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ABSTRACT
Representing the semantics of unstructured scientific publi-
cations will certainly facilitate access and search and hope-
fully lead to new discoveries. However, current digital li-
braries are usually limited to classic flat structured meta-
data even for scientific publications that potentially con-
tain rich semantic metadata. In addition, how to search
the scientific literature of linked semantic metadata is an
open problem. We have developed a semantic digital library
oreChem ChemxSeer that models chemistry papers with se-
mantic metadata. It stores and indexes extracted metadata
from a chemistry paper repository ChemxSeer using “com-
pound objects”. We use the Open Archives Initiative Ob-
ject Reuse and Exchange (OAI-ORE) )1 standard to define a
compound object that aggregates metadata fields related to
a digital object. Aggregated metadata can be managed and
retrieved easily as one unit resulting in improved ease-of-use
and has the potential to improve the semantic interpretation
of shared data. We show how metadata can be extracted
from documents and aggregated using OAI-ORE. ORE ob-
jects are created on demand; thus, we are able to search for a
set of linked metadata with one query. We were also able to
model new types of metadata easily. For example, chemists
are especially interested in finding information related to
experiments in documents. We show how paragraphs con-
taining experiment information in chemistry papers can be
extracted and tagged based on a chemistry ontology with
470 classes, and then represented in ORE along with other
document-related metadata. Our algorithm uses a classifier
with features that are words that are typically only used to
describe experiments, such as “apparatus”, “prepare”, etc.
Using a dataset comprised of documents from the Royal
Society of Chemistry digital library, we show that the our
proposed method performs well in extracting experiment-
related paragraphs from chemistry documents.

1http://www.openarchives.org/ore/
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1. INTRODUCTION
Easy and fast access to scientific artifacts is important as

the amount of scientific literature continues to increase. Ver-
tical search engines such as Google Scholar2 provide efficient
access to scientific papers based on user provided keywords.
Digital libraries such as the ACM digital library3, Libra4 and
ChemxSeer5, take advantage of well-defined metadata from
catalogues, taxonomies and domain-specific information in
scientific papers. Nevertheless, researchers find difficulties in
retrieving desired content from a large retrieved document
set.

Metadata are a set of controlled vocabularies stored in
databases with a fixed schema. However, a flat metadata
structure does not properly represent the rich information
structure in scientific publications. Fig. 1 illustrates an ex-
ample of a chemistry paper linked to a set of relevant hetero-
geneous information. A chemistry paper has several impor-
tant features and attributes, e.g., authors, referenced pa-
pers, figures, tables, chemical formulae, experimental sec-
tions, etc. An author may have other papers and may have
a homepage with the name, title, affiliations, contact infor-
mation, research interests, etc. A chemical formula may be
described using a graphical chemical structure or may be de-
scribed by its name. An experimental section can describe
instruments, chemical formulae, and other important infor-
mation. Therefore, modeling unstructured textual informa-
tion with a set of properly structured metadata is crucial for
rich and efficient information access and knowledge aggre-
gation.

2http://scholar.google.com/
3http://portal.acm.org/portal.cfm
4http://libra.msra.cn/
5http://chemxseer.ist.psu.edu/
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Figure 1: Example of the linked information struc-
ture of a scientific publication.

We present a semantic digital library oreChem ChemxSeer6

that intends to model chemistry papers with semantic meta-
data and semantic relations. In our system, we use a new
data model, the Object Reuse and Exchange (OAI-ORE)l7

proposed by the Open Archives Initiative (OAI) [9, 5] to
aggregate metadata related to documents in our digital li-
brary. The aggregation of the set of sources are called “com-
pound objects”. The compound objects represent informa-
tion across cooperating digital repositories, registries and
services. The ORE model is a graph model based on Named
Graphs [4] that are extensions of RDF graphs. Named
Graphs consist of nodes and arcs within a node set. When
applied to compound objects, the nodes correspond to re-
lated resources; and the arcs correspond to typed relations.
Because the nodes and arcs are stored as RDF triples with
unique URIs, these resources can be identified and refer-
enced unambiguously through the URIs.

