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ABSTRACT
Expert search or recommendation involves the retrieval of
people (experts) in response to a query and on occasion,
a given set of constraints. In this paper, we address ex-
pert recommendation in academic domains that are differ-
ent from web and intranet environments studied in TREC.
We propose and study graph-based models for expertise re-
trieval with the objective of enabling search using either a
topic (e.g. “Information Extraction”) or a name (e.g. “Bruce
Croft”). We show that graph-based ranking schemes despite
being “generic” perform on par with expert ranking models
specific to topic-based and name-based querying.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models

Keywords
PageRank, Author-Document-Topic graphs, Expert Search,
Similar Expert Finding

1. MOTIVATION
Entity search and retrieval where the goal is to retrieve

“objects” (such as cars, books, people) in response to user
queries is an emerging research interest in the Information
Retrieval community. In particular, expert finding where
the goal is to rank people with expertise (experts) in re-
sponse to a topic query was well-studied in the TREC com-
munity1. Similarly, the list completion tracks in TREC
and INEX2 competitions address similar entity finding or
exemplar-based search for the general domain. In these se-
tups, the evidence for expertise is derived based on webpages
or documents on a intranet. Documents in the academic
domain are different from webpages in terms of their type

1http://trec.nist.gov
2https://inex.mmci.uni-saarland.de/about.html
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(e.g. homepages, publications), structure (e.g. abstract,
sections), associated metadata (e.g. venue, authors) and
connections (e.g. citations). In this paper, we focus on ex-
pert (researcher/author) search in academic domains in re-
sponse to both topic queries (e.g. “Information Retrieval”)
and name queries (e.g. “Bruce Croft”).

In academic domains, an expert search system that allows
queries based on topics and expert names has several poten-
tial applications. Consider the following use-cases: The pro-
gram chair of a conference is desirous of selecting a panel of
researchers for the “Information Retrieval” track. A poten-
tial list of PC members can be obtained by firing an appro-
priate topic query to an expert search system. On the other
hand, consider a student applying to graduate schools who
is interested in working with researchers like “Bruce Croft”.

In this paper, we refer to the use case, where the input
is a “topic” as expert finding or topic-based search whereas
similar expert finding or name-based search is used to refer to
cases when an example expert name is specified as the input.
For the example in the previous paragraph, “Bruce Croft”
might be associated with several other expertise areas apart
from “Information Retrieval”. Thus the results of these two
queries need not be the same. Our focus in this paper is to
explore models that are generic in that they allow ranking
of experts in response to both topic and name queries. This
is different from previous research where different models
are studied for handling the two query scenarios.

Contributions and Organization: We study two graph-
based models for ranking experts in response to topic-based
and name-based queries. The first model is an extension of
PageRank for graphs having multiple edge-types and was
proposed by us previously for expert finding [9]. We show
that the PageRank-based model can be used effectively for
ranking experts in response to name queries as well as topic
queries by constructing an appropriate query-specific graph
in each case (Figure 2). The second set of scoring models is
based on modeling the underlying corpus using a weighted,
undirected, tripartite graph representing the Authors, Doc-
uments and Topics in the corpus (Figure 1). In contrast
with the PageRank-based models that score nodes depend-
ing on their structural connections with other nodes in
the graph, the ADT models, are designed to capture the
content-based similarity between nodes via edges to the
“topic”nodes in the graph. Indeed, nodes in ADT graphs are
scored with respect to each other based on the association
strengths of paths connecting them.

We study the performance of our proposed ranking models
and baselines on two datasets. The first dataset is based on
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ArnetMiner3 and CiteSeer4 and represents the retrieval en-
vironments of academic domains we seek to model where as
the second dataset, the UvT collection from Tilburg univer-
sity5 provides a sparse retrieval environment [3]. Our exper-
imental results indicate that despite being “generic” enough
to handle both the querying scenarios, graph-based models
rank experts on par with other query-specific models.

Section 1 described the problem addressed in this paper
along with a summary of contributions. Previous research
that is closely related to our problems is presented in Sec-
tion 2. Details of our ranking models and a description of
the baselines used in comparison experiments are described
in Section 3. Section 4 provides descriptions of our datasets,
experimental setup and evaluation. Finally, we conclude in
Section 5 with some directions for future work.

2. RELATED WORK
The participants of the Enterprise track of TREC studied

expert finding in context of enterprise data on the W3C
collection. Balog, et al. proposed probabilistic models for
expertise profiling and expert finding in context of sparse
data environments such as webpages pertaining to research
institutes and universities where the documents are more
structured and relatively noise-free [2, 3].

