
Improving Algorithm Search Using the Algorithm
Co-Citation Network

Suppawong Tuarob†, Prasenjit Mitra†‡ and C. Lee Giles†‡

† Computer Science and Engineering, ‡ Information Sciences and Technology
The Pennsylvania State University

University Park, PA 16802
suppawong@psu.edu, {pmitra, giles}@ist.psu.edu

ABSTRACT
Algorithms are an essential part of computational science.
An algorithm search engine, which extracts pseudo-codes
and their metadata from documents, and makes it search-
able, has recently been developed as part of the CiteseerX

suite [3, 4]. However, this algorithm search engine only re-
trieves and ranks relevant algorithms solely on textual simi-
larity. Here, we propose a method for using the algorithm co-
citation network to infer the similarity between algorithms.
We apply a graph clustering algorithm on the network for
algorithm recommendation and make suggestions on how to
improve the current CiteseerX algorithm search engine.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]

Keywords
Algorithms, Clustering, Algorithm Co-Citation Network

1. INTRODUCTION
Computer science is often about algorithms. Searching

for the right algorithms for a specific problem can be a
challenging task, as there has not been a way for auto-
matically interpreting the semantics of algorithms. Meth-
ods for searching for algorithms have been implemented by
applying traditional search engine techniques on algorithm
metadata. Bhatia et al.[3] developed an algorithm extractor
which extracts pseudo-codes along with their metadata such
as captions, reference sentences and synopses [1, 2]. Index-
ing such algorithm metadata makes it searchable. However,
the search is done by text based matching of user queries
with the metadata.
The ability to infer the similarity of algorithms could also

be beneficial when searching for algorithms. One may want
to know if there are other available algorithms which address
the same problem as a known algorithm. For example, one
might want to know if there are other algorithms that find

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’12, June 10–14, 2012, Washington, DC, USA.
Copyright 2012 ACM 978-1-4503-1154-0/12/06 ...$10.00.

shortest paths in a graph such as Dijkstra’s algorithm. Re-
searchers often would want to search for existing algorithms
so that they can develop a better algorithm or use these
algorithms as baselines for their experiments. Detection of
the similarity of algorithms could also lead to the discovery
of newly emerging algorithms which are not yet well known.

We hypothesize that the similarity between algorithms
can be captured using an algorithm co-citation network. We
generate the algorithm co-citation network from scientific
documents in the CiteseerX1 repository. We apply a cluster-
ing algorithm on a sample subset of the algorithm co-citation
network which gives groups of relevant algorithm-proposing
documents. We evaluate the clustering results by varying
the clustering granularity levels and measure the meaning-
fulness of each cluster.

2. OBSERVATIONS AND MOTIVATIONS
In an algorithm-proposing document, there is usually a

paragraph (in the introduction or the related work sections)
devoting to addressing past work. In this case, we are in-
terested in algorithms used in previous documents. From
reading multiple documents throughout our own research,
we find that if multiple algorithms are mentioned in a pa-
per, then it is likely that these algorithms address similar
problems. From these observations, we hypothesize that, if
two algorithms are co-cited multiple times, then there could
exist a relationship between them which can be used to in-
fer their similarity. Such a relationship could be represented
using the algorithm co-citation graph, which is explained in
a later section.

3. RELATED WORK
Even though the document co-citation has been exten-

sively studied, to the best of our knowledge, there has not
been any work on algorithm co-citation analysis. Hence, the
related work that we present here are mostly related to the
current CiteseerX algorithm search engine.

The current CiteseerX algorithm search engine uses an au-
tomated algorithm extractor to extract pseudo-code which
appears as document-elements with captions in scientific
documents. The automated algorithm extractor extracts re-
lated information of each pseudo-code such as its caption,
reference sentences, and year of publication (if available).
A pseudo-code reference sentence is a sentence in the doc-
ument which mentions the pseudo-code. A synopsis is also
generated as part of the metadata to provide an overview

1http://citeseerx.ist.psu.edu

277

Figure 1: CiteseerX algorithm search engine.

for each pseudo-code extracted[1]. A synopsis of a pseudo-
code is generated from the set of its reference sentences,
constructed by heuristics and machine learning techniques.
All the extracted metadata information is then fed to the
indexer. When a user inputs a query, TF-IDF based cosine
similarity scores are computed to retrieve and rank the rele-
vant pseudo-codes. Each search result gives a pointer to the
document where the pseudo-code resides. Figure 1 shows
the results returned by the CiteseerX algorithm search en-
gine using query “shortest path.” The current CiteseerX al-
gorithm search engine only retrieves pseudo-codes based on
textual similarities between user queries and pseudo-codes.
This method is effective if the user uses the right keywords.
However, there are some cases where the desired algorithms
are proposed in different fields of studies, resulting in a dif-
ferent set of context that might not be familiar to the user.
The current search engine would treat these algorithms as
unrelated to the search query.