An example of a typical compound object in the ORE
model is similar to the graph in Fig. 1. In that example, the
chemistry paper is an aggregation. External objects such as
referenced papers, authors’ homepages, and internal objects
such as figures, tables, formulae, data, etc. are aggregated.
The same data can be modeled in different ways.

The advantage of ORE is that a set of related information
can be searched or operated on as one object. Users can
create these aggregates and share them both with other users
as well as across their own user sessions. Users who wish to
save or print a set of related pages, an individual paper,
a presentation of that paper, and all documents referenced
by that document can print all of them together simply by
parsing an ORE file 8.

Our digital library oreChem ChemxSeer is built on top
of the ChemxSeer system. Documents in the ChemxSeer
digital library and their associated metadata are packaged
as ORE objects. The metadata of each document in the
ChemxSeer repository was obtained from the ChemxSeer
system that, in turn, used (i) the SeerSuite system [17] to ex-
tract the metadata automatically and (ii) scraped the meta-
data from webpages associated with documents in digital
libraries such as the RSC digital library9. We store the
metadata associated with each document in a RDF repos-

6http://130.203.146.147:8081/oreChem/
7http://www.openarchives.org/ore/
8http://www.openarchives.org/ore/1.0/primer
9http://www.rsc.org/

itory. The ORE objects are generated on demand and the
RDF graph is then visualized. End-users can then directly
access these ORE objects.

As a case study, we explore how to extract and integrate
new types of data into oreChem ChemxSeer metadata aggre-
gates along with document-related metadata. We propose
a method to identify paragraphs from documents describing
experiments or containing information related to how the
experiments were conducted. Once the paragraphs contain-
ing experiments have been identified, then end-users could
extract detailed information related to experiments, e.g.,
methods describing how the experiments were performed,
the reactants used, etc. Such detailed information extrac-
tion will enable end-users to search for documents based on
the type of experiment, reagents used, etc. Work on auto-
mated experiment paragraph extraction is a first step toward
that goal.

Identifying experiment paragraphs is a nontrivial problem
since, despite advances in natural language processing, un-
derstanding the semantics of text and resolving the inherent
ambiguity automatically is still an unsolved problem. Deter-
mining which parts of a document talk about experiments
and which do not is hard in the absence of a good semantic
understanding of the document, which, in turn, is hard to
achieve using automated methods. The experiment para-
graph tagging module uses a supervised machine-learning
algorithm with training sets generated by domain experts
and uses single word features like “apparatus”, “reagents”,
etc. to identify experiment paragraphs. The experiment
detection module performs the tagging with high accuracy.

Our system for oreChem ChemxSeer has been made avail-
able10. Users can navigate ORE objects and examine the
documents and their associated attributes.

Our contributions are listed as follows. First, to the best
of our knowledge, we are the first to establish a platform us-
ing the ORE data model to manage automatically extracted
data from scientific publications. Second, we have designed
a faceted interactive interface powered by the ORE infras-
tructure. Our interface provides faceted navigation across
a large set of metadata so that chemists can navigate the
digital library and examine the literature with added ease.
Third, we have proposed and demonstrated an ontology-
based supervised machine learning method for extracting
important experimental information from chemistry papers.

The rest of the paper is organized as follows. In Section 2,
we introduce related work on semantic digital libraries. In
section 3, we present the system infrastructure of oreChem
ChemxSeer. In Section 4, we propose an ontology based ex-
perimental information extraction approach using support
vector machines (SVMs), and give our experimental results.
We conclude and propose future work for experimental in-
formation extraction in Section 5.

2. RELATED WORK
To the best of our knowledge, oreChem ChemxSeer is the

first system that provides end-users the capability to share
aggregated metadata. In this section, we briefly provide an
overview of work related to semantic digital libraries.

ScholOnto [15] uses ontologies to model relationships among
research documents and enriched the citation relationship
with an ontology called “Claim”. In “Claim”, a document

10http://www.cxs03.ist.psu.edu:8890/
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can have many relationships with other documents in the
literature, e.g, a document can be an example of another
document, can be inconsistent with another document, can
entend the content of another document, etc.