Relevance propagation models on author-document graphs
were studied by Serdyukov, et al. [25], whereas topic models
were used for the same task by several researchers [12, 13,
26]. For bibliographic data, Deng, et al. showed that com-
plicated topic models only provide slight benefits compared
to probablistic models with appropriate priors [12]. Sim-
pler voting models and vector-space representations were
also studied for the expert finding task [11, 21]. In view
of their simplicity and competitive performance we choose
the probabilistic models proposed by Deng, et al. for bib-
liographic domains as the baseline method for the expert
finding task in our experiments.

The list-completion tasks in TREC and INEX address the
similar-entity finding task in the general domain. The pro-
ceedings of these competitions discuss various approaches
for handling this task. In contrast to our problem, the input
queries in these systems include a query topic description
with examples of entities. The participating systems need
to extract the relation between the example entities and the
topic description and propose entities that hold a similar
relation with the topic description, as part of the answer.
For academic domains, “similar expert finding” is slightly
simpler in that the objective is to find researchers that are
similar to a queried researcher.

Preliminary models for “similar expert finding” were pre-
viously studied by Balog and Rijke [5] and Das, et al [10].
Balog and Rijke studied similar expert finding on the TREC
data using the relations a candidate expert has with other
experts, documents and terms. Hofmann, et al. considered
the contextual factors such as organizational setup and com-
bined them with content-based retrieval scores to find simi-
lar experts within an organization [17]. Das, et al. studied
the same problem for academic domains and proposed sev-
eral models for computing researcher profiles and similarity
between researchers using these profiles.

3http://arnetminer.org
4http://citeseerx.ist.psu.edu
5http://ilk.uvt.nl/uvt-expert-collection

Chen, et al. presented CollabSeer that uses the struc-
ture of the co-author network to predict research collab-
orators in academic environments [8]. Xu, et al. use a
two-layer network model that combines co-author network
and researcher-concept network for making researcher rec-
ommendations [28]. Our approach targets the prediction of
researchers with similar expertise profiles based on content
they generate and not necessarily “co-authors”. Thus while
co-authorship provides evidence of similarity, we wish to de-
sign models that are capable of exploiting other sources of
evidence, such as content similarity, citation behavior and
so on. As an additional goal, we seek models that support
both name-based and topic-based querying.

3. RANKING MODELS
Most recent works in text and document analysis adopt

the view of a document as a mixture of a small number
of topics. Indeed, models like Latent Dirichlet Allocation
(LDA) and probabilistic latent semantic analysis (pLSA)
target the extraction of abstract concepts or topics given
a collection of documents [18, 6]. These models also en-
able the expression of a document in the corpus in terms
of its topic proportion vector that corresponds to a low-
dimensional representation of the document. Given a set of
documents, authored by an expert, generative distribution
on topics and terms can be estimated for that expert. LDA
was effectively used to model scientific documents and their
authors previously [13, 23].

Although modeling of authors in terms of their topic dis-
tribution is intuitive, previous work that used author simi-
larity based on their topical profiles did not yield good per-
formance for similar expert finding [10]. For expert retrieval
in response to topic queries, LDA-style models were shown
to only yield marginal benefits over simpler probabilistic
counterparts [12]. Are there alternate ways to compute sim-
ilarity between authors while retaining the topical aspect of
document representation? We seek to address this question
via the ADT representation (next section). We start by ex-
pressing documents in terms of their topics using content
modeling tools like LDA. Next, the author-document and
document-topic associations are represented via edges in a
graph and paths within this graph are used to measure sim-
ilarity between any pair of nodes in the graph.

3.1 The ADT tripartite graph
Let T represent the set of topics6 associated with a doc-

ument collection, D. Intuitively, an expert on a topic, t ∈
T would have authored documents related to t and other
closely-related topics. Similarly, if an author, a has exper-
tise on a topic t ∈ T , authors similar to a could be expected
to write about t and topics related to t. The associations be-
tween documents and their authors and documents and their
topics can be represented by a weighted tri-partite graph as
follows: Let G = (V,E) represent such a graph where the
vertex set, V = A ∪ D ∪ T is the union of author, A, doc-
ument, D and topic nodes, T . Edges between A and D
reflect the authorship relation between documents and au-

6Note: In this paper, we use the term ‘topic’ in two senses. The
first is in the context of the ADT graph and refers to the topics or
concepts as extracted by tools such as LDA We also use the term
in the sense of topic-queries (such as “information extraction”) in
context of expert finding.
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thors whereas edges between D and T reflect the topical
association of documents.

Figure 1: An example Author-Document-Topic
(ADT) graph

Weights assigned to the edges in ADT capture the as-
sociation strength between two nodes. For instance, in our
experiments, we assign a uniform weight of 1 to all edges be-
tween author and document nodes whereas edges between
document and topic nodes are assigned weights in correspon-
dence with the proportion of that topic in the document (a
positive real number). Document modeling tools such PLSI
and LDA can be used for estimating these topic proportions.
An example ADT graph is shown in Figure 1.

