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The rapid advancement of nanotechnology research and
development during the past decade presents an excel-
lent opportunity for a scientometric study because it can
provide insights into the dynamic growth of the fast-
evolving social networks associated with this field. In this
article, we describe a case study conducted on nanotech-
nology to discover the dynamics that govern the growth
process of rapidly advancing scientific-collaboration net-
works. This article starts with the definition of temporal
social networks and demonstrates that the nanotech-
nology collaboration network, similar to other real-world
social networks, exhibits a set of intriguing static and
dynamic topological properties. Inspired by the obser-
vations that in collaboration networks new connections
tend to be augmented between nodes in proximity, we
explore the locality elements and the attachedness fac-
tor in growing networks. In particular, we develop two
distance-based computational network growth schemes,
namely the distance-based growth model (DG) and the
hybrid degree and distance-based growth model (DDG).
The DG model considers only locality element while the
DDG is a hybrid model that factors into both local-
ity and attachedness elements. The simulation results
from these models indicate that both clustering coeffi-
cient rates and the average shortest distance are closely
related to the edge densification rates. In addition, the
hybrid DDG model exhibits higher clustering coefficient
values and decreasing average shortest distance when

Received November 13, 2008; revised August 4, 2009; accepted August 12,
2009

© 2010 ASIS&T • Published online 1 February 2010 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/asi.21225

the edge densification rate is fixed, which implies that
combining locality and attachedness can better charac-
terize the growing process of the nanotechnology com-
munity. Based on the simulation results, we conclude that
social network evolution is related to both attachedness
and locality factors.

Introduction

Nanotechnology is a highly interdisciplinary field that is
generally concerned with the control of matter on the molec-
ular level in scales smaller than 1 µm, normally 1 to 100 nm,
and the fabrication of devices within that size range. This field
has been growing at an astounding pace in the last decades.
This is reflected in the world-wide growth of funding from
both government and industry and the increasing penetration
into other disciplines as well as the accelerating growth in the
number of scientific publications and involved researchers.
The explosive development of this field makes it ripe for
in-depth scientometric analysis for this field. This article con-
ducts a study on the evolving nanotechnology collaboration
network to develop insights into its social network growth
dynamics.

This study is in line with the surging interests in social net-
work and complex network studies in the recent decades. In
particular, researchers have discovered that many social net-
works and other real-world complex networks exhibit a set
of properties that distinguish them from random networks
such as the Erdos-Renyi model (Bollobs, 2001). These prop-
erties fall into two categories. The first category consists of a
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set of static topological properties that characterizes social
network graphs, including (a) power-law degree distribu-
tion, (b) large clustering coefficient values, and (c) small
average shortest path between two random nodes. In particu-
lar, the power-law degree distribution is a distinct feature of
scale-free networks; large clustering coefficient values usu-
ally imply manifest community structures; and small average
shortest path length values indicate short average separa-
tion between nodes. The latter two features constitute the
so-called small-world network properties.

The second category is the kinetic properties exhibited
in the growing process of social networks. For instance,
researchers have reported the “shrinking diameter” phe-
nomenon that the diameters of many real networks decrease
over time (Barabasi et al., 2002; Kumar, Novak, & Tomkins,
2006; Leskovec, Kleinberg, & Faloutsos, 2005). These static
and dynamic properties represent a significant departure from
random networks. While these phenomena have been iden-
tified, there is no consensus on the cause of these features.
Recently, there has been a flurry of efforts by researchers
from different disciplines exploring a variety of factors,
including the attachedness factor (i.e., the degree of nodes)
and the locality factor, to discover the growth schemes of
social networks (Barabasi & Albert, 1999; Jin, Girvan, &
Newman, 2001; Kumar et al., 2000). The first section
provides an overview of the existing studies.

The nanotechnology collaboration network studied in in
this article, NanoSCI, is appealing for investigating social
network growth dynamics for the following three reasons.
First, collaboration networks have been widely used in sci-
entometrics and social networks study. It has been discovered
that collaboration networks possess many static and dynamic
properties that are similar to other social networks. In his early
work on this domain, Newman (2001, 2004) studied sev-
eral large collaboration networks and concluded that these
networks exhibit all the general ingredients of small-world
networks, including short node-to-node distance and large
clustering coefficient. Moreover, researchers have recently
shown that evolving collaboration networks exhibit similar
dynamic patterns as do other social networks in the growth
process, such as shrinking diameters and high clustering coef-
ficient values (Barabasi et al., 2002). Second, NanoSCI offers
one of the most extensive databases to date on social net-
works, including 292,323 researchers and 368,511 papers
that are indexed by the Science Citation Index (SCI) database
(http://scientific.thomson.com/products/sci, 2006) spanning
from 1980 to 2006. Finally, the history of nanotechnology
research is very short, and the literature has developed so
recently that the majority of it is online. Compared to other
fields, even new ones such as biotechnology or super conduc-
tivity, the short history of the field combined with its fully
online character facilitates this kind of metascientific study.
Thus, NanoSCI provides unique research opportunities for
us to investigate the characteristics of the formation stage of
collaboration networks.