JeromeDL [14] used a collection of ontologies to model dif-
ferent aspects of bibliographic information. In JeromeDL,
not only general ontologies, like Dublin Core11 and foaf12

were used, but also event-based ontologies were included
with relationships such as “isReviewed”, “hasSubmissionSta-
tus”, “isUploadedBy”, etc. JeromeDL used an interactive in-
terface for publishers and creators to annotate pieces of data
with the provided ontologies during the upload process.

Greenstone 3 [19] proposed how ontologies can be fully in-
tegrated into digital libraries. Greenstone used the FRBR [2]
framework to model data. FRBR uses four entities: works,
expressions, manifestations and items. With the four core
entities and other attributes for expressing the identities of
entities, FRBR is able to model data types, relationships
among them, and data sources from different repositories.
FRBR was first used for data ingestion, where the data were
annotated with the FRBR vocabulary and indexed in the
system. Greenstone 3 supports typed search using FRBR
resulting in more accurate results than when FRBR was not
used.

The Fedora [10] data model is used in the National Sci-
ence Digital Library. The Fedora data model is most similar
to the data model that we use. Fedora is also a graph-based
data model for exposing a repository as a network of ob-
jects. It is also flexible in that it allows overlaying state-
ments from multiple ontologies. Another common feature
of Fedora and ORE is that both enable fine-grained digital
objects accessible through an architecture of remixed data
sources and transformations. However, ORE is better than
Fedora in two aspects: (i) ORE takes a resource-centric view
that defines clear logical boundaries between resources and
enhances the interoperability of information, and, (ii) ORE
provides a standard for identifying web services and agents
through resource maps13 with which information can be eas-
ily collected across different repositories without losing their
provenance. ORE grants the power to users to easily choose
their preferred repositories and services.

Finally, digital library search engines such as CiteSeerX
and others automatically extract OAI metadata and other
metadata resources such as citations. With the exception of
the CiteSeerX model, populating ontologies with data and
metadata has been left to publishers, creators and authors
and is often a manual process. This work attempts to auto-
matically extract general data and metadata with a partic-
ular focus on chemistry.

3. SYSTEM INFRASTRUCTURE
oreChem ChemxSeer is built on a related project ChemxSeer.

ChemxSeer had access to over 130,000 articles from the Royal
Society of Chemistry repository14. Not only does ChemxSeer
index such documents, but, using the SeerSuite software
(from which CiteSeerX is built), it also automatically ex-
tracts and indexes bibliographic data, tables, figures and

11http://dublincore.org/
12http://www.foaf-project.org/
13http://www.openarchives.org/ore/1.0/primer
14http://www.rsc.org/

chemical formulae, which can be represented in oreChem
ChemxSeer as well.

3.1 ORE Data Model
The ORE abstract data model consists of four entities: ag-

gregation, aggregated resouce, resouce map, and proxy. An
aggregation is a resource of type ore:Aggregation that is a
set of other resources. An aggregated resource is a resource
that is a constituent of an aggregation. A resource map de-
scribes a single aggregation, and an aggregation can have
many resource maps. A resource map retains provenance
information of the constituents described in an aggregation.

We implement an ORE data model that underlies the
oreChem ChemxSeer system. Fig.2 illustrates an exam-
ple of a compound object with aggregation, aggregated re-
sources, and resource map in oreChem ChemxSeer. The
triples producing the resource map in Fig. 2 are serialized in
RDF/XML as follows:

<rdf:Description rdf:about="

http://chemxseer.ist.psu.edu/

rem/rdf/document/10.1039/b402145m">

<dcterms:modified rdf:datatype="

http://www.w3.org/2001/

XMLSchema#date">2009-08-25T11:08:26-0400

</dcterms:modified>

<dc:creator rdf:nodeID="A5"/>

<ore:describes rdf:resource="

http://chemxseer.ist.psu.edu/

document/10.1039/b402145m"/>

...