We now describe how the ADT is constructed for a given
query. Consider for example, a given document node, d.
First, the weighted links between this document node and
its associated topic nodes are added using the proportions
obtained from LDA(or PLSI). Next, other document nodes
related to these topics are added to the graph along with the
related edges. Finally, the known author links between the
document and author layers are added to obtain a document-
specific graph. If a set of documents is given as input instead
of a single document (for example, documents retrieved in
response to a topic query), we proceed, as in the case of a
single document, by incrementally building the subgraph re-
lated to each document in the set to obtain the final graph.
Instead, if for a name-query, an author node, a, is specified
as input we first retrieve the documents associated with a
and then follow the same procedure as with that of a set of
documents.

Several well-known measures exist for comparing two nodes
in weighted graphs (particularly for directed graphs). For
instance, if the edge weights represent distances between
nodes, one can compute proximity between two nodes in
terms of the shortest path between them. In the field of
network analysis, researchers have studied measures for com-
puting vertex similarity and importance scores. A recent
comparison of network similarity measures for various rec-
ommendation tasks was studied by Boldi, et al [7]. In par-
ticular, vertex similarity measures in co-authorship networks
were evaluated for collaborator recommendation by Chen, et
al [8].

In our preliminary experiments, we found that network
centrality measures such as degree centrality, PageRank and
betweenness of nodes in the ADT graph are not useful for
expert ranking tasks. This is not surprising since in gen-

eral centrality measures capture a node’s impact with re-
spect to the overall graph structure. These measures are
not very meaningful in context of the ADT graph due to
its undirected nature and the heterogenity of the underly-
ing nodes. Moreover, our focus is on estimating a node’s
similarity with reference to the query nodes rather than its
influence at a macroscopic level. To capture this aspect, we
propose measuring the similarity between two nodes in a
graph in terms of strength of paths between the nodes. Let
p be a path betwen nodes a and d comprising of edges such
that p = e1e2 . . . en. Let

sweight(p) =
∑

i

weight(ei)

pweight(p) =
∏

i

weight(ei)

Let P (a, d) be the set of all paths between nodes a and d.
We studied the following schemes for computing similarity
between a and d:

1. MaxPath The similarity between two nodes is given
by the path between them having the maximum as-
sociation strength. If we assign weights to edges us-
ing a transformation function that assigns weights to
edges that are inversely proportional to association
strengths, this scheme picks the path having the short-
est distance between the nodes.

score(a, d) = max
p∈P (a,d)

sweight(p)

2. SumPaths Consider a document that is related to
two topics. An author who is associated with both the
topics should be assigned credit for both the topics.
The SumPaths scoring method seeks to capture this
intuition by aggregating scores of all paths between
two nodes in the ADT graph.

score(a, d) =
∑

p∈P (a,d)

sweight(p)

3. ProductPaths This scoring method is similar to SumPaths
but we use a multiplicative scheme for aggregating
edge association into a path association.

score(a, d) =
∑

p∈P (a,d)

pweight(p)

For a running example, suppose we would like to score the
node A1 with respect to D1 in Figure 1. Assume the topic
proportions for the documents are given as:

D1 = {0.2, 0.8, 0, 0, 0}, D2 = {0.5, 0.5, 0, 0, 0}

D3 = {0.7, 0, 0, 0, 0.3}, D4 = {0, 0, 0.4, 0, 0.6}

There are three paths between D1 and A1, viz.

{(D1, T1), (T1, D2), (D2, A1)}

{(D1, T2), (T2, D2), (D2, A1)}

{(D1, T1), (T1, D3), (D3, A1)}

With the sweight function, these paths have weights, 1.7,
2.3 and 2.1 respectively where as with the pweight function,
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the paths are assigned scores, 0.1, 0.4 and 0.14 respectively.
Therefore, the score of A1 w.r.t. D1 is 2.3 with MaxPath,
6.1 with SumPaths and 0.64 with ProductPaths.

Notice that our scoring schemes are agnostic to the choice
of nodes in the sense that all nodes are treated equally and
given a node of any type, other types of nodes are assigned
scores purely based on the association strengths as captured
by the scoring schemes described above. This aspect is a
virtue of graph-based models where query objects and the
objects to be scored are both nodes and the assigned scores
are simply due to some property of the underlying graph
(e.g. paths, degree of nodes). Although PageRank-style
measures are not meaningful for ADT graphs as we men-
tioned previously, we can exploit importance-based mea-
sures by constructing the underlying graph differently. An
extension of PageRank using query-dependent graphs with
multiple edge types was previously studied by us for scoring
author nodes in response to topic queries [9]. We now show
that this model can also be used for similar expert finding
by constructing an appropriate query-specific graph.

