PDFBox can be executed by launching a
system call. A successfully extracted document is passed to
the SDF. Otherwise, it is dropped and logged.

Table 1: TET vs. PDFBox on extractable files.
PDFBox PDFBox TET
Fail Success Overall

TET Success 1 942 943
TET Fail 40 17 57
PDFBox Overall 41 959 1000

A successful extraction output contains at least one
line.

2.4 Academic Document Filter
A rule-based classifier discriminates between academic

and non-academic documents by identifying textual patterns
such as “bibliography” and “references” terms from full text.
A more sophisticated approach has been developed by [5],
which is based on a set of structural features using super-

vised machine learning algorithms. The four types of struc-
tural features and examples are tabulated in Table 2. To

Table 2: Examples of structural features.

File specific features
File size in kilobytes; page number.
Text specific features
Document length in characters, words, and lines;
Ratio between reference mentions and tokens.
Section specific features
Appearance of section names, e.g., abstract, etc.
Content features
Appearance of “this paper”, “this book”, etc.

enhance classification quality, we re-train the classifier with
a new sample. The new sample extends the training sam-
ple described in [5] by adding in 2,000+ manually labeled
documents randomly selected from the crawl repository of
an existing digital library. We also supplement the sample
set with manually curated sets for theses, resume, slides,
and books. The labeling was performed by three people in-
dependently and verified by a domain expert. The revised
training data yield excellent testing results. The precision
and recall from 10-fold cross validations are both over 95%.
To our knowledge, this is the best classification approach to
separate scholarly documents from a corpus of crawled PDF
documents.

For a given document, the filter takes full text, and the
PDF file (the filter needs to obtain some structural features
directly from the PDF file) as input, and output a boolean
value.

2.5 Header Extraction
In [21], Lipinski et al. compares a list of metadata extrac-

tion tools for scientific PDF documents based on a sample
selected from arXiv digital library. A partial score scheme is
used to assess performance of individual tools on the follow-
ing metadata fields: title, authors, and abstract. They also
evaluate authors’ last names and year information in their
second and third round of evaluation. In their evaluation,
GROBID delivers the best results, which significantly beats
SVMHP and other competitors.

Here, we attempt to verify the conclusion in [21] using
a more heterogenous sample selected from CiteSeerX. The
goal is to investigate the best performance of GROBID over
SVMHP. This sample is comprised of papers whose titles
and/or authors were mistakenly extracted by SVMHP, and
were corrected by end users. We manually extract paper ti-
tles, and authors as the ground-truth and extract titles, and
authors using GROBID. Then, we compare automatically
extracted metadata against the ground-truth. We focus on
titles and authors because they are the most essential fields
in a crawl-based digital library search engine. The evalua-
tion was performed by three people independently, each of
whom visually compares the ground truth with automat-
ically extracted metadata. The only guideline in this user
study is to be consistent with their own judging criteria. The
posterior survey indicates that these users generally follow
two principles: (1) all words must be parsed correctly to
qualify a correct title extraction, with exceptions of letters
with accent or ligatures; (2) all authors must be parsed cor-

rectly to qualify a correct author extraction, with exceptions
of letters with accent or ligatures. The final judgements are
reported based on the majority vote for each field. Table 3
shows the evaluation results. The results are in general con-
sistent with those in [21]. Given the heterogeneous property
of our sample, it is clear that GROBID outperforms SVMHP
significantly in terms of both titles and authors by at least
30% in the best senario.

Because the sample is biased against SVMHP, the results
in Table 3 represent the best performance of GROBID over
SVMHP. Empirically, in most cases, GROBID achieves a
comparably quality when SVMHP extracts well. The overall
performance over SVMHP strongly motivates us to employ
GROBID for header extraction of academic documents.

The header extraction executes on research papers only
so the corresponding EM is arranged after the SDF. The
GROBID can be executed either stand-alone or as a service.
The latter is more ecient because it loads required library
files only once. The EM handles errors output by GROBID
appropriately, such as the service is not responding. It first
run GROBID to generate the TEI file [12], and then ex-
tracts fields corresponding to a predefined and customizable
metadata schema into an XML file.

Table 3: GROBID vs. SVMHP.