In particular, this article reports a set of static prop-
erties and dynamic patterns observed in the evolving

nanotechnology collaboration network. Based on these
observations, we explore the joint effect of attachedness
(degree) factor and locality factor for network growth dynam-
ics. This article proposes two distance-based computational
growth schemes, namely DG (distance-based growth model)
and DDG (hybrid degree and distance-based growth model),
and compares them with other growth models. In the DG
model, the probability of building a new connection between
two nodes is in inverse proportion to their distance. The DDG
model, similar to the Law of Gravity, specifies that the attrac-
tiveness between two nodes is determined by their degree
and the distance. Based on the simulation results, we dis-
cover that both clustering coefficient rates and the average
shortest distance are closely related to the edge densifica-
tion rate, a metric that measures the relative growth speed of
edges and nodes. In addition, the hybrid DDG model exhibits
higher clustering coefficient values and decreasing average
shortest distance when the edge densification rate is fixed,
which implies that combining locality and attachedness can
better characterize the growth of the nanotechnology commu-
nity. To summarize, the contributions of this article include
(a) exploring the locality and the attachedness-based network
growth paradigm and the corresponding dynamics and pat-
terns, and (b) discussing factors that can cause high clustering
coefficient values and the “shrinking diameters” phenomenon
in temporal social networks.

The rest of this article is organized as follows: First, we
introduce the background of this study and give a brief review
of the related works.We then define terminology and concepts
used in this article The subsequent section presents sev-
eral observations in social networks that motivate our work.
Then, we describe two computational models that incorporate
distance and attachedness factors, and present quantitative
analysis on the impact of these two factors on the topological
properties of graph. Finally, some potential future work is
outlined.

Related Work

A proliferation of work studying the evolution dynam-
ics of complex networks has happened in the last decade.
These related studies include static analysis on social network
evolution and a variety of models to reproduce the static topo-
logical properties and dynamic patterns observed in social
networks. The majority of the related studies focus on either
the degree factor or the locality factor. This section provides
a list of representative studies along this line:

Attachedness-Based Growth Schemes

Attachedness is a concept that measures how well nodes
are connected and therefore usually is reflected by the degree
of nodes in complex networks. In their well-received article,
Barabasi and Albert (1999) developed the notable Preferen-
tial Attachment theory that specifies high-degree nodes are
always favored when building new connections. In their arti-
cle, the authors developed a model in which new nodes are
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added to the network one by one. The authors claimed that the
probability that a node vn will be linked to a vertex vi depends
on vi’s degree, di∑

j dj
, where di is the degree of node vi. Each

new node attaches itself (i.e., creates a link) to one of the exist-
ing nodes with a certain probability that is proportional to the
number of links that the existing nodes possess. The authors
demonstrated that this simple scheme results in power-law
degree distribution and “rich get richer” phenomenon. In a
later article, Barabasi et al. (2006) developed a “continuum
theory” based on the preferential attachment theory and used
a Monte Carlo approach to simulate the network growth pro-
cess. The authors showed that the clustering coefficient value
can decrease or increase by adjusting the parameter that spec-
ifies the number of newly created internal links per node in
unit time. However, in contrast with the decreasing average
shortest distance observed in reality, this approach results in
increasing average separation, which was attributed to the
incomplete data by the authors. In this study, we demonstrate
that the trend of average shortest distance is closely related
to edge densification rate. In addition, combining both local-
ity and attachness rate tends to result in decreasing average
nodes separation.

Locality-Based Growth Scheme

Degree-based models assume that the attractiveness
between nodes only depends on their degrees and is inde-
pendent of the distance between them. In contrast, many of
the existing models explicitly or implicitly exploit the local-
ity factor and assume that the generation of a new connection
between two arbitrary nodes is related to how far apart they
are in the existing topology. The following is a list of these
models:

• Copying mechanism: This model specifies that at each time
step a new node is added to the network by connecting to
a constant number of existing nodes in the network (Kumar
et al., 2000). The new node copies a number of links from a
“prototype” node that is selected randomly from the existing
nodes whereas choosing the remaining neighbors is random.
The authors showed that this process can result in scale-free
distribution.

• Walking on a network: Inspired by citation networks,Vazquez
(2000) designed the Walking on a network scheme to simulate
the graph growth process. The model specifies that a network
always starts with an isolated node. At every time step, a new
node vi is added and linked to a randomly selected node vi

through a directed edge. The node vi then mimics a “random
walk” on the network by following the edges starting from
node vj and linking to their endpoints with probability p. This
step is repeated for those nodes to which new connections
were established, until no new target node is found.

• Referral Model: Davidsen, Ebel, and Bornholdt (2002) pre-
sented a simple scheme that connections are always formed
between two nodes that share a common neighbor. This model
emulates the real-world scenario that one person introduces
two of his or her acquaintances to get to know each other.
Such a simple evolution scheme is viewed as the basis of
the evolution of social networks. The authors demonstrated
that this simple scheme is able to reproduce major nontrivial

features of social networks, including short path length, high
clustering, and scale-free or exponential-degree distribution.