3.2 PageRank on typed graphs
Objects in digital libraries have nodes corresponding to

different objects such as authors, papers, venues and home-
pages. Similarly, edges in such graphs can represent au-
thorship association, citation links, publication-venue links
and so on. First, we briefly summarize our PageRank-based
model for finding experts in response to topic-based queries
before discussing name-based search.

Let G = (V,E) represent a directed graph where V is the
set of nodes and the edges in E have types assigned to them
(t ∈ T ). We use distinct transition matrices (Pt) to capture
edges corresponding to each edge type, t. Each matrix is
constructed to be aperiodic and irreducible such that the
aggregate transition matrix obtained by a linear combina-
tion of individual transition matrices is also irreducible and
aperiodic.

P =
∑

t

wtPt where
∑

t

wt = 1 and ∀wt, 0 ≤ wt ≤ 1

By Ergodic theorem, the matrix P has a unique stationary
(or limiting) distribution over the nodes of V and this can
be obtained by computing the principal eigen vector of the
transpose of P (for example, using the power method [24,
14]).

The PageRank vector captures the behavior of a random
surfer on the underlying graph where the final score for a
node represents the probability that the surfer visits that
node in the limit or as time tends to infinity. In effect, this
value captures the “importance” of a node in the underlying
graph based on its edge connections with the other nodes. In
our extended model, we start with a query-dependent graph
that has edges of different types. At every node, n, the surfer
chooses at random (with probability, wt) an edge-type, t,
after which she proceeds to select one of outgoing edges of
type, t, uniformly at random. The mixing coefficients, wts
are indicative of the importance of each edge-type and can
be set by domain knowledge or cross-validation.

For Expert Finding in response to topic queries, the graph
on which the above model is run is ensured to be topic query
dependent by using the following process: The topic query
is used to retrieve the top matching documents via a search
engine. This set of documents is used as an initial set of

nodes, from which the remaining graph is built via expan-
sion. For instance, the set of author nodes corresponding
to the retrieved documents are added via author-document
links. Other document nodes can also be added, for instance
via the citation edges. We refer the reader to our previous
paper for further details and experiments that show that this
model performs on par with the probabilistic models for ex-
pert finding [9]. Although, this model is an extension to
the original PageRank algorithm, in this paper, we use the
terms PageRank or PR to refer to this extended model.

The PageRank model just described has an obvious exten-
sion that enables us to score other author nodes in response
to a query-author node: We construct the query-specific
graph for applying PageRank as follows. The documents
associated with the queried author, a, are first retrieved to
form the initial set of documents. This document set is ex-
panded by adding other documents (via citation edges or
neighbors based on content similarity). Note that this ex-
pansion step is crucial to ensure we do not only capture “co-
authors”. However, once an initial document set is obtained,
the process is similar to that of the topic-based search case.
For example, consider the graph in Figure 2 and let A3 cor-

Figure 2: An example author-document graph to
illustrate the PageRank-based model

respond to the query node. The documents, D2 and D3 are
retrieved via their direct association with A3 whereas D4,
A2 and A4 correspond to the nodes added via our expansion
process. The shaded nodes comprise the query-dependent
graph used for computing PageRank scores.

There is an important difference between the ADT graph
models when compared with the PageRank-based models.
Due to the types of nodes and semantic meaning behind
edges between nodes, similarity of nodes in the ADT models
pertains to similarity based on the topical profiles whereas
the PageRank scores capture importance based on struc-
tural connections in the graph. For example, an author
who has written documents that are linked from other rel-
evant documents via citation edges would be scored better
in the PageRank scoring models whereas this aspect is not
captured in the ADT model.

3.3 Baselines
We briefly summarize some models previously proposed

for topic-based expert finding and similar expert finding.

1. Expert Finding: Balog, et al. [2, 3] use the estimates
of p(ca|q) where q is the query and ca is a candidate
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for ranking experts. p(ca|q) = p(ca,q)
p(q) and p(ca, q) is

defined as

p(ca, q) =
∑

d∈D

p(d)p(ca, q|d) =
∑

d∈D

p(d)p(q|d)p(ca|d, q)

(1)
D is the set of documents related to the query that a
candidate ca is associated with. Assuming ca is con-
ditionally independent of q given a document one can
write p(ca|d, q) = p(ca|d) and treating p(d) and p(q)
as uniform:

p(ca|q) ∝
∑

d∈D

p(q|d)p(ca|d)

p(ca|d) is defined as a(d,ca)∑
c′∈C a(d,c′) where C is the set of

all candidates and a(d, ca) is the association between
document d and candidate ca. The p(q|d) scores for a
document are estimated using language modeling.