<rdf:Description rdf:nodeID="A5">

<rdf:type rdf:resource="

http://purl.org/dc/terms/Agent"/>

<foaf:name rdf:datatype="

http://www.w3.org/2001/

XMLSchema#string">OreChem ChemXSeer

</foaf:name>

</rdf:Description>

The resource map describes a document aggregation in
this example. As illustrated in Fig. 2, the document aggre-
gation contains a set of resources that describe and support
it. Ontological metadata are used to describe the informa-
tion associated with each resource. Several existing ontolo-
gies are reused in the oreChem ChemxSeer model, for exam-
ple, the foaf ontology is used to manage author information,
Dublin Core is used to manage general publishing informa-
tion, and the ChemAxiom Metrology ontology15 is used to
manage experiment information. However, we expand this
document ORE model further with a set of vocabularies
particular to chemistry such as chemical formulae, tables,
and figures that are aggregated along with the metadata of
the documents. Currently, we have defined 12 classes of 27
concepts and 10 relationships.

The following RDF/XML code shows an example of how
we model chemical formulae in the oreChem ChemxSeer
ORE data model. Each rdf:Description represents either a
primary resource or a secondary resource. The secondary re-
source formula 6-propionyl-2-(N,N dimethylamino)naphthalene
is an aggregated resource denoted by ore:aggregates for the
document aggregation named b402145m, which is a primary

15http://bitbucket.org/na303/chemaxiommetrology/
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Figure 2: The comprehensive ORE data model underlying oreChem ChemxSeer

resource. There is only one property in the chemical formula
resource: formula name.

It is very easy to add more properties to the resource by
adding additional triples within the corresponding
rdf:Description tag.

<rdf:Description rdf:about="

http://chemxseer.ist.psu.edu/

document/10.1039/b402145m">

<ore:aggregates rdf:resource="

http://chemxseer.ist.psu.edu/

formula/6-propionyl-2-(N,

N-dimethylamino)naphthalene"/>

<orechem:contains rdf:nodeID="A18"/>

</rdf:Description>

<rdf:Description rdf:nodeID="A18">

<dcterms:title>6-propionyl-2-(N,

N-dimethylamino)naphthalene

</dcterms:title>

<rdfs:seeAlso rdf:resource="

http://chemxseer.ist.psu.edu/

formula/6-propionyl-2-(N,

N-dimethylamino)naphthalene"/>

</rdf:Description>

This more general model used in oreChem ChemxSeer in-
cludes many of the standard metadata features of current
digital scientific publications. The metadata is serialized in
RDF/XML and stored in a triple store. In the next section,
we will illustrate how this is integrated into the oreChem
ChemxSeer architecture.

3.2 System Architecture and Implementation
Fig. 3 shows the system architecture of oreChem Chemx

Seer. On the front end, a user can input typed queries, e.g.,
“author:Peter keyword:carbon venueyear:Analyst-2004”. Then,
the system returns a list of document compound objects. At
the back end, the ORE data model is built on Chemx

Seer’s data including bibliographic data, table/figure data,
formula names, statistics and other information. Specifi-
cally, RDF triples are generated from these data using the
ORE data model’s vocabulary that we defined. Each triple
is then populated into a Sesame native RDF store 16. Note
that Sesame supports “Named Graph”s by providing a field
called “context” besides the “subject,” “object” and “pred-
icate” fields for each triple. Therefore, we can easily con-
struct a document aggregation while populating the data by
putting a document aggregation URI into the “context”field
for each triple. In addition, the Sesame native RDF store
will build three triple indexes spoc, posc, and cspo, where s
denotes subject, p denotes predicate, o denotes object and c
denotes context. After the database is initialized and pop-
ulated, we can query any triple or document aggregation
using the SeRQL (Sesame RDF Query Language) 17 query
language. When a user sends a query to the server, the
query is first converted to a SeRQL query, and then a set of
constructed RDF subgraphs (termed ”graphs”) are returned
from the Sesame database. The system then sends the out-
put of Sesame to Foresite 18, a toolkit for constructing and
serializing ORE resource maps into different formats. Fore-

16http://www.openrdf.org/
17http://www.openrdf.org/doc/sesame/users/ch06.html
18http://code.google.com/p/foresite-toolkit/

248



Figure 3: oreChem ChemxSeer architecture

site will parse the RDF files and serialize them into ORE
files in six formats: ATOM, RDF/XML, N3, N-Triples, Tur-
tle and RDFa. We also used a new format named SVG for
visualizations. The SVG ORE files are transformed from
RDFa files through XSLT. An SVG ORE file is a searchable
interactive graph showing metadata and their relationships.
We describe how the new format helps represent oreChem
ChemxSeer’s data in the next section.