Title Extraction
GROBID GROBID SVMHP
Incorrect Correct Overall%

SVMHP Correct 5 43 65.7%
SVMHP Incorrect 1 24 34.3%
GROBID Overall% 8.2% 91.8% 100%

Author Extraction
GROBID GROBID SVMHP
Incorrect Correct Overall%

SVMHP Correct 4 38 57.5%
SVMHP Incorrect 3 28 42.5%
GROBID Overall% 9.6% 90.4% 100%

2.6 Citation Extraction
ParsCit is a citation extraction tool developed by [13].

Since GROBID parses citations, we perform a baseline com-
parison between them, by looking at the numbers of ref-
erence items they can extract out, and the quality of ex-
tracted titles, authors, and years. These three fields appear
in almost all reference items, regardless of conference papers,
journal articles, or books. There are a few exceptions, such
as citing a website, in which the authors field is empty, or
citing a forthcoming paper, in which the year information is
missing.

There are existing datasets used for benchmarking cita-
tion extraction, such as the Cora dataset [25], and the Cite-
SeerX dataset used in [13]. However, they usually do not
provide original PDF files, which are input of GROBID.
Therefore, we build the ground-truth ourselves by manually
extracting citations from a list of selected papers.

In the first experiment, we randomly select 100 scholarly
documents from CiteSeerX, and compare the number of au-
tomatically parsed reference items against the real numbers.
The comparison results are tabulated in Table 4. The results
indicate that while both ParsCit and GROBID have similar

numbers of under-parsed papers, GROBID tends to over-
parse citations.

Table 4: ParsCit vs. GROBID on number of parsed
items.

Parser Under-parse Match Over-parse
ParsCit 28 44 28
GROBID 29 26 45

Here, “under-parse” is the number of pa-
pers for which the automatic-parsed items is
less than real numbers. The meanings of
“number-match”and“over-parse”are then self-
explanatory.

A comprehensive comparison of citation extraction qual-
ity requires a large number of manually extracted references
from papers, and an accurate automatic title and author
matching algorithm. Another issue is to align reference
items in automatic parsed items with manually extracted
results. These are beyond the scope of this paper. Here, we
focus on 12 papers that cover typical citation styles.

For most conference and journal papers for which the plain
text is well extracted, the dierences between GROBID and
ParsCit are minor. However, there are a few cases that can
make their parsing results dierent. First, it seems that
GROBID does not work well with reference items starting
with acronyms, e.g., [KH12]. When parsing these references,
it tends to combine two consecutive titles to form a wrong
title. On the other hand, if a paper contains an appendix
following the reference section, ParsCit treats the appendix
as part of the last reference string. Both of them make mis-
takes when there are control characters inserted among the
textual content. Basically, both GROBID and ParsCit ap-
plies conditional random field, which explains in most cases
they work nearly equally well. The dierences are likely due
to the training samples.

One of the advantages of ParsCit is that it extracts cita-
tion context, which are snippets of text around the location
where a reference mention. GROBID does not extract cita-
tion context directly, but the output TEI file contains labels
in the text body that correspond to labels of reference items.
Thus it is still possible to extract citation context by extra
coding. For this project, we use ParsCit as the default cita-
tion extracting tool.

2.7 Table and Figure Extraction
One of the improvements of the new framework compared

with the current one is the integration of table, figure, and
algorithm EMs. There are couples of existing open source
tools to extract tables and figures, such as the table extrac-
tion algorithm proposed by [22], and the figure extraction
algorithm proposed by [8]. Recently, [9] developed a pack-
age called PDFFigures, that can extract figures and tables
in one command. An independent evaluation suggests that
it takes 0:1–0:2 seconds on each page and can achieve an
F1-measure of 90%. Therefore, it is arguably one of the
best open source figure/table extraction tools. Besides, it
integrates figure and table extractions so we do not need to
implement individual EMs.

PDFFigures is executed by calling a compiled binary with
output directories for figures and JSON files. We set a time-
out of 20 seconds in case the program hangs when it is pro-

cessing an unusual file. The output JSON files are concate-
nated into a single JSON file by the wrapper. The extracted
figures and tables are saved as PNG files into the output
folder for the paper.

2.8 Algorithm Extraction
Algorithm extraction automatically extracts pseudo-codes

and reference context from papers, and generates synopsis
for each pseudo-code. There is a handful of open-source
software dedicated on algorithm extraction. The most recent
and successful one was developed by [4] and [27] (hereafter
AlgEx).

The core program is written in Perl with a Java wrapper.
It takes a text file, and the output directory as input pa-
rameters, and writes an XML file to the supplied directory.
We set a timeout of 20 seconds.

3. EXTRACTION
One of the goals of this framework is to abstract away the

logic of coordinating and running the extraction process and
let the user focus on defining the actual logic for extracting
metadata.