Deng, et al. extended the probabilistic model proposed
by Balog, et al. for bibliographic data [12]. The p(ca|d)
values were defined as 1

nd
or 0 depending on whether

ca is the author of d and nd is the number of authors
for d. The prior probability, p(d), was defined in terms
of the number of citations that the document has. For
example, p(d) ∝ ln(e + cd) where cd is the citation
number for d. This probabilistic model forms a com-
petitive baseline and complicated author-topic models
were shown to obtain only marginal improvements for
topic-based expert finding in bibliographic data [12].

2. Similar Expert Finding Adaptations of expert find-
ing techniques were studied for similar expert finding
by Balog, et al. [5] and Das, et al. [10]. In both these
works, the authors in the collection are represented via
their profiles constructed using the documents associ-
ated with them. Experts are recommended based on
the profile similarity between two authors. We imple-
mented these methods and chose the best performing
of them as baselines (Section 4). We found that sim-
ple similarity based on TFIDF vector representation
of the author profiles out-performed more complicated
techniques. We briefly describe the best performing
models here.

(a) Okapi BM25: Given an author for whom sim-
ilar experts are to be recommended, the TFIDF
vector of the author is treated as a term query
and the profiles of the remaining authors in the
dataset are scored using the Okapi BM25 ranking
function given by:

∑

w∈s1

IDF (w) ∗ tf(w, s2) ∗ (k1 + 1)

tf(w, s2) + k1 ∗ (1− b+ b. |D|
avgdl

In the above formula, IDF (w) refers to the in-
verse document frequency of the word, a measure
of rareness of the word computed as:

IDF (w) = log
N −N(w) + 0.5

N(w) + 0.5
.

N is the total number of profiles in the collec-
tion, N(w), the number of profiles containing w
and tf(w, s2), the number of times, the term w
appears in the profile of e2. The parameter k1 is

typically set to a value between [1.2, 2] whereas b
is typically set to 0.75 in this formula in absence
of other information. Additional details on this
formula and parameter settings can be found in
Jones, et al. [19].

(b) Trace-based Similarity: The author profiles
are represented in terms of normalized TFIDF
vectors of dimensionality and using theRelevance
Model [15] studied by He, et al. the the simi-
larity between two profiles, q and d is computed
using the formula: Rel(q, d) = (q.d)2.

4. EXPERIMENTS
To the best of our knowledge, no standard datasets exist

for evaluating the similar expert finding task in the academic
domain. However, sets of topic queries and lists of experts
(traditionally referred to as qrels in TREC) for each topic
are available for evaluating topic-based expert finding from
ArnetMiner and Tilburg university.

4.1 Datasets

1. The ArnetMiner (AM) dataset provides topic+experts
lists previously used by Tang, et al [27] and Deng, et
al. [12] for studying topic-based expert finding in aca-
demic domains. We mapped these researcher names to
the author names in CiteSeer using exact string match-
ing. To obtain a suitable corpus for modeling the re-
searchers, we collected a subset of document abstracts
from CiteSeer by matching venues of documents with
the keywords from venue names listed on Wikipedia7.
The topic queries were used to select a subset of suit-
able venues in this list. We only considered authors
having at least three papers in the CiteSeer collection
and documents related to these authors are obtained
to form the corpus.

2. The UvT collection was made available via the Web-
wijs system developed at Tilburg University. This col-
lection contains information on UvT employees who
are involved in research or teaching along with their
homepages, research profiles, publications and course
pages. The list of topics+experts available with this
collection was used to study expert finding and profil-
ing tasks in sparse environments by Balog, et al [3, 4].
We only considered pages in this collection that are in
English.

Both the AM and the UvT datasets have ‘topic’ queries and
manually-identified lists of authors with expertise for each
topic. For evaluating similar expert finding, we need the list
of experts that are similar to a given expert. We created test
datasets for this purpose as follows: for a given topic query,
from the set of experts listed with the query, we randomly
choose one of the experts as the “name query”. The other
experts in the set comprise the similar researchers (or the
‘gold’ list) for this query. Due to the manner of construction,
our ‘gold’ lists are in fact conditioned on the topic. Despite
this dependence, we think that this dataset can be used for
comparing the relative performance across ranking models.
We restrict ourselves to topics that have at least five experts

7http://en.wikipedia.org/wiki/List of computer science conferences
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Name Description Corpus Size Total Authors Queries QRels Size
AM ArnetMiner/CiteSeer 103838 27108 13 901
UvT The UvT Collection 19127 1168 203 1751

Table 1: Summary of datasets used
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Figure 3: Comparison of baselines for Name-based
search (AM)
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Figure 4: Comparison of baselines for Name-based
search (UvT)

listed with them while forming our test set. A summary
description of the datasets thus obtained is given in Table 1.