4. ALGORITHM CO-CITATION NETWORK
The algorithm co-citation network is an undirected, weighted

graph where each node is a document that proposes some
algorithms, and each edge weight is the frequency of algo-
rithm co-citation. Formally, for the set of all documents D,
the algorithm co-citation network G is defined as follows:

G= <V,E>
V={d | d ∈ D, d proposes one or more algorithms}
E={(a,b) | a,b ∈ V}
Weight((a,b))=|{d | d ∈ D,d cites algorithms in both
a and b,(a,b)∈E}|

An algorithm co-citation network is different from a doc-
ument co-citation network defined in [7] in the sense that
each node in the network is a document which proposes al-
gorithms, and one or more of the algorithms are cited in the
document. The weight of each link represents the frequency
that the algorithms in at least two documents are co-cited.

We describe how we detect algorithm citations and construct
the algorithm co-citation network in the next sub-sections.

4.1 Algorithm Citation Detection
Given an input document, the algorithm citation detec-

tion returns the cited documents whose algorithms are men-
tioned in the input document. A document is treated as an
ordered set of sentences. Briefly, the algorithm citation de-
tector first extracts the set of algorithm-citation sentences
in a document. An algorithm citation sentence is defined
as a sentence which contains at least one or more algorithm
keywords (i.e. ‘algorithm’, ‘method’, and ‘procedure’), and
at least a citation symbol. An example of a sentence where
an algorithm is cited is:

Optimization methods for ECG compression were devel-
oped, such as the cardinality constrained shortest path
(CCSP) algorithm presented in [1], [8], [24], [25].

We make an assumption that if both an algorithm key-
word and one or more citations appear in a sentence, then it
is likely that the citing document mentions the algorithms
proposed in the cited documents. After obtaining the set of
algorithm-citation sentences, the detector extracts the set of
documents cited in such sentences. We use document IDs
to represent documents.

4.2 Constructing Algorithm Co-Citation Net-
work

The algorithm co-citation network is constructed by tak-
ing the algorithm citations from each document, finding the
corresponding document ID for each citation, and creating
for each pair of the cited documents an edge of weight 1.
If the edge already exists, the weight is incremented by 1.
Algorithm 4.1 describes the network construction process.
D is the set of input documents from which we extract algo-
rithm citations and construct the algorithm co-citation net-
work. We generate the algorithm co-citation network from
roughly 1,370,000 documents in the CiteseerX repository.
The network created contained 9,409,433 edges and roughly
1 million nodes.

Algorithm 4.1: AlgoCoCiteNetworkConstruct(D)

Initialization :
V = {}
E = {}
G = <V,E>

Begin :
for each document d in D:

N← list of algorithm-proposing documents cited in d
For each (a, b) where a, b∈V,a ̸= b:

if edge (a, b) ∈E:
Increase weight of edge (a, b) by 1

Else :
Add edge (a, b) to E, and set the weight to 1

End If
Rerurn G

End.

4.3 Clustering the Algorithm Co-Citation Net-
work

The algorithm co-citation network captures the similarity
between two algorithm-proposing documents, based on the
assumption that if two algorithms are cited together, then
they are likely to be used for similar problems. Such simi-
larity is reflected by the weight of the edge linking the two

278

Figure 2: Distribution of cluster sizes with granu-
larity parameters of 1.4, 3.0, and 5.0.

Granularity Level # clusters Avg. # documents/cluster
1.4 30,862 14.89
3.0 73,779 6.23
5.0 105,329 4.36

Table 1: Output cluster and average cluster sizes
generated using different granularity parameters.

documents in which the co-cited algorithms are mentioned.
Based on such a relationship, the network is clustered to
produce groups of similar algorithm-proposing documents.
A number of clustering tools can be considered; however,
the MCL2 tool worked well for this task. The MCL clus-
tering tool implements the Markov Cluster Algorithm. The
algorithm is unsupervised and is based on the simulation of
network flow. MCL is designed to specifically cluster large
and preferably undirected weighted networks [5].
The other clustering tools that we have considered include

Weka3, Gephi4, GraphClust5, and Graclus6. Weka [6] sup-
ports datasets where all the data points have the same set of
attributes. Such data points are different from nodes in the
algorithm co-citation network where the only information
associated with a node is the similarities between the node
and its neighbors. GraphClust is also a network clustering
tool; however, it only supports undirected graphs with uni-
form edge weights. Gephi and Graclus presented problems
for large datasets such as ours. For our experiments, they
all crashed on an input network of 600,000 edges and 33,601
nodes.