3.3 oreChem ChemxSeer User Interfaces
In this subsection, we show a working example of oreChem

ChemxSeer. We give a general idea of major functions of
oreChem ChemxSeer. The technologies we use to implement
the system include JSF, JSP, Sesame, JavaBeans, XSLT and
SVG. The bibliographical metadata extraction module is de-
rived from SeerSuite19, and the chemical metadata extrac-
tion module is derived from ChemxSeer [16].

Fig. 4 shows the portal of oreChem ChemxSeer. Note that
we only present the screen showing how to search a doc-
ument aggregation. Other views showing additional ORE
objects, e.g., experiment aggregation will be added in the
future. In this example, a user wants to search document
aggregations that contains “Carbon” in the document title,
and that was written by “Mike” in “1999”.

Fig. 5 shows the result page corresponding to the above
query. Users can collaborate and help maintain the records
by clicking the “Modify” link. Fig. 6 shows fields that we
currently allow the user to modify.

Next, we show multi-faceted views of oreChem ChemxSeer.
Faceted navigation is thought to be a powerful tool that re-
duces the mental work of searching an information collection
by promoting recognition over recall and suggesting logical
but perhaps unexpected alternatives. Furthermore, it also
acts as important scaffolding for exploration and discovery,
while seamlessly integrating free text search within the cat-
egory structure. [7].

19http://sourceforge.net/projects/citeseerx/

Figure 4: oreChem ChemxSeer portal

Fig. 7 shows a hyperlink-based multi-faceted view for a
document aggregation. Each indexed data is clickable and
searchable. If a user wants to learn a set of resources related
to the formula “aluminium”, the user can simply click on
the hyperlink “aluminium” to get a page like Fig. 8. Or if a
user wants to learn a set of resources related to the author
“Michael Thompson”, the user can click on the hyperlink
“Michael Thompson” to get a page such as Fig. 9. Con-
structing these different views is simple using named graphs
in Sesame.

Fig. 10 is a graphical multifaceted view for a document
aggregation. The colored nodes represent available resources
in a document aggregation. The nodes are expandable and
clickable, so that users can easily interact with the graph.

We have shown seven snapshots of our system. These

249



Figure 5: A result page from oreChem ChemxSeer

Figure 6: A modify page from oreChem ChemxSeer

seven scenarios highlights our system: a fully functioned
semantic digital library that supports faceted search and
navigation, user interaction, and seven document formats
for downloading.

4. EXPERIMENT INFORMATION EXTRAC-
TION

An important part of documents related to empirical chem-
istry and other empirical sciences is the experiment section
that reports methods and materials, observations, etc. Ide-
ally, we want one (or more) “experiment” ORE object to be
associated with a chemistry document that provides infor-
mation about the experiments reported in the document. In
order to do this, we investigate the task of extracting para-
graphs describing experiments in chemistry documents. To
the best of our knowledge, extracting such information au-
tomatically has not been previously investigated. We use
a machine-learning-based approach to identify experiment-

Figure 7: Document view of oreChem ChemxSeer

Figure 8: Formula view of oreChem ChemxSeer

related paragraphs in documents. We tested our methods on
chemistry papers from various journals, but it can be easily
extended to other domains.

4.1 Problem Formalization
Generally speaking, experiment-related information con-

sists of sentences or paragraphs that describe components
of an experiment; they could describe the experimental en-
vironment, experimental data, experimental procedure and
experimental results. In experimental Chemistry papers, re-
searchers often describe an experiment in the following way:
a description of instruments used such as model, instrument
characteristics, and instrument calibration. They also de-
scribe how reagents are prepared. Researchers then describe
experimental procedure and reactions observed during the
experiment. Finally, they discuss results and compare re-
sults from different conditions. Accordingly, the problem is
how to automatically detect and extract such information.
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Figure 9: Author view of oreChem ChemxSeer

Figure 10: Graphical view of oreChem ChemxSeer

In this paper, we will focus on how to extract experiment-
related paragraphs, because we have empirically found that
information about experiments are usually organized closely
in consecutive paragraphs and non-experiment information
seldom occurs in such paragraphs in chemistry papers. Tak-
ing each paragraph as an instance, which we denote as pi,
each paragraph is either related to experiment or not, which
we denote as E or NE respectively. For each paragraph,
there is a set of features {fij |j = 1 . . . n}, where i denotes
which paragraph the feature belongs to and n denotes the
number of features.

