
IJDAR (2009) 12:65–81
DOI 10.1007/s10032-009-0081-0

ORIGINAL PAPER

Automated analysis of images in documents for intelligent
document search

Xiaonan Lu · Saurabh Kataria · William J. Brouwer ·
James Z. Wang · Prasenjit Mitra · C. Lee Giles

Received: 14 January 2008 / Revised: 10 February 2009 / Accepted: 16 February 2009 / Published online: 16 April 2009
© Springer-Verlag 2009

Abstract Authors use images to present a wide variety
of important information in documents. For example,
two-dimensional (2-D) plots display important data in scien-
tific publications. Often, end-users seek to extract this data
and convert it into a machine-processible form so that the
data can be analyzed automatically or compared with other
existing data. Existing document data extraction tools are
semi-automatic and require users to provide metadata and
interactively extract the data. In this paper, we describe a
system that extracts data from documents fully automatically,
completely eliminating the need for human intervention. The
system uses a supervised learning-based algorithm to classify
figures in digital documents into five classes: photographs,
2-D plots, 3-D plots, diagrams, and others. Then, an inte-
grated algorithm is used to extract numerical data from data
points and lines in the 2-D plot images along with the axes and

X. Lu (B) · J. Z. Wang · P. Mitra · C. L. Giles
Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, USA
e-mail: xlu@cse.psu.edu

S. Kataria · J. Z. Wang · P. Mitra · C. L. Giles
College of Information Sciences and Technology,
The Pennsylvania State University, University Park, USA
e-mail: skataria@ist.psu.edu

J. Z. Wang
e-mail: jwang@ist.psu.edu

P. Mitra
e-mail: pmitra@ist.psu.edu

C. L. Giles
e-mail: giles@ist.psu.edu

W. J. Brouwer
Department of Chemistry, The Pennsylvania State University,
University Park, USA
e-mail: wjb19@psu.edu

their labels, the data symbols in the figure’s legend and their
associated labels. We demonstrate that the proposed system
and its component algorithms are effective via an empirical
evaluation. Our data extraction system has the potential to be
a vital component in high volume digital libraries.

Keywords Image · Document search · Figure · 2-D plot ·
Data extraction · Text block extraction

1 Introduction

Authors frequently use images in documents to present
important information. An image is commonly referred to
as a figure within the embedding document. A figure can be
created from a photographic picture, a graphics, a screen shot,
a statistical plot, etc. The popularity of image search shows
that end-users often seek to search for images and figures in
documents.

Advanced information extraction, image processing, and
indexing techniques that integrate image content with text
can allow both keyword-based and image-based document
queries. For example, if a user asks for documents with a spe-
cific topic and certain illustrations, documents that are most
relevant in terms of both textual relevance and image rele-
vance can be selected. Currently, almost all general-purpose
search engines index textual information present in digital
documents. They do not extract, analyze or index image
content in such documents. With the increasing amount of
non-textual information present in documents, it becomes
important for search engines to utilize both text and image
information so that they can better assisting end-users to find
relevant documents.

Documents in the scientific domain often use images
or figures presenting relations among data. Especially

123

66 X. Lu et al.

important to scientists is two-dimensional (2-D) plots that
display the variation of a dependent variable, typically repre-
sented numerically along the Y -axis, as a function of another
variable, typically represented numerically along the X -axis
(although we have encountered special cases in environmen-
tal geochemistry where the opposite is true). Scientists, finan-
cial analysts, and other users would like the data published in
documents and their associated metadata to be extracted and
available in a form that is easily machine-processible. To en-
able better search of the data, the metadata is vital. End-users
can run statistical processing tools to analyze the extracted
data, identify past trends, forecast future behavior, simulate
models using the extracted data, compare the extracted data
with those obtained from their own experiments, etc.

Currently, end-users have to use semi-automatic tools to
extract data from figures in digital documents. For example,
there is anecdotal evidence to suggest that the National Insti-
tutes of Standards and Technology employs post-doctoral
scholars to extract data from articles published in scholarly
journals, using semi-automatic tools. The person using the
tool points to one data point using a cursor and then the tool
begins to identify similar points in its neighbourhood. Meta-
data about the X and Y axes and whether the data is a discrete
variable (points) or a continuous variable (line curve) has to
be entered manually. Ideally, we would like to avoid the man-
ual labor involved in identifying the data points in 2-D plots
and automate the process. To the best of our knowledge, no
existing tool can both automate the process of identifying
2-D plots in digital documents and extract data and associ-
ated metadata from these plots. Semi-automatic methods do
not scale when millions of documents in large digital libraries
have to be processed and the information presented in figures
in a large number of documents must be extracted.