From Table 1, it can be noticed that the AM and UvT
datasets correspond to rather different operating environ-
ments. The number of documents and authors and docu-
ments per author is higher in the CiteSeer/ArnetMiner al-
though known expert-qrels are less in number. Documents
in CiteSeer represent research publications and have cita-
tion links between them. In contrast, the UvT collection
is sparse in that the documents mostly comprise webpages
(homepages, research descriptions etc.). The number of doc-
uments per expert is limited and very few experts have more
than ten documents associated with them (Table 2).

NumDocs-> 1 3 5 10 20
AM/CSX n/a 8153 2994 717 167

UvT 384 65 40 22 5

Table 2: Each entry represents the number of au-
thors having a given number of documents associ-
ated with them. For example, the number of au-
thors in UvT having only one document is 384

For ADT models the underlying document collection is
represented in terms of topics. The “number of topics” com-
prises a tunable parameter for most document modeling
tools like pLSA or LDA. This number is typically chosen
to maximize the “likelihood” or “perplexity” of a held-out
set of documents in the corpus [16]. However Azzopardi
et al. showed that low perplexity representations do not
necessarily result in high precision/recall for retrieval prob-
lems [1]. For this reason, we tune the “number of topics”
parameter separately for each task on each dataset by using
a held-out set of queries. In each dataset, 20% of the queries
(randomly-selected) comprise the held-out set whereas the
other 80% of the queries are used for evaluation and com-
parisons across models (Tables 5 and 6).

We present sample topic-terms for both the CiteSeer and
UvT document collections in Tables 3 and 4 respectively.
These topics clearly highlight the difference in the two doc-

ument collections. The CiteSeer collection corresponds to
documents in Computer Science and related areas and con-
sequently the identified topics are closely related in the area.
In contrast, the document collection in UvT pertains to a
broader set of topics. We contend that the retrieval perfor-
mance is typically better on the UvT collection since it is
easier to discriminate between expertise areas corresponding
to the authors.

4.2 Evaluation Setup and Metrics
The document collections in both datasets were indexed

using the search engine, Indri8. Indri uses language model-
ing techniques for ranking documents in response to topic
queries. We evaluate the performance of our models at dif-
ferent number of retrieved results (k = 10, 20, 30, 40, 50).
In our expert finding experiments, we set the size of doc-
ument set retrieved in response to the topic queries to 100
per query. The document-topic associations were obtained
by running the LDA (Latent Dirichlet Allocation) imple-
mentation provided as part of Mallet9.

We measure the performance of our proposed and base-
line models using the recall, mean average precision (MAP),
mean reciprocal rank (MRR) measures [22]. Let Rq repre-
sent the set of known experts for a given test query, q. If S
represents the set of recommendations made by the expert
retrieval system for q, we compute recall and precision for q
as:

Recall =
|S ∩Rq|
|Rq|

Precision =
|S ∩Rq|

|S|

Average precision (AvgP) refers to the average precision
with S after each relevant document is retrieved whereas
MAP (mean average precision) aggregates the average pre-
cision value over all the queries (Q) to to provide a single
8http://www.lemurproject.org/indri/
9http://mallet.cs.umass.edu/
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305 distribution probability random distributions show number size model independent expected uniform rate average
409 knowledge learning domain reasoning system case problem acquisition machine task expert solving base process learn
448 model models bayesian probability gaussian mixture distribution estimation likelihood maximum parameters probabilistic
302 management distributed applications system systems service application support requirements dynamic services computing
414 query queries database data databases relational processing optimization evaluation join sql efficient execution support
66 mobile devices computing wireless location users device environment user access environments services network ubiquitous
408 computational complexity based algorithm paper proposed efficient algorithms cost techniques efficiency advantage reduced
109 learning training classification data supervised labeled set approach labels learn examples class task unlabeled unsupervised
439 mining data discovery patterns association rules knowledge databases database rule frequent discover large discovering
342 semantic ontology web ontologies knowledge abstract domain semantics concepts rdf language describe resources metadata

Table 3: Sample Topics from the CiteSeer corpus

99 estimation statistics probability regression model statistical distribution estimators methods multivariate variables
98 lines prior summary top half reflects implication patterns trends greater numbers wide variety continued portion
90 index cluster clusters space target ranking coming multi group collected clustering included mixed retrieved entry
89 mind important made sense relation make arguments common consists remarks full case interpretation existence view
87 markets industrial journal firms organization competition economics collusion oligopoly consistency letters market
86 ethics law moral ethical social legal morality politics human society theory state philosophy ideals political care
83 republic europe poland czech hungary eastern state german west east central russia french case government ten
78 asia regions areas india africa rural agricultural urban historical america agriculture spread southern cities
72 criminal crime law justice police european investigation court victims prosecution enforcement victim crimes drug
71 face brain related expressions facial cognitive emotion affective emotional expression neuroscience emotions perception