• Distance Preference Model: Jost and Joy (2002) described
a purely distance-based scheme where each new node is
connected to a randomly selected node and the subsequent
connections are related to the distance of the destination node.
This computational model resembles the DG model in our
work. However, the authors focused on the discussion of
degree distribution and assumed that new nodes are always
connected to the rest of the networks upon joining. Thus,
at any given time, there is only one Giant Connected Clus-
ter (GCC) in the network. This assumption can lead to very
different dynamics of network growth.

Similar graph growth mechanisms also include models
that implicitly or explicitly rely on the locality heuristics
(Guìmera, Uzzi, Spiro, & Amaral, 2005; Kossinets & Watts,
2006; Krapivsky & Redner, 2001; Leskovec et al., 2005;
Liben-Nowell & Kleinberg, 2007; Watts, Dodds, & Newman,
2002) or specified feature similarity (correlation) between
nodes (Xuan, Li, & Wu, 2007). In particular, Guimera et al.
(2005) proposed a team assembly mechanism by investigat-
ing the interplay between “incumbents” and “newcomers”
in the context of collaboration networks. This mechanism
focuses on the establishment of “collaborations” rather than
“links.” The authors attempted to reproduce a variety of net-
works by adjusting the likelihood of different types of agents
participating in the collaborations and evaluated the gen-
erated networks based on their degree distribution. While
this novel team assembly model can be generalized to more
generic networks, we study explicitly how proximity and
degree play a role in network growth processes. Another
more recent work on this front includes Morris and Gold-
stein’s (2007) team-based growth model, known as the Yule
model, for the bipartite networks that consist of both articles
and authors. While both the Yule model and our article are
concerned with the growth mechanism of collaboration net-
works, there exist three main differences between the two.
First, as opposed to the Yule model that focuses on the bipar-
tite networks, we only focus on collaboration networks; thus,
our model does not model the productivity (i.e., the number of
articles generated) by a team of collaborators. However, our
model can be potentially applied to other complex networks,
especially those in which the cost of connecting two nodes is
related to their distance. Second, the team-based Yule model
uses preferential attachment for within-team author selec-
tion for a new article, and random selection of new authors
outside the team. Hence, it adopts a binary locality mea-
sure (i.e., whether an author is within a team or outside of
a team). In contrast, the proposed hybrid model (DDG) in
this article uses a continuous locality measure based on the
distance between two authors in the collaboration network.
The third difference between the two growth models is that the
team-based Yule model does not use preferential attachment
for selecting new authors outside of the team whereas our
proposed hybrid model applies preferential attachments to all
nodes regardless of whether they are close or far away on the
network.
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These articles have provided valuable insights into the
dynamics of complex networks; however, there are inad-
equate studies in investigating how proximity and degree
quantatively contribute to the network growth scheme and the
implications on the static and dynamic properties of social
network. In this article, we provide in-depth analysis on
the growth scheme of social networks and develop network
growth models that incorporate both global attachedness and
locality factors. Hence, both degree and distance factors are
taken into consideration in the hybrid model proposed in this
article. The simulation results have indicated that the evolu-
tion process of social networks can be better characterized
by combining these two factors.

Temporal Social Networks

To investigate the growth and evolution process of
social networks, we define evolving social networks as
temporal social networks. In a temporal social network
G(t) = {V(t), E(t)}, the vertex set V(t) and the edge set E(t)

evolve over time. The snapshot of a temporal social network
at time tk, G(tk) = {V(tk), E(tk)}, is a static graph. The two
vertices of an edge ei = (vj, vk) is denoted as V(ei) = {vj, vk}.
The set of new connections that are built at time tk is
�E(tk) = {etk

1 , e
tk
2 , . . . , etk

m}. The corresponding vertex set
is �V(tk). Thus, we have

E(tk) = E(tk−1) ∪ �E(tk)

V(tk) = V(tk−1) ∪ �V(tk)

Note that in the context of collaboration networks,
connections can be constructed repeatedly between the
same two nodes at different times, which implies that
the set E(tk−1) and �E(tk), and V(tk−1) and �V(tk) may
not be disjoint. More formally, E(tk−1) ∩ �E(tk) ⊇ � and
V(tk−1) ∩ �V(tk) ⊇ �, where � represents the empty set. We
also define the edge density rate of a temporal social net-
work as χ(t) = |E(t)|

|V(t)|(|V(t)| − 1)
and the edge densification rate

as �χ(t) = |�E(t)|
|�V(t)| . The edge density rate is a static concept

and describes the density of edges versus nodes at a par-
ticular timestamp t. In contrast, the edge densification rate
is a dynamic concept that characterizes the speed of edges’
growth versus nodes’growth.As will be shown later, the edge
densification rate is a crucial factor in determining topological
properties of temporal social networks.