Automated analysis of images within documents intro-
duces important but challenging problems. First, the images
must be extracted from the document. This process alone
is difficult because documents are generated from a wide
range of hardware and software platforms, and vary widely
in quality. Second, we need to define a hierarchy of clas-
ses for images contained within documents with indexing
and retrieval applications in mind. Third, because we are
dealing with large digital libraries, images extracted from
documents have to be classified into these pre-defined clas-
ses automatically. Images belonging to the same class may
appear very different. Designing accurate classification algo-
rithms is hard because of this diversity. Finally, designing
an automated data and metadata extraction tool for 2-D plot
images that segments mixed graphic and textual information,
identifies data points, segregates overlapping data points, and
traces intersecting curve lines, identifies legends, the sym-
bols in the legends and the text associated with the symbols,
identifies X and Y axes, their tics and their labels presents
challenges because of the heterogeneity of these objects in

different plots. Data extraction from figures becomes diffi-
cult because images in documents contain noise introduced
either during image creation or during subsequent image pro-
cessing. The nature of the data may also mean that extraction
becomes challenging. For example, 2-D plots often present
different types of data points represented by different shapes.
When these data points are close to each other, in the figure,
they may overlap. While the human eye can decipher the type
of data point easily, segregating the different points from the
amalgamated data point shown in the 2-D plot automatically
is non-trivial. Similarly, the continuation of lines at intersec-
tion points introduce ambiguity that needs to be addressed
using accurate automatic techniques. Dealing with skewed
axes, noisy tics and overlapping text in legends and labels
also becomes challenging.

In this paper, we address the following problems:

– Classify document images into predefined classes; and
– Extract data and metadata (numerical data and associated

textual information) from 2-D plot images.

Different types of images present different types of infor-
mation and require different image processing and extrac-
tion techniques. Therefore, the system first needs to classify
the images and label them. We present a supervised-learning
based method that classifies figures from digital documents
into five classes, photographs, 2-D plots, 3-D plots, diagrams,
and others, using texture and line features extracted from
images. We also present a tool that extracts descriptive meta-
data and numerical data from 2-D plots. The tool extracts
textual information, including text associated with the axes
and the symbols present in the figure legend, numerical data
associated with data points (commonly seen as small squares,
circles, diamonds, etc.), and numerical data associated with
line plots (for instance, solid line curves) automatically.

The 2-D plot data extraction component is an integral part
of Chem X Seer , a digital library for chemistry documents
(Fig. 1). Data and metadata extracted from figures in the
documents will be stored in a database. Our work is a first
step that allows end-users to search for interesting (extracted)
data and obtain the data by querying our database. Additional
research is essential to improve the accuracy of our extrac-
tion, identify the precise semantics of the extracted data and
metadata, and make the data fully machine-processible. Cur-
rently, the digital library is mainly used and tested by the
chemistry and geosciences department within Penn State.

We performed experiments with digital documents from
the CiteSeer digital library and the Royal Society of Chemis-
try journals. We also use 2-D plots obtained using the Google
image search online tool. In addition, we generate synthetic
2-D plots, whose ground truth data values are known a priori,
in order to evaluate our toolkit. Our experiments show that
our methods achieve reasonable accuracy and can be used to

123

Automated analysis of images in documents for intelligent document search 67

Document
IndexMetadata

Document Ranking

Document
DB

Plot Indexing

Plot Ranking

Plot Index

Document QueryPlot Query

Query Filter & Rewrite

Web ServerWeb Service

Data Extraction

Segmentation
Plot

TXT
Document

Plot
Binarized

Converter

Crawler
Image
Filter

Web

Document Indexing

Fig. 1 Architecture of Chem X Seer plot search

design a data and metadata extraction tool for 2-D plots in
digital documents.

The remainder of this paper is organized as follows.
Section 2 reviews prior work in closely related areas. In
Sect. 3, we define several classes of images we are to handle
and present our method for automatic image classification.
In Sect. 4, we present an integrated method for extracting
text blocks and numerical data from 2-D plot images. We
describe the experimental setup and our results in Sect. 5.
Finally, we conclude our work and suggest future research
directions in Sect. 6.

2 Related prior work

Due to space limitations, we review only most relevant work
in image classification methods, image analysis techniques,
graphics recognition methods, text block segmentation, and
image analysis for document search.

2.1 Image classification

Automatic image classification is often an important step in
content-based image retrieval [7,36] and annotation. Prior
efforts model the retrieval and annotation problems as auto-
matic classification of images into classes corresponding to
semantic concepts. Visual features and modeling techniques
have attracted significant attention.

Textural features [14], color features [40], edge features,
or combinations of these features [42] have been developed
for classifying images. Chapelle et al. [6] used support vec-
tor machines to improve the histogram-based classification of
images. Li et al. [22] utilized context information of image
blocks, i.e., statistics about neighboring blocks, and mod-
eled images using two-dimensional hidden Markov models
to classify images. Maree et al. [28] proposed a generic image
classification approach by extracting subwindows randomly
and using supervised learning. Yang et al. [44] designed a

method to learn the correspondence between image regions
and keywords through Multiple-Instance Learning (MIL).
Li et al. [23] profiled semantic concepts through clustering
of image features extracted from training images and anno-
tated new images by quantifying the probability for each
word to be associated with the images and selecting words
with highest probabilities.