The framework was implemented in Python. Python has
been shown to be more usable than Perl [28], and is widely
used in academics. One of the challenges with Python is the
Global Interpreter Lock (GIL), present in Python’s stan-
dard implementation, i.e., cPython. The GIL prevents the
Python interpreter from executing more than one thread
at a time. As a result, the GIL essentially prevents CPU-
bounded jobs from being able to gain performance benefits
through multi-threading. However, multi-processing does
not suer from the GIL limitations because it allows multi-
ple instances of Python interpreters. Therefore, the multi-
processing is used instead of multi-threading in order to meet
the performance goals for the framework.

The code is split up into four main modules. The core
module is responsible for the main functionality of the frame-
work. It runs the overall extraction process. It contains
the ExtractionRunner class, which is where users of the
software library configure and execute extractions. The
core module internally manages all parallelization. The
runnables module lets users define their own runnables. It
contains the base Runnable class, which is inherited by the
Extractor and Filter classes. To define extractors and fil-
ters, a user extends either the Extractor or Filter class
and overrides its extract or filter method, respectively.

The utils module contains various useful tools. For ex-
ample, the function called external_process provides users
with an easy way to start, pass data to, and get the result
from an external process while specifying a time-limit for
the process. Finally, the log module contains logging han-
dlers that the extraction framework uses by default. The full
source code for the extraction framework is available online
on Github 1.

4. EXPERIMENTS
To validate the framework, we run it on a dedicate virtual

server with 16 logical cores of Intel Xeon E5649
@ 2.53GHz. The server has 8GB of RAM.
The first experiment is set to run 1000 PDF documents

randomly selected from the existing digital library with a
1https://github.com/SeerLabs/new-csx-extractor

single process. The goal of this experiment is to investigate
the overall performance of the framework in terms of runtime
for each module and system resource consumed. The aver-
age runtime for one document is about 10 seconds. Figure 4
illustrates the distribution of the average runtime across all
EMs. Among all submodules, the algorithm extraction is
currently the slowest followed by the citation extraction.
The header extraction is the fastest, taking only 0.16 sec-
onds per document on average. If we do not perform algo-
rithm extraction, it takes on average 5 seconds to process
one PDF file using a single thread. The framework handles
all exceptions produced by specific extraction tools and runs
without a hang or a crash. The average CPU usage is less
than 15% with peak CPU usage of 55% happening in only
two spikes. The runtime distribution depends on the actual
extraction tools. The numbers reported here give a guide-
line in terms of which EMs are opted in for time sensitive
jobs.

Figure 4: Average runtime (per document in sec-
onds) distribution of EMs.

In the second experiment, we run the framework on the
same dataset by varying the number of processes (#pro-
cess). The goal is to investigate how system resources (CPU,
memory) and the average runtime for each PDF change with
#process. Figure 5 shows that the CPU usage increases lin-
early starting with about 13% when #process is less than
6. It then asymptotically increases to around 90%, and
keeps steady even #process increases. Clearly, CPU is fully
used with the rest of 10% used by the operating system.
The memory, however, increases very slowly starting from
56% (4582MB) and it is only used by less than 70% when
#process= 17. The average runtime per document (nor-
malized to the single thread runtime) decreases quickly in
a power-law fashion when the #process is less than 6, and
then asymptotically reaches a limit around 14.3% (1.3 sec-
onds) with respect to the single thread runtime.

The coherence of the CPU usage and average runtime im-
plies that the default implementation of the framework is
CPU bounded. The CPU usage does not follow a strict lin-
ear relation out to 16 processes (the total number of cores).
We believe this is due to resources used by specific extraction
tools as they may contain internal processes using multiple
cores and memory cache, which stacks up more overhead
with more processes. The slow increase of memory indicates
that the framework leaves a negligible footprint in the mem-
ory, so most of its memory is occupied by library modules.

Figure 5: Overall performance with multiple pro-
cesses.

5. APPLICATIONS
The PDFMEF can be viewed as a knowledge capture

framework by itself, as it is capable of encapsulating
runnable knowledge capture tools and organizing results.
Because of its usable, maintainable, modular, and scal-
able features, it can be applied to many knowledge capture
projects.

In case of the CiteSeerX digital library search engine,
which provides free access to six million academic docu-
ments, while metadata of this project has been frequently
requested and widely used in various projects, the metadata
quality has an urgent need to be improved due to mistak-
enly extracted titles, authors, and citations. There are also
a fraction of mis-classified documents, i.e., non-academic
classified as academic. This digital library hosts a crawl
database of more than 21 million PDF files. It would signif-
icant improve metadata quality by running PDFMEF on the
big repository and build a knowledge search engine out of
the extracted entities using the automatic knowledge index-
ing technique [14]. It can be a valuable platform for authors
to quickly locate existing experimental results and related
work.