The proximity of two individual nodes in a social network
is often defined in the context of the investigated applica-
tion domains. The most widely used measure is the shortest
distance betweeen the two nodes. In addition to shortest dis-
tance, researchers also have discovered that two additional
factors can help: For instance, Koren, North, and Volinsky
(2006) proposed a cycle-free effective conductance (CFEC)
to measure distance between network nodes by accouting for
the multiple and disparate paths between nodes. However,
the pairwise CFEC computation is prohibitive for large-scale
social networks; Liben-Nowell and Kleinberg (2007) showed

that the number of common neighbors is a helpful proxim-
ity indicator. In the proximity-based model we develop and
describe in the following sections, we adopt a shortest dis-
tance for individual proximity measure; however, the other
proximity measures can alternatively fit in the model.

Accordingly, the aggregate proximity properties of a
social network can be evaluated by a variety of measures,
including average shortest distance, diameter, and effective
diameter. The diameter dt of a social network is defined
as the largest shortest path between any two nodes; that
is, dt = Maxvi,vj ∈ V r(vi, vj). Some researchers use effective
diameter, a measure that is obtained by taking the 90th
percentile of the largest shortest distance combined with
interpolation, to reduce variance. However, the diameter,
effective diameter, and average shortest distance tend to
exhibit similar dynamics in our experiments. Thus, for the
sake of simplicity, we use average shortest distance for mea-
suring the aggregate proximity of social networks in the
remainder of this article.

In a temporal social network, the distance between two
nodes changes over time. The shortest distance from vi to
vj at time tk is denoted as rtk (vi, vj). The average shortest
distance for a graph at time tk is denoted as

r(tk) =

∑
i,j

rtk (vi, vj)

|V(tk)|(|V(tk)| − 1)
.

The clustering coefficient ℵvi
(tk) for a node vi at time tk is

defined as the proportion of links between the vertices within
vi’s neighborhood divided by the number of links that could
possibly exist between them. More formally,

ℵvi
(tk) = |{ejk}|

dvi
(tk)(dvi

(tk) − 1)
(1)

where vj, vk ∈ V(t), ejk, eji, eki ∈ E(t) and dvi
(tk) is the

degree of node vi at time tk. The clustering coefficient of
a node vi measures how well vi’s neighbors are connected to
each other. The average clustering coefficient ℵ(t) character-
izes the modularity of the social network at time t (Ravasz,
Somera, Mongru, Oltvai, & Barabasi, 2002).

Evolving graphs G(t) usually consist of a number of iso-
lated subgraphs. It is particularly interesting to investigate
the patterns and behaviors of the largest connected cluster,
the GCC, denoted as

GCC(t) = {VGCC(t), EGCC(t)} where VGCC(t) ⊆ V(t),

EGCC(t) ⊆ E(t)

and

∀vi, vj(vi, vj) ∈ EGCC(t) ⇒ vi ∈ VGCC(t) and vj ∈ VGCC(t).

Table 1 lists a number of important notations for the con-
cepts and terminology used in this article. Also note that
we use “node” and “vertex”, “edge” and “connections”
synonymously.
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TABLE 1. Terminology and notations for temporal social networks.

Notation Meaning

vi a vertex
ei an edge
V (t) the set of vertices at time t
E(t) the set of edges at time t
G(t) = [V (t), E(t)] the graph G at time t
�V (t) the set of new vertices at time t
�E(t) the set of new edges at time t
χ(t)

|E(t)|
|V(t)|(|V(t)|−1)

edge density ratio

�χ(t) |�E(t)|
|�V(t)| the densification rate of edges versus nodes

at time t
V (ei) the two vertices of edge ei

ℵ(vi) the clustering coefficient of node vi

ℵ(G(t)) the average clustering coefficient of graph G(t)
rt(vi, vj) the shortest distance between nodes vi and vj

at time t
r[G(t)] the average shortest distance for Graph G(t)
dt(vi) the degree of node vi at time t
Ck(t) the expected number of vertices whose degree are

k at time t

Observations and Motivations for Social Network
Growth Models

The NanoSCI is a collection of nanotechnology-
related articles published and indexed by the SCI in
the 1980 to 2006 period. The records are acquired by
directly inquiring at the Thomson Scientific Web site
(http://scientific.thomson.com/products/sci, 2006). Using
keyword-based queries generated based on an iterative rele-
vance feedback technique (Kostoff et al., 2006), we obtained
368,511 SCI-indexed papers regarding nanotechnology. The
essential idea of this approach is to augment the keyword
set until the returned results converge. In addition, we
extracted several subcommunities of nanotechnology from
the NanoSCI dataset using keywords such as NanoTube,
NanoWire, NanoParticle, Fullerene, and so on. These sub-
communities vary with each other in terms of start year
and the number of papers and authors. We consider that the
NanoSCI and each of the subcommunities represent a scien-
tific collaboration network. In each network, the nodes are the
researchers, and two researchers are connected if they have
coauthored an article, which is represented as a link.The num-
ber of articles and the number of researchers for the NanoSCI
and for each of the four nanotechnology communities as of
2006 are listed in Table 2.

This article compares the proposed social network growth
scheme with existing models using the collaboration net-
works constructed for these communities.

Next, we assess how the number of links (i.e., edges)
between researchers and the number of researchers (i.e.,
nodes) increase with time. Figure 1 shows in log–log scale
the edge growth versus node growth for the NanoTube
and NanoSCI communities, respectively. It appears that
the growth speed is almost linear in the log–log scale,

TABLE 2. Statistics for different nanotechnology communities as of
2006.