The problem is then reduced to a classification problem
where we want to classify the instances into two categories,
either E or NE. We use Support Vector Machines(SVMs) [3];
they have been widely used for classification tasks. However,
other classifiers could also be explored.

4.2 Classification Model

4.2.1 Support Vector Machines
SVM is a binary supervised learning method used for clas-

sification. For learning, the input are two sets of instances
represented by feature vectors in a n-dimensional space and
classification labels corresponding to the instances. They
can be represented as {(x1, y1), . . . , (xn, yn)}, in which xi

denotes an instance (a feature vector) and yi ∈ {−1, +1} de-
notes a classification label. An SVM will try to find an opti-
mal separating hyper-plane in the n-dimensional space that
maximally separates the two classes of training instances
(more precisely, maximizes the margin between the two classes
of instances).

We use LibSVM 20, a library for support vector machines.
We choose the RBF (Radial Basis Function) kernel, because
our preliminary experimental results show that it works best
for the current task. There are two parameters while using
RBF kernels: C and γ. We use a “grid-search” using cross-
validation to find the optimal C and γ as recommended in
LibSVM guide 21.

4.2.2 Feature Sets
Appropriate selection of features is crucial to good clas-

sification. We emphasize the use of ontology concepts as
features. Our features can be classified into two categories:
Keyword Features and Concept Features.

Keyword Feature: These features include representa-
tive words that occur frequently in experiment-related para-
graphs while seldom occurring in other paragraphs. They
are “procedure”, “experiment”, “apparatus”, “reagent”, “re-
act”, “prepare”, “instrument” and “calibrate”. We observed
that these keywords always appeared in the subtitle and the
body of an experiment section of papers in our corpus.

Concept Features: These features represent concepts
that are often used in chemistry experiments and are seldom
used in other sections in a paper. We choose the ChemAx-
iom Metrology ontology22, which describes the concept and
relations of named techniques and instruments in chemistry
experiments. It contains 470 classes in total.

Our intuition for using ontologies as features is that an
ontology that tries to model and describe concepts and re-
lations for a particular domain would well represent the fea-
tures of that domain. In addition, the ORE data model
easily represents and integrates ontologies. Thus, ontology-
based extraction, ontology-based data management and ontology-
based navigation can be readily synthesized into one sys-
tem.

4.3 Experiments and Results

4.3.1 Data Set
We collect experiment-related paragraphs from chemistry

papers in PDF formats. We chose 174 experiment para-
graphs and 820 non-experiment paragraphs from three jour-
nals: the Analyst, Organic & Biomolecular Chemistry and
Chemical Communications, as our training data. The first
two journals have rigid format requirements such that sub-
titles should proceed each section. The later one does not

20http://www.csie.ntu.edu.tw/ cjlin/libsvm/
21http://www.csie.ntu.edu.tw/ cjlin/papers/guide/guide.pdf
22http://bitbucket.org/na303/chemaxiommetrology
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have such requirements and, as a consequence, most subti-
tles are missing. Structure-wise, papers in Chemical Com-
munications are not as easy to parse as the other two. In
addition, we chose 85 experiment paragraphs, and 662 non-
experiment paragraphs for our experiment as our test data.
Some pre-processing is done before extraction. We convert
the papers from PDF to plain text using PDFBox23. Then,
we automatically detect paragraph boundaries, and mark
them. Then, chemists annotated experiment-related para-
graphs for all papers.