Table 4: Sample Topics from the UvT collection
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Figure 5: ADT performance variation with number of
topics (AM)
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Figure 6: ADT performance variation with number of
topics (UvT)
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Figure 7: ADT methods for Topic-based search (UvT)
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Figure 8: ADT methods for Name-based search (UvT)
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Figure 9: Recall@K for Topic-based search(AM)
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Figure 10: Recall@K for Name-based search(AM)

measure for precision as:

MAP =

∑Q
q=1 AvgP (q)

|Q|

The mean reciprocal rank, in contrast, values the rank at
which the first correct answer is found for every query in Q
and is computed using the following formula:

MRR =
1
|Q|

Q∑

q=1

1
rank(q)

In the above formula, rank(q) refers to the rank of the first
relevant expert found for a query, q. Queries for which no
relevant experts are found are considered to contribute 0
to the formula. When only the top-k predictions in S are
considered for computing these measures, we append @k
while referring to them (e.g. Recall@10). We argue that
for expert finding, recall is a more meaningful measure since
it captures the number of correct experts in the gold lists
that are retrieved by a method. Therefore, we use recall
as the criterion for choosing the number of topics or the
appropriate baselines to compare with.

4.3 Results and Observations
The performance of ADT models on the held-out queries

for different number of topics is shown in Figures 5 and 6.
As can be seen in these figures, “number of topics” for mod-
eling the documents in the corpus forms a crucial parameter
that affects the performance of the ADT models. Moreover,
the best setting for number of topics is task-dependent. We
found numTopics = 400 works well for both the tasks on
the UvT dataset whereas for the AM dataset, numTopics =
450, 500 are the best settings for name-based and topic-
based search respectively.

Our next set of experiments compares the different scor-
ing schemes proposed for ADT models in Section 3 on the
AM dataset for both topic-based search and name-based
search (Figures 11 and 12). The SumPaths and Product-
Paths clearly out-perform the MaxPath scheme that assigns
scores based on the best-path connecting two nodes. For our
tasks, it appears important to accumulate the scores along
various paths between a given set of nodes, a feature cap-
tured by both SumPaths and ProductPaths scoring schemes.
For comparison with other models, we choose ProductPaths
since it is slightly better than SumPaths on the held-out
queries. Similar behavior is observed on the UvT dataset in
Figures 7 and 8.

Next, we compare our proposed models (ADT and PR)
with the state-of-the-art baselines for these tasks. Figures 9
and 10 show the recall of the models for different number
of retrieved results for the ArnetMiner dataset whereas fig-
ures 13 and 14 show similar plots for the UvT dataset. As
can be seen in these figures, graph-based models (PageR-
ank or ADT) typically outperform or perform on-par with
the problem-specific baseline models in terms of recall on
both the datasets. The other retrieval measures are summa-
rized in Tables 5 and 6. For the UvT collection, simpler
TFIDF-based methods seem to be better at ranking the
results (as captured by MRR, for instance). We used the
default setting of assigning edge-type weights (wts) equally
in our PageRank models. The citation edges were used to
expand the document set in case of name-based search in
the ArnetMiner dataset whereas content-similarity (top-100
neighbors) was used to expand the set for the UvT collection
(Section 3.2).

Our experiments highlight results that indicate that uni-
fied models can be designed for handling both the querying
scenarios in expert search without compromising on the re-
trieval performance. The probablistic model was chosen as
baseline for topic-based search based on its competitive per-
formance shown in previous work [12, 9]. For name-based
search, since existing work on this problem is still prelimi-
nary, we evaluated all applicable models previously proposed
for this problem [5, 10] on our datasets and choose the best
performing models as baselines (Figures 3 and 4).

Finally, for the sake of illustration, we provide anecdotal
examples in Tables 7 and 8. These lists of top-10 recom-
mendations were retrieved using the ADT model with the
ProductPaths scoring scheme. We chose popular subject
areas in Computer Science as “topic queries” and known ex-
perts in these fields as “name queries”. While not all en-
tries are perfect we found upon manual examination that
most recommended authors typically publish in conferences
in the related subject areas (as listed on DBLP10). The en-
tries which do not seem relevant to the specified query are
highlighted in italics in these tables.