Dataset Researchers Articles |EGCC| |VGCC|
NanoSCI 292,393 368,511 1,836,499 268,594
NanoTube 31,688 25,285 149,138 26,849
NanoWire 86,234 80,645 435,451 77,304
NanoParticle 81,734 69,530 400,749 72,905
Fullerene 97,641 96,331 515,898 88,496

which implies that the edge growth increases as power
law as a function of the nodes growth. This finding jus-
tifies using the densification laws suggested previously
(Leskovec et al., 2005). These regression results show
that their growth rates are |E(t)| = 2.5173 ∗ |V(t)|1.1049 and
|E(t)| = 3.0459 ∗ |V(t)|1.1141, respectively. Thus, the corre-
sponding edge-densification rates for the two communities
are �χ(t) = 2.78 ∗ |V(t)|0.10 and 3.39 ∗ |V(t)|0.11, respec-
tively. The edge-densification rate of NanoSCI communities
is used in comparing the simulation results of different
network growth models, which will be discussed later.

Figure 2 demonstrates the temporal changes of aver-
age shortest distance, r(GCC(t)), of the giant connected
component, GCC(t) for NanoSCI, NanoTube, Fullerene,
NanoParticle, and NanoWire, respectively. Note that Fullen-
rene and NanoWire are recently emerging communities, and
the number of researchers as of 2006 is less than 20,000
according to the collected data. In this pilot study, we focus
on analysis of the GCC(t) and will leave exploring the entire
sysytem for future research. These results clearly illustrate
the “shrinking diameter” phenomenon that has been reported
in Kumar et al. (2006) and Leskovec et al. (2005). This is
contradictory to conventional wisdom that would predict that
the diameter of growing networks shall increase over time.
Leskovec et al. (2005) developed a “forest fire” network
growth model, in which the diameters can either increase
or decrease over time by adjusting parameters of the model.
In the following sections, we show that this phenomenon can
be attributed to both edge-densification rates and the way
that new connections are formed (i.e., growth models) in the
evolving social networks.

The average clustering coefficient, ℵ(G(t)), is an indica-
tor for the modularity of networks. Table 3 shows the average
clustering coefficient for the NanoSCI, NanoTube, Fullerene,
NanoParticle, and NanoWire communities. Clustering coeffi-
cient value of 0.81 for NanoTube, 0.82 for Fullerene, 0.83 for
NanoParticle, and 0.87 for NanoWire communities are sig-
nificantly higher than those of random networks, which are
usually below 0.1 (Albert & Barabasi, 2002), and also higher
than the clustering coefficient values for other collaboration
networks reported (Newman, 2001). In studying the struc-
ture of scientific collaboration networks, Newman (2001)
found that the clustering coefficient varies between 0.066
for Medline (articles in biomedical research) to 0.43 for arti-
cles published in the Los Alamos Archive to 0.73 for SPIRES
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FIG. 1. The number of edges E(t) versus number of nodes V (t) for the NanoSCI and NanoTube communities.

(published articles and preprints in high-energy physics).Val-
ues of ℵ(G(t)) obtained in this study being higher than the
clustering coefficient for high-energy physics indicate even
higher modularity of the nanoscience communities. Next, we
compare the average clustering coefficient of the simulation

results of the several network growth models with these
observations from the nanotechnology communities.

To explore the causes of such intriguing phenomena,
including decreasing shortest distance and high clustering
coefficient values, we propose a set of computational models
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Fullenrene and NanoWire are recently emerging communities and that the number of researchers as of 2006 was less than 20,000 according to the collected
data.

TABLE 3. Average clustering coefficient values for nanotecnology com-
munities from 1980 to 2006.

Dataset NanoSCI NanoTube Fullerene NanoParticle NanoWire

ℵ(G(t)) 0.82 0.81 0.82 0.83 0.87

that employ relatively simple growth schemes and explore
how these growth mechanisms can affect the topological
properties of the underlying temporal social networks.

Combining Locality and Global Preferential
Attachment for Modeling Network Growth

The attachedness factor has been traditionally considered
as a principal factor in attracting new connections. In addition
to this factor, we have observed that nodes tend to connect to
their peers within topologically proximity. For instance, Fig-
ure 3a shows the distribution of the shortest distance, as of
time tk, between nodes that establish the third category of
connections at time tk + 1 in the GCC(tk) of the pertaining
social network versus the distribution of pairwise shortest
distance between the nodes in GCC(t). Figure 3a shows the
distribution of r2005(vi, vj) where el = (vi, vj) ∈ �E(2006)

and vi, vj ∈ GCC(2005) for the NanoTube community. We
neglect those connections which already had been in the net-
work in previous years. This figure demonstrates that there is
remarkable disparity between the two distributions. It indi-
cates that new connections tend to be created between nodes
in proximity. In particular, the vast majority of links are added
between the nodes that are only two hops apart.