5. EXPERIMENT AND EVALUATION ON
CLUSTERING RESULTS

The MCL tool was the most suitable tool we found for
clustering large graphs. However, the complete algorithm
co-citation network generated from the whole CiteseerX repos-
itory was still too large for the tool to handle. As such, for
experimental purposes, we generated a subgraph by ran-
domly selecting 3,000,000 edges from the complete network.
The selected subgraph contains 459,585 nodes. Figure 2
shows the distributions of the cluster sizes with different

2http://micans.org/mcl/man/mcl.html
3http://www.cs.waikato.ac.nz/ml/weka/
4http://gephi.org/
5http://cs.nyu.edu/shasha/papers/GraphClust.html
6http://www.cs.utexas.edu/users/dml/Software/graclus.html

C# Keywords #D #RD Pr(%)

1 integration, structural, analysis, dynamic, time 41 29 70.73
2 walking, biped, control, robot, locomotion 60 49 81.67
3 technology, programmable, error, cmos, performance 41 20 48.78
4 geometric, constraint, rigidity, graph, system 45 30 66.67
5 mammogram,detection,microcalcification,digital,clustering 43 30 69.77
6 requirement, diagram, model, object-oriented, statechart 46 23 50.00
7 knowledge, ontology, system, design, management 40 31 77.50
8 neural, parallel, network, mapping, architecture 41 32 78.05
9 scheduling, crew, system, transport, driver, transit 43 34 79.07
10 reduction, eigenvalue, power, dominant, system 46 35 76.09

Avg 44.6 31.3 70.73

Table 2: Precision calculated from the sample clus-
ters using granularity parameter 1.4.

clustering granularity levels. With granularity parameter of
1.4 (I = 1.4), the clustering results tend to be coarse-grained,
leading to the smallest number of clusters, but highest aver-
age number of documents per cluster. At the other extreme
where the granularity parameter is 5.0 (I = 5.0), the cluster-
ing results tend to be fine-grained, resulting in the largest
number of output clusters, and smallest average number of
documents per cluster. The granularity parameter of 3.0 (I
= 3.0) results in values somewhere in between. Table 1 lists
the numbers of output clusters and average cluster sizes for
each granularity parameter.

This experiment aims to measure the meaningfulness of
the clustering results. The experiment and evaluation use
the following steps:

1. Run the MCL clustering algorithm with granularity
parameters of 1.4, 3.0, and 5.0 on the sample network
with 3,000,000 edges and 459,585 nodes.

2. Randomly choose 10 clusters from each clustering re-
sult.

3. For each cluster:

(a) Retrieve the paper titles of all the documents in
the cluster.

(b) From all the document titles, run the term fre-
quency count to determine top 5 keywords. We
use these keywords to describe the cluster.

(c) Examine each document (manually) and deter-
mine the number of documents in the cluster which
are related to these 5 keywords.

(d) Calculate the precision of the cluster, where the
precision is the ratio of the number of related doc-
uments to the number of all the documents in the
cluster.

4. Calculate the average precision of all the 10 clusters.

5. Compare the average precisions of the results from the
three granularity levels.

Table 2, 3, and 4 lists the results of the precision mea-
surement of a sample of 10 clusters selected from each of
the clustering results generated with different granularity
parameters. C# is the cluster number, #D is the number
of documents in the cluster, #RD is the number of docu-
ments relevant to the 5 chosen keywords, and Pr(%) is the
precision in percent.

It is worth noting that the highest average precision is
achieved in the clustering result using the granularity pa-
rameter of 1.4. This granularity level produces the most
coarse-grained clustering among all the three parameters.
It is also interesting to see that the average precision tends
to decrease as the clustering results are more fine-grained.

279

C# Keywords #D #RD Pr(%)

1 reduction, model, eigenvalue, power, system 40 13 32.50
2 element, finite, superconvergence, analysis, recovery 52 46 88.46
3 recovery, distribute, rollback, synthesis, system 54 28 51.85
4 java, program, analysis, compiler, object-oriented 58 38 65.52
5 programming,approximation,problem,algorithm,application 48 30 62.50
6 algorithm, system, stability, matrix, linear 52 42 80.77
7 spectral, system, analysis, estimation, identification 46 25 54.35
8 partition, parallel, architecture, language, dataflow 40 30 75.00
9 distributed, signal, sparse, linear, sensor 49 30 61.22
10 feature, selection, analysis, learn, approach 56 26 46.43

Avg 49.5 30.8 61.86

Table 3: Precision calculated from the sample clus-
ters using granularity parameter 3.0.