It has been long proposed that the next generation of
search engine should be semantic, e.g., [17, 15]. The cur-
rent solution by Google uses a knowledge graph with bil-
lions of entities gathered from a wide variety of sources.
These entities are then logically linked to answer user ques-
tions. Actually, recent works have attempted to develop
systems to extract simple knowledge statements from plain
text [10] or from science textbooks [6]. A slight modifica-
tion of PDFMEF can fit such a system into the framework
and use plain text as input for knowledge extraction. Like-
wise, it would be useful to build a semantic academic search
engine with a large knowledge base populated by entities
extracted from academic documents. AllenAI has launched
a project called Semantic Scholar and published a number
of works on knowledge extraction, e.g., [11]. The PDFMEF
framework can be an appropriate and ecient solution for
such projects to obtain a collection of metadata and paper
knowledge entities.

6. SUMMARY AND FUTURE WORK

We have developed PDFMEF, a framework for extracting
multiple knowledge entities within scholarly documents. It
consists of the following modules: a plain text extractor us-
ing PDFBox, a scholarly document filter, a header extractor
using GROBID, a citation extractor using ParsCit, figures
and tables extractors using PDFFigures, and an algorithm
extractor. It is designed to be easily used, maintainable,
modular, and scalable. Except for the full text extraction
and header extraction modules, all modules are pluggable,
so users can easily substitute the default extraction tools
with their preferred alternatives. We have tested it on a
dedicated server with 16 cores @2.53GHz. It takes on aver-
age 10 seconds per document to run all default extraction
tools with a single thread and a minimum of 1.3 seconds for
launching 10 processes. The framework leaves a very small
footprint in the memory. This is a first step in constructing
a knowledge base for a scholarly ontology that uses scholarly
big data.

Future work will be to build a semantic scholarly ontol-
ogy at scale. This could also be extended to work on other
scholarly related documents, e.g., scholar resumes, slides or
syllabi. Integrating the system into the Hadoop or Spark
framework would significantly boost system eciency.

7. ACKNOWLEDGMENTS
We thank Zhaohui Wu for useful discussions and gratefully

acknowledge support from the National Science Foundation.

8. REFERENCES
[1] Pdflib tet. http://www.pdflib.com/products/tet/.

Accessed: 2015-05-12.
[2] Poppler. http://poppler.freedesktop.org. Accessed:

2015-05-12.
[3] Tabula. http://tabula.technology. Accessed:

2015-05-13.
[4] S. Bhatia, S. Tuarob, P. Mitra, and C. L. Giles. An

algorithm search engine for software developers. In
Proceedings of the 3rd International Workshop on
Search-Driven Development: Users, Infrastructure,
Tools, and Evaluation, SUITE ’11, pages 13–16, New
York, NY, USA, 2011. ACM.

[5] C. Caragea, J. Wu, K. Williams, S. D. Gollapalli,
M. Khabsa, and C. L. Giles. Automatic identification
of research articles from crawled documents. WSDM
2014 Workshop on Web-scale Classification:
Classifying Big Data from the Web, 2014.

[6] V. K. Chaudhri, B. E. John, S. Mishra, J. Pacheco,
B. Porter, and A. Spaulding. Enabling experts to
build knowledge bases from science textbooks. In
Proceedings of the 4th International Conference on
Knowledge Capture, K-CAP ’07, pages 159–166, New
York, NY, USA, 2007. ACM.

[7] S. Choudhury, P. Mitra, A. Kirk, S. Szep,
D. Pellegrino, S. Jones, and C. L. Giles. Figure
metadata extraction from digital documents. In 12th
International Conference on Document Analysis and
Recognition, ICDAR ’13, pages 135–139, 2013.

[8] S. R. Choudhury, S. Tuarob, P. Mitra, L. Rokach,
A. Kirk, S. Szep, D. Pellegrino, S. Jones, and C. L.
Giles. A figure search engine architecture for a
chemistry digital library. JCDL ’13, pages 369–370,
2013.

[9] C. Clark and S. Divvala. Looking beyond text:
Extracting figures, tables, and captions from computer
science paper. AAAI 2015 Workshop on Scholarly Big
Data, 2015.

[10] P. Clark and P. Harrison. Large-scale extraction and
use of knowledge from text. In Proceedings of the Fifth
International Conference on Knowledge Capture,
K-CAP ’09, pages 153–160, New York, NY, USA,
2009. ACM.