To demonstrate explicitly that nodes form new links
inversely proportional to the topological distance, we cal-
culate the proportion Fr(r) = M/N, where N denotes the
number of node pairs at distance r and where M are the pairs
among them that form new edges in the next time step. The
results are shown in Figure 3b for the NanoSCI and NanoTube
communities.

In a network, a randomly selected node is connected to d
other nodes through d links (edges) with probability P(d),
which is called vertex connectivity or degree distribution. We
obtain the probability P(d) for each of the nanoscience com-
munities. The results for NanoSCI and NanoTube calculated
equidistant in logarithmic scale bins are plotted in Figure 4a.
Triangles mark the degree distribution of all nodes that exist
in the NanoSCI network from its inception through the end of
2005. Crosses mark the degree distribution of all nodes that
exist in the NanoTube network from its inception through the
end of 2005. The tails of both of these distributions exhibit
a behavior that is close to a power law. Networks that show
such power-law distribution are know as scale-free networks
(Barabasi & Albert, 1999).

Barabasi and Albert (1999) and Barabasi et al. (2002)
suggested that power-law distribution may apply to most of
the networks of interest, including social networks. They
reported that scientific collaboration networks in mathe-
matics and neuroscience scale with power-law exponents
of 2.4 and 2.1, respectively. We found similar values of
the power-law exponent for nanoscience networks (see
Table 4). Newman (2001) reported on the structure of
scientific collaboration networks and found that collabo-
ration networks in condensed-matter physics, astrophysics,
high-energy physics, and computer science all can be best fit
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(a). Proportion of node pairs Fr(r) with certain distance forming new edges in a new time step (b).

with a power-law form with exponential cutoff. Similarly to
Newman (2001), we found that the degree distribution of the
networks in nanosciences are best fit with a power-law form
with exponential cutoff

P(d) ∼ d−τe−d/dc , (2)

where τ and dc are constants whose values are listed in
Table 4.

To demonstrate explicitly that nodes form new links pro-
portionally to the degree of the nodes, we calculate the

TABLE 4. Summary of results of the analysis. The p-values of the fit for
all coefficients are less than 0.0001.

Dataset τ dc R2

NanoSCI
Total in 2005 2.21 250 0.99
New in 2006 1.77 166.7 0.98

NanoTube
Total in 2005 1.94 108.7 1.0
New in 2006 1.41 87.7 0.99
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proportion Fd(d), as a ratio between the number of nodes
that form new edges at a certain step and the number of
nodes with the same degree that existed at the previous
time step. The results for the NanoSCI and NanoTube
communities are shown in Figure 4b.

Based on these observations, we propose a novel hybrid
network growing scheme that incorporates a locality ele-
ment into global preferential attachment. We compare this
scheme with three existing models: (a) the random growth
model, (b) the preferential attachment model, and (c) the

distance-based growth model. To make a fair comparison,
we parameterize these models and make the edge densifica-
tion rate identical to real nanotechnology-community growth
rates. We next discuss the simulation results of these four
network growth models and compare them with the obser-
vations from nanotechnology communities. In the following
sections, we discuss the random growth model and the prefer-
ential attachment model, and then describe the distance-based
model and the proposed hybrid model. Finally, we present
analysis and insights based on the simulation results.
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A Random Growth Model

Callaway, Hopcroft, Kleinberg, Newman, and Strogatz
(2001) proposed a simple random growth model where one
new node and at most one new edge are added at a time. We
slightly modify the model by parameterizing the number of
the new edges as a function of the number of existing nodes.
The number of existing nodes is equal to the time-stamp t;
therefore, the number of new edges is denoted as �E(t). This
model is referred as the A-Random model in this article.

The A-Random model involves a cycle of three steps:

1. At each time step, add one new node to the graph.
2. Randomly select two nodes and create an undirected edge

between them.
3. Repeat Step 2 for �E(t) times.

At time t, there will be t vertices and on average
e(t) = ∑

t�e(t) edges, where e(t) is defined as |E(t)|. Let
ck(t) be the expected number of vertices with degree k at
time t. The number of isolated vertices c0(t) will increase by
1 at each time step, but decrease on average by 2�e(t)

c0(t)
t

,
the probability that a degree-zero vertex is randomly chosen
as one of the ends of a new edge. Thus:

c0(t + 1) = c0(t) + 1 − 2�e(t + 1)
c0(t)

t
(3)

Similarly, the expected number of degree k vertices (k > 0)
will increase on average by an amount proportional to the
probability that a degree k − 1 vertex is chosen for attachment
by a new edge, and will decrease by an amount proportional
to the probability that a degree k vertex is chosen. This gives:

ck(t + 1) = ck(t) + 2�e(t + 1)
ck−1(t + 1)

t
− 2�e(t + 1)

ck(t)

t + 1
(4)

Note that the aforementioned equations neglect the pos-
sibility that an edge links a vertex to itself. This means that
the equations are only approximate at short times, but they
become exact in the limit t − >∞ because the probability
that any vertex is chosen twice decreases like t−2.