4.3.2 Performance of Experiment Extraction
We conduct a 5-fold cross validation to evaluate the per-

formance of the SVM classifier. We also used several rule-
based approaches as baseline methods. We developed a
simple rule-based approach to assign a positive label to a
paragraph if the paragraph contains at least k keywords.
The keyword set is the same as the keyword feature set in
the SVM classifier. We measure the performance of both
the SVM and rule-based methods in terms of precision, re-
call and F1-measure. Given the number of the correctly-
labeled true experiment-related paragraphs A, the number
of true experiment-related paragraphs but mis-labeled as
non-experiment paragraphs B, and the number of non-experiment
paragraphs that are mis-labeled as experiment-related para-
graphs C, we can derive: the Precision is A

A+C
, the Recall

is A
A+B

, and the F − measure is 2×Recall×Precision
Recall+Precision

.
Table 1 shows the performance measurements of both

SVM and rule-based methods. For rule-based methods, we
vary k from one to eight.

Methods Precision Recall F-measure
SVM 83.9% 85.9% 84.9%
RL(k=1) 24.9% 78.8% 37.9%
RL(k=2) 29.9% 50.6% 37.6%
RL(k=3) 30.2% 30.6% 30.4%
RL(k=4) 29.5% 15.3% 20.2%
RL(k=5) 36.4% 9.4% 15.0%
RL(k=6) 31.3% 5.9% 9.9%
RL(k=7) 40% 4.7% 8.4%
RL(k=8) 28.6% 2.3% 4.3%
RL(k=9) 6.7% 2.4% 4.5%

Table 1: Performance measurements of rule-based
baseline methods and SVM classifier

Figure 11 and Figure 12 show the precision and F-measure
of rule-based methods respectively. From Figure 11, we can
see that the best performance is when k is equal to seven.
When k is greater than seven, the performance quickly gets
worse. From Figure 12 we can see that it is almost a mono-
tonically declining value; when k gets larger, the F-measure
gets smaller. Therefore, the performance is best when k is
equal to one.

Comparing the performance measurements of the rule-
based methods when k is equal to one and seven with the
SVM classifier in table 1, we can conclude that SVM clas-
sifier gets the best performance in terms of precision, recall
and F-measure, and significantly outperforms the rule-based
methods at least for feature set and paragraphs used.

23http://incubator.apache.org/pdfbox/

Figure 11: Rule-based methods precision plot

Figure 12: Rule-based methods F-measure plot

4.3.3 Discussion
Further investigation of the true negatives and false posi-

tives leads us to three reasons for errors in classification:

1. The feature sets as specified may not be complete. We
could potentially improve the performance further by
adding missing features. We could expend the ChemAx-
iomMetrology.owl ontology with another two impor-
tant classes. One would be a subclass of Instrument,
which we denote as“general instrument”(such as flask);
the other should be a subclass of process, which we
denote as “general process” (such as distillation and
separation).

2. Tables and Figures are identified as non-experiment
paragraphs. Actually some tables or figures belong to
the experiment section. However, because we have not
extracted the content of the tables or figures and their
captions yet, we annotate them as non-experiment para-
graphs. This can be fixed by performing table extrac-
tion [11] and figure extraction [8] in the future.

3. Information from other paragraphs have been wrongly
classified, mostly from the Discussion/Analysis sec-
tions. There are sentences that briefly discuss differ-
ent results obtained under different conditions in these
sections. Our chemists annotate those paragraphs as
non-experiment paragraphs, because most of the con-
tent in those paragraphs are not related to describing
experiments. This observation indicates that we may
need a finer grained experiment extractor, one that
performs the classification at the sentence level.
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In the future, we will vary our feature sets and evaluate the
results to find an optimal feature set for the task. We may
also need to explore sentence-level experiment extraction or
step-wise experiment extraction methods to compliment the
current experiment-extraction methods.

5. CONCLUSION
Automatically transforming unstructured scientific litera-

ture to structured knowledge is a nontrivial task. We have
proposed a system oreChem ChemxSeer based on the OAI-
ORE data model. We show that our system is capable of
automatically populating a chemistry ontology of metadata
consisting of authors, scientific papers, chemical formulae,
data and others. We have also defined and explored the
problem of experimental information extraction. Using Sup-
port Vector Machines and chemistry ontologies, we have
been able to extract experiment-related paragraphs from
PDF documents. Experiments show that our approach is
able to extract most experiment-related paragraphs from
various academic chemistry papers. Future research can
take many directions. For example, we can add a table ex-
traction module and figure extraction module to the system.
We can explore a sentence-level related experiment extrac-
tion method and step-wise experiment information extrac-
tion methods.
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