[11] P. Clark, P. Harrison, N. Balasubramanian, and
O. Etzioni. Constructing a textual kb from a biology
textbook. In Proceedings of the Joint Workshop on
Automatic Knowledge Base Construction and
Web-scale Knowledge Extraction, AKBC-WEKEX ’12,
pages 74–78, Stroudsburg, PA, USA, 2012. Association
for Computational Linguistics.

[12] T. Consortium. TEI P5: Guidelines for Electronic
Text Encoding and Interchange 2.3.0. TEI
Consortium, 2013.

[13] I. Councill, C. L. Giles, and M.-Y. Kan. Parscit: an
open-source crf reference string parsing package. In
Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08),
Marrakech, Morocco, may 2008. European Language
Resources Association (ELRA).

[14] I. G. Councill, C. L. Giles, H. Han, and E. Manavoglu.
Automatic acknowledgement indexing: Expanding the
semantics of contribution in the citeseer digital library.
In Proceedings of the 3rd International Conference on
Knowledge Capture, K-CAP ’05, pages 19–26, New
York, NY, USA, 2005. ACM.

[15] O. Etzioni. Search needs a shake-up. Nature,
476(7358):25–26, 08 2011.

[16] D. FERRUCCI and A. LALLY. Uima: an
architectural approach to unstructured information
processing in the corporate research environment.
Natural Language Engineering, 10:327–348, 9 2004.

[17] R. Guha, R. McCool, and E. Miller. Semantic search.
In Proceedings of the 12th International Conference on
World Wide Web, WWW ’03, pages 700–709, New
York, NY, USA, 2003. ACM.

[18] H. Han, C. L. Giles, E. Manavoglu, H. Zha, Z. Zhang,
and E. A. Fox. Automatic document metadata
extraction using support vector machines. In
Proceedings of the 3rd ACM/IEEE-CS Joint
Conference on Digital Libraries, JCDL ’03, pages
37–48, 2003.

[19] M. Khabsa and C. L. Giles. The number of scholarly
documents on the public web. PLoS ONE,
9(5):e93949, May 2014.

[20] P. Larsen and M. von Ins. The rate of growth in
scientific publication and the decline in coverage
provided by science citation index. Scientometrics,
84(3):575–603, 2010.

[21] M. Lipinski, K. Yao, C. Breitinger, J. Beel, and
B. Gipp. Evaluation of header metadata extraction
approaches and tools for scientific pdf documents. In
Proceedings of the 13th ACM/IEEE-CS Joint
Conference on Digital Libraries, JCDL ’13, pages
385–386, New York, NY, USA, 2013. ACM.

[22] Y. Liu, P. Mitra, C. L. Giles, and K. Bai. Automatic
extraction of table metadata from digital documents.

In Proceedings of the 6th ACM/IEEE-CS Joint
Conference on Digital Libraries, JCDL ’06, pages
339–340, New York, NY, USA, 2006. ACM.

[23] L. D. Lopez, J. Yu, C. N. Arighi, H. Huang,
H. Shatkay, and C. Wu. An automatic system for
extracting figures and captions in biomedical pdf
documents. 2013 IEEE International Conference on
Bioinformatics and Biomedicine, 0:578–581, 2011.

[24] P. Lopez. Grobid: Combining automatic bibliographic
data recognition and term extraction for scholarship
publications. In Proceedings of the 13th European
Conference on Research and Advanced Technology for
Digital Libraries, ECDL’09, pages 473–474, Berlin,
Heidelberg, 2009. Springer-Verlag.

[25] K. Seymore, A. McCallum, and R. Rosenfeld.
Learning hidden markov model structure for
information extraction. AAAI’99 Workshop on
Machine Learning for Information Extraction, 1999.

[26] B. Sun, P. Mitra, C. Lee Giles, and K. T. Mueller.
Identifying, indexing, and ranking chemical formulae
and chemical names in digital documents. ACM
Trans. Inf. Syst., 29(2):12:1–12:38, Apr. 2011.

[27] S. Tuarob, S. Bhatia, P. Mitra, and C. L. Giles.
Automatic detection of pseudocodes in scholarly
documents using machine learning. ICDAR, pages
738–742, 2013.

[28] L. Wang and P. Pfeier. A qualitative analysis of the
usability of perl, python, and tcl. In Proeedings of the
tenth International Python Conference, 2002.

[29] J. Wu, K. Williams, H.-H. Chen, M. Khabsa,
C. Caragea, A. Ororbia, D. Jordan, and C. L. Giles.
Citeseerx: Ai in a digital library search engine. In The
Twenty-Sixth Annual Conference on Innovative
Applications of Artificial Intelligence, IAAI ’14, 2014.