Parameterized Preferential Attachment Model

This section describes a simple parameterized preferential
attachment model (PPAM), in which a new vertex and l new
edges [l = �e(t)] are added into the network at each time
step. In building a new connection, we specify that (a) we
randomly select a start node vi, and (b) the probability that a
node vj is selected as the end node of the new edge is

pt(vj) = d′
t (vj)∑

k

d′
t (vk)

Where
d′

t (vi) = dt(vi) + 1 (5)

Thus,
t∑

k=1

d′
t (vk) =

t∑
k=1

dt(vk) + t = 2e(t) + t (6)

Therefore, the likelihood of a node ns connecting to
another node ne only depends on their degree. Note that
by using d′

t (vi), the model allows zero-degree nodes to be
selected as the end node.

c0(t +1) = c0(t)+1−�e(t +1)

(
c0(t)

t
+ c0(t)

2e(t) + t

)
(7)

The probability SAk−1(t + 1) that a degree k − 1 vertex is
selected for attachment by a new edge at time t + 1 is:

SAk−1(t + 1) = ck−1(t)

(
1

t
+ k − 1

2e(t) + t

)
(8)

Similarly, the probability SAk(t + 1) that a degree-k vertex
is chosen for attachment by a new edge at time t + 1 is:

SAk(t + 1) = ck(t)

(
1

t
+ k

2e(t) + t

)
(9)

Hence, the degree distribution is determined by

ck(t + 1) = ck(t) + �e(t + 1)(SAk−1(t + 1) − SAk(t + 1)).

(10)

Degree-product-based PPAM (DP-PPAM). Barabasi et al.
(2002) extended the preferential attachment model to take
into account the degree product of both nodes in the net-
work. Thus, we also compare our distance-based models to
the following updated degree-product-based PPAM model.
In particular, in building a new connection, we specify that
(a) the start node vi is selcted based on its degree; the proba-

bility is defined as d′
i∑

k d′
k

; and (b) the probability that a node

vj is selected as the end node of the new edge is

pt(vj) = d′
t (vj)∑

k

d′
t (vk)

where
d′

t (vi) = dt(vi) + 1 (11)

DG model

This section describes a simple proximity-based growth
model in which the likelihood of building a connection
between two nodes depends only on their proximity. Note
that the proximity between two individual nodes can be eval-
ulated by a variety of measures, including shortest distance,
CFEC (Koren et al., 2006). In this article, we use shortest
distance to measure the proximity between two nodes. In the
growth process, a new vertex and l edges [l = �E(t)] are
added to the graph at each time step. The two vertices of a
new edge are determined in the following way: (a) one node
ns is selected uniformly from the graph as the start vertex of
the new edge; and (b) the probability that a node vp is selected
as the end vertex of the new edge is:

pt(vp) =
1

r′
t (vp,vs)∑

p

1
r′
t (vp,vs)

(12)
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where

r′
t(vp, vs) =

{
R if rt(vp, vs) = ∞

rt(vp, vs) otherwise.
(13)

Equation 13 specifies that if two nodes are disconnected,
the distance between them is a large number R. This way, the
probability of building a new connection between any two
nodes is nonzero.

Hybrid DDG Model

This section describes a hybrid DDG model in which the
distance and attachedness (i.e., degree) factors are combined
to determine the likelihood that a node is selected to form
a new edge. Similar to the aforementioned models, one new
vertex and l = �E(t) edges are added at each time step in
the graph growth process. The DDG model specifies that
the start node vs is selected randomly from the graph, but the
probability that a node vp is selected as the end node of
the new edge is

pt(vp) =
d′

t (vp)

r′
t (vp,vs)∑

p

d′
t (vp)

r′
t (vp,vs)

(14)

where rt[p(vp, vs)] is defined by Equation 13 and dt(vp) is
defined by Equation 11.

Analysis and Simulations

To evaluate the proposed network growth model, we com-
pare the simulation results of the hybrid model together with
those of the other three models with observations regard-
ing the NanoSCI, NanoParticle, and NanoTube communities.

As a comparison, we also calculate the topological properties
of pure random graphs with the same number of nodes and
edges as a baseline to compare with other approaches. This
baseline approach is denoted as PureRandom in this section.
As a reminder, A-Random refers to the quasirandom approach
described earlier; PPAM refers to the previously described
preferential attachment model. In the rest of this section, we
analyze and compare these network growth methods from
two important perspectives: (a) the average shortest distance
of the networks generated by these models over time and
(b) the average clustering coefficient of these networks.