5. SUMMARY AND FUTURE WORK
In this paper, we presented graph-based models for en-

abling expert search in response to name and topic queries.
Our ADT models ranks experts based on content-similarity
captured via document-topic edges. In contrast, our PageRank-

10http://www.informatik.uni-trier.de/∼ley/db/
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Figure 11: ADT methods for Topic-based search (AM)
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Figure 12: ADT methods for Name-based search (AM)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10  15  20  25  30  35  40  45  50

A
vg

R
ec

al
l

NumResults

ADT(PP)
PageRank

ProbNoPrior(BL)

Figure 13: Recall@K for Topic-based search(UvT)
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Figure 14: Recall@K for Name-based search(UvT)

ArnetMiner
BL(Okapi) PR ADT

Prec@10 0.2699 0.2100 0.3200
MRR@10 0.5792 0.3211 0.4493
MAP@10 0.1614 0.1115 0.1999
Prec@50 0.1720 0.1436 0.2000
MRR@50 0.5908 0.3277 0.4523
MAP@50 0.0793 0.0437 0.1008

UvT
BL(Rel) PR ADT

Prec@10 0.1242 0.1029 0.1191
MRR@10 0.3190 0.2673 0.2627
MAP@10 0.0914 0.0623 0.0875
Prec@50 0.0565 0.0529 0.0619
MRR@50 0.3268 0.2784 0.2759
MAP@50 0.1070 0.0729 0.1003

Table 5: Comparison Summary: Name-based Search

ArnetMiner
BL(Prob) PR ADT

Prec@10 0.3300 0.3400 0.4300
MRR@10 0.5009 0.6350 0.8433
MAP@10 0.1844 0.2097 0.3397
Prec@50 0.1980 0.1680 0.2900
MRR@50 0.5009 0.635 0.8433
MAP@50 0.0987 0.0851 0.1986

UvT
BL(Prob) PR ADT

Prec@10 0.2158 0.1856 0.1088
MRR@10 0.5145 0.4304 0.3021
MAP@10 0.1506 0.1245 0.0759
Prec@50 0.1245 0.1246 0.0598
MRR@50 0.5201 0.4393 0.3167
MAP@50 0.1793 0.1558 0.0943

Table 6: Comparison Summary: Topic-based Search

Natural Language Processing Machine Learning Information Retrieval Semantic Web
Hermann Ney Raymond J. Mooney W. Bruce Croft Ian Horrocks

Aravind K. Joshi Vasant Honavar Douglas W. Oard Dieter Fensel
Raymond J. Mooney Manuela Veloso Hermann Ney Enrico Motta

Bonnie J. Dorr Jude Shavlik Jamie Callan Amit Sheth
Alex Waibel David B. Leake Hector Garcia-molina Steffen Staab

Martha Palmer Peter A. Flach Justin Zobel Frank Van Harmelen
Kathleen Mckeown Pat Langley C. Lee Giles Stefan Decker

Udo Hahn Yoram Singer Shih-fu Chang Rudi Studer
Alon Lavie Ryszard S. Michalski Alex Waibel Wolfgang Nejdl

Bonnie Webber Johannes Furnkranz Jaap Kamps Tim Finin

Table 7: Top-10 recommendations made by ADT models for example topic queries
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Christopher D. Manning Tom M. Mitchell W. Bruce Croft James Hendler
Aravind K. Joshi Raymond J. Mooney Douglas W. Oard Ian Horrocks
Martha Palmer Sebastian Thrun Jamie Callan Dieter Fensel

Raymond J. Mooney Peter Stone Justin Zobel Amit Sheth
Timothy Baldwin Jude Shavlik Norbert Fuhr Frank Van Harmelen
Bonnie J. Dorr Vasant Honavar Maarten De Rijke Wolfgang Nejdl
John A. Carroll Andrew Mccallum Jaap Kamps Enrico Motta
Ted Briscoe Andrew G. Barto Hector Garcia-molina Steffen Staab

Mark Johnson Richard S. Sutton Rong Jin Geoffrey Fox
Fernando Pereira Manuela Veloso Mounia Lalmas Stefan Decker
Walter Daelemans Pat Langley Ophir Frieder Carole Goble

Table 8: Top-10 recommendations made by ADT models for example name queries

based models rank experts using the structural connections
between authors and documents and within documents. We
showed via experiments that our graph-based models are ca-
pable of providing a unifed framework for ranking experts
in response to both name and topic queries. In addition,
we showed that these models demonstrate retrieval perfor-
mance on-par with problem-specific models. Since the two
proposed models are based on different types of graphs and
capture different aspects of ranking (structure vs. content),
a future direction to explore is the combination of model to
obtain the best from both.

We are also looking to extend our expert retrieval models
for panel recommendation. In contrast with topic or name-
based search, recommending panels of experts imposes sev-
eral problem-specific constraints. For instance, we may wish
to ensure diversity in the list of experts with respect to affil-
iations. Metadata information available with authors (e.g.
from CiteSeer or author homepages) can be used for this
purpose. Similarly, personal preferences of authors with re-
spect to each other may need to be accounted for during
panel recommendation [20].
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