C# Keywords #D #RD Pr(%)

1 clustering, data, algorithm, sampling, spatial 47 30 63.83
2 nonlinear, equation, dynamic, solution, schrodinger 41 21 51.22
3 animation, method, simulation, model, realistic 52 32 61.54
4 convex, version, enumeration, facet, version 48 26 54.17
5 match, recognition, contour, object, shape 56 32 57.14
6 waveguide, microwave, multiplexer, design, analysis 51 31 60.78
7 language, entropy, maximum, model, statistical 55 32 58.18
8 testing, protocol, conformance, generation, machine 41 34 82.93
9 learning,reinforcement,stochastic,markov,approximation 43 22 51.16
10 motion, estimation, image, structure, optical 58 33 56.90

Avg 49.2 29.3 59.78

Table 4: Precision calculated from the sample clus-
ters using granularity parameter 5.0.

6. SUGGESTED APPLICATIONS
The clustering on the algorithm co-citation network pro-

vides us with groups of related algorithm-proposing doc-
uments. We can create clusters of similar algorithms by
grouping together pseudo-codes extracted from the docu-
ments in the same clusters. There are a number of applica-
tions that can be employed from such algorithm clustering.
Here, we propose two possible applications which can po-
tentially be used to improve the CiteseerX algorithm search
engine or any similar full text digital library.

6.1 Algorithm Recommendation
Suppose every algorithm in each cluster addresses similar

problems. When the algorithm search engine retrieves an al-
gorithm, the algorithms in the same cluster can be displayed
as recommended algorithms.

6.2 Improving Ranking
Assuming that algorithms in the same cluster are similar

in the sense that they address similar problems, then when
an algorithm is textually matched with the search query,
the algorithms in the same cluster could receive extra scores
so they can be ranked higher. To do this, we propose a
technique similar to query expansion:

1. First, the search engine pre-generates a list of keywords
that represent each cluster. The keywords may be cho-
sen from the documents which propose the algorithms
in the cluster, or they may be chosen from the informa-
tion (i.e. captions, reference sentences, and synopses)
of the algorithms in the clusters.

2. When a user inputs a query, the query engine modi-
fies the original query such that if the original query
contains at least one word that belong to the list of
keywords of a cluster, then some or all of the key-
words that represents such cluster are added to the
original query. Adding cluster keywords to an original
query would make sure that when at least an algorithm
matches the original search query, ranking scores are
also given to the rest of the algorithms in the same
cluster.

7. CONCLUSIONS AND FUTURE WORK
The algorithm co-citation network captures the similar-

ity between algorithm-proposing documents. The similarity
comes from the observation that if two algorithms are cited
together, then it is likely that these algorithms address sim-
ilar problems. Based on this assumption, clustering the net-
work would result in groups of similar algorithm-proposing
documents. The clustering results could be applied in many
applications to improve the current CiteseerX or any algo-
rithm search engine, such as improving the ranking and rec-
ommending related algorithms. There are several aspects of
the methodology that could be improved. For example con-
tent analysis techniques can be used to identify additional
features which would infer similarity between two algorithm
proposing documents. This will generate a different type of
algorithm graph. It would be useful to implement cluster-
ing algorithms which can handle large networks such as our
dataset making it possible to perform experiments on the
complete algorithm co-citation network generated from the
whole CiteseerX repository. Using the methods proposed
here, many algorithm recommendation systems should be
feasible.

8. ACKNOWLEDGMENTS
We gratefully acknowledge useful suggestions from S. Bha-

tia and S. Das, plus partial support from the NSF and
DTRA.

9. REFERENCES
[1] S. Bhatia, S. Lahiri, and P. Mitra. Generating synopses

for document-element search. Proceeding of the 18th
ACM conference on Information and knowledge
management - CIKM ’09, page 2003, 2009.

[2] S. Bhatia and P. Mitra. Summarizing Figures , Tables
and Algorithms in Scientific Publications to Augment
Search Results. ACM Transactions on Information
Systems (TOIS), pages 1–24, 2010.

[3] S. Bhatia, P. Mitra, and C. L. Giles. Finding
algorithms in scientific articles. Proceedings of the 19th
international conference on World wide web - WWW
’10, page 1061, 2010.

[4] S. Bhatia, S. Tuarob, P. Mitra, and C. L. Giles. An
Algorithm Search Engine for Software Developers.
SUITE ’11: Proceedings of 2011 ICSE Workshop on
Search-driven Development: Users, Infrastructure,
Tools and Evaluation, 2011, 2011.

[5] S. Dongen. Graph clustering by flow simulation [Ph.D.
dissertation]. Centers for Mathematics and Computer
Science University of Utrecht, 2000.

[6] M. Hall, H. National, E. Frank, G. Holmes,
B. Pfahringer, P. Reutemann, and I. H. Witten. The
WEKA data mining software: an update. SIGKDD
Explorations, 11(1):10–18, 2009.

[7] H. SMALL. Co-citation in the Scientific Literature : A
New Measure of the Relationship Between Two
Documents. Journal of the American Society for
Information Science, pages 265–269, 1973.

280