Temporal distance analysis. We now compare the aver-
age shortest distance between the different models described
previously in this section. Figures 5, 6, 7, and 8 illustrate
the results of a set of experiments obtained by varying the
densification rates and growth dynamics. In particular,
Figure 5 shows the average shortest distance versus time
using the same node growth rates (�|V(t)|) and the
same edge densification rate (�χ(t) = 3.39 ∗ |V(t)|0.12). Fig-
ure 7 shows the temporal patterns of average short-
est distance for A-Random approaches at different edge
densification rates �χ(t) = {0.02∗|V(t)|0.69; 0.02∗|V(t)|0.6;
3.39∗|V(t)|0.12; 0.02∗|V(t)|0.5}, respectively. Figure 7 indi-
cates that the kinetic properties of the average shortest
distance metric are closely related to the ratio of edge growth
versus node growth. When the edge densification rate is
�χ(t) = 3.39∗|V(t)|0.12, the average shortest distances of A-
Random increase slowly over time. However, when the edge
densification rate is �χ(t) = 0.02∗|V(t)|0.69, the average dis-
tance for A-Random decreases over time after a sharp increase
in the early stage of network growth. Similar results also are
observed for other growth models. In general, when the edge
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density is higher, the average shortest distance for these mod-
els at a particular time point is smaller. Figure 5, however,
shows an interesting result from the perspective of modeling
the growth dynamics of the nanotechnology community. By
adopting the edge densification rates of the NanoSCI com-
munity (i.e, �χ(t) = 3.39∗|V(t)|0.12), the simulation results
of these models resulted in rather different growth behavior.

The average shortest distance of the network generated by
the hybrid DDG model decreases over time after an early
stage increase, which is similar to what we observed in the

actual nanotechnology community (see Figure 2). In con-
trast, the average shortest distance of the networks generated
by the random growth models and the PPAM increases over
time. Results for a modification of the PPAM, which assumes
that two nodes connect with each other proportionally to the
product of their degrees, are plotted in Figure 6. The average
shortest distance first increases and then keeps almost con-
stant value similar to the the average shortest distance of the
local distance-based model (DG), which increases first then
oscillates around a convergence point. The average shortest
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TABLE 5. Average clustering coefficient values for proposed computa-
tional models. The clustering coefficient values are the average of clustering
coefficient values for snapshots obtained over 5,000 time cycles.

Dataset A-Random DG PPAM DDG

ℵ(G(t)) 0.02 0.05 0.03 0.45

distance produced by the DDG model better describes the
observations than does the preferential attachment degree
product model. Figure 8 demonstrates that the average short-
est distance first increases and then decreases with increasing
the size of the GCC. We also noted that the effect of adding a
local factor into the global attachment-based model reduces
the average shortest distance while the purely locality-based
model results in a larger average shortest distance than does
the global attachment-based model. This growth behavior
suggests that there is a synergistic effect in proximity and
attachedness factors.

Clustering coefficient analysis. A node’s clustering coeffi-
cient measures the connectivity among this node’s neighbors.
Large cluster coefficient values indicate that the neighbors of
the node in question are well connected to each other. Table 5
shows the clustering coefficient values for networks gener-
ated by different models using the edge densification rate
of the NanoSCI community (i.e., �χ(t) = 3.39 ∗ |V(t)|0.12).
This table indicates that the hybrid DDG model clearly
has significantly higher clustering coefficient values than
the preferential attachment, the A-Random growth, and the
local distance-based models. More important, the simula-
tion results suggest that the hybrid DDG model generates
networks with a clustering coefficient that is much closer
to those of the collaborative network of the nanotechnology
communities, shown in Table 3.

In conclusion, based on the simulation results, we
observe that the hybrid DDG model is able to produce
networks with clustering coefficient values closer to what
was observed in the nanotechnology community. Further-
more, this model generates networks whose average shortest
distance decreases over time when the edge densification rate
of the NanoSCI community is used. Hence, it is more suitable
as a model for the collaborative network of the nanotech-
nology community than are either the global preferential
attachment model or the local distance-based model.

Conclusions and Future Work

The explosive development of nanotechnology research
calls for in-depth scientometric study of this field. In this
article, we conducted a case study on the evolving nan-
otechnology collaboration networks and concluded that both
locality and attachedness play significant roles in the social
network growth process. In particular, this article expands
the definition of temporal social networks and demonstrates
that a science-based collaboration network is similar to other
real-world social networks. Furthermore, the nanotechnol-
ogy collaboration networks studied exhibit an intriguing set
of static and dynamic properties. Inspired by the observa-
tions that in collaboration networks new connections tend to
be augmented between nodes in proximity, we explored both
locality and attachedness factors in growing networks and
proposed two distance-based computational growth schemes,
namely DG and DDG. The DG model considers only the
locality element while the DDG is a hybrid model that
factors into both locality and attachedness elements. We
discovered that the dynamic patterns of average shortest
distance and clustering coefficient are closely connected
to the edge densification rates as well as specific growth
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mechanisms. In addition, we discovered that when we use
when the edge densification rate of the NanoSCI community,
(a) clustering coefficient rates of the DDG model were closer
to those of the nanotechnology community, and (b) the
DDG model exhibited a decreasing average shortest distance
phenomenon, which also was observed in the collaborative
network of the nanotechnology community. These simula-
tion results suggest that the hybrid approach that combines
locality and attachedness can better characterized the growth
of the nanotechnology community.

The results of this study also inspire us to investigate
related questions in our future work. For instance, what are
the general characteristics of social networks that are best
characterized by a hybrid network growth model? How can
variations in hybrid growth models be compared to each
other? What insights can be obtained from different hybrid
approaches to model network growth? Future research that
addresses these and other related questions may not only
improve our understanding about the dynamic behavior of
network growth but also lay the foundation for providing
deeper insights on social network analysis.
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