2.2 Image analysis

Recognition and interpretation of graphics, such as engineer-
ing drawings, maps, schematic diagrams, and organization
charts, are important steps for processing mostly graphics
document images. Yu et al. [45] developed an engineering
drawing understanding system for processing a variety of
drawings. The system combines domain-independent algo-
rithms, including segmentation and symbol classification
algorithms, and domain-specific knowledge, for example a
symbol library, in the processing of graphics. Okazaki et al.
[30] proposed a loop-structure-based two-phase symbol rec-
ognition method for reading logic circuit diagrams. Blostein
et al. [2] summarized various approaches to diagram recog-
nition. Futrelle et al. [11] developed a system to extract and
classify vector format diagrams in PDF documents.
Shao et al. [33] designed a method for recognition and clas-
sification of figures in vector-based PDF documents.

2.3 Text block segmentation

In 2-D plot images, text information, including legend, axis
labels, and caption, contain useful information for summa-
rizing, indexing, and searching 2-D plots. Jung et al. [19]
and Antani et al. [1] surveyed text information extraction in
images and videos. They indicate that text extraction gener-
ally consists of three steps: text detection, localization, and
extraction. Text detection refers to the determination of the
presence of text in a given image; text localization is the
process of determining the location of text in the image and
generating bounding boxes around the text; and text extrac-
tion is the stage where the text components are segmented
from the background. Thereafter, the extracted text images
can be transformed into plain text using OCR technology.

Our work on extracting metadata from 2-D plot images
is most related to text extraction from graphics, for instance,
retrieving text lines from handwritten documents [34] using
an adaptive local connectivity map, text extraction and seg-
mentation on camera-captured document style images based
on color clustering method [37], extraction of superimposed
text from video frames [25], localization of text from video
images based on Fast Hough Transform [3], stroke based text
localization in video images [26,39], and text segmentation
from complex background using sparse representations [31].

123

68 X. Lu et al.

For the problem of extracting data from 2-D plot images,
we do not consider text detection since text data is almost
always present in 2-D plot images, though there may be very
few of them in a given 2-D plot. The backgrounds of 2-D plot
images are relatively uniform, i.e., there is small variance in
background color. Thus, identifying text components from
the background of an image is straightforward after bound-
ing boxes of text are generated. Therefore, our main effort
for extracting text data from 2-D plot images has been on
text localization.

There are two categories of text localization methods:
region-based and texture-based. Region-based methods [20,
29,46] work in a bottom-up fashion: first identifying sub-
structure, such as connected components (CC) [9] or edges,
and then merging these sub-structures to mark bounding
boxes. Texture-based methods distinguish text in images
from the background using textural features generated by
various techniques including Gabor filters, Wavelet, FFT, and
spatial variance [27,35]. Learning based methods have also
been proposed to generate a filter set automatically
[16,17,24].

2.4 Analyzing images for document search

Although much attention has been devoted to the summariza-
tion and retrieval of text information within documents, rela-
tively little attention has been given to utilizing images within
documents for searching digital libraries. Carberry et al. [5]
studied a corpus to determine how information graphics, bar
charts, line graphics, etc., are used in multi-modal documents
and proposed a method for recognizing the message con-
veyed by those graphics for information retrieval purposes.
The work illustrated the popular usage of information graph-
ics in general documents and the effectiveness of deriving
simple messages conveyed by bar charts and line graphics
using textual hints.

Srihari et al. [38] presented a general model for multi-
modal information retrieval which includes: analyzing users’
information needs, expressing the needs through composite
query fields, and determining the most appropriate weighted
combination of query fields. Futrelle [11] explored critical
issues related to automated summarization of diagrams
within documents and proposed an approach for parsing vec-
tor format diagrams.

Our work aims at extracting information from 2-D plot
images and focused on automated analysis and information
extraction. The extracted information may then be combined
with other sources of information, using the model proposed
by Srihari et al.

3 Classification of images

In this section, we first define several important classes of
images contained within documents. Then, we present the

image features designed to discriminate between different
classes and the supervised learning based approach for auto-
matic classification of images.

3.1 Classification of images

We take the functionalities of images in documents and their
visual characteristics into consideration when we define
image classes. Some visual features need to be used by com-
puters, as well as by human beings, to distinguish among
different classes. The functionalities of images may deter-
mine the techniques used for extracting further information
from images.

Based on a manual study of approximately five thou-
sand images extracted from randomly selected documents in
CiteSeer [12] scientific literature digital library and observa-
tion of document search results from Internet-search engines,
we define an initial hierarchy of image classes within docu-
ments. At the top level, there are two classes: photographic
images vs. non-photographic images. The non-photograph
category is further divided into four classes: 2-D plot, 3-D
plot, diagram, and other. Functionalities and visual appear-
ances of images in every class are presented as follows.
Photograph. A continuous-tone image recorded by a
camera or created by photo processing software. This is con-
sistent with the definition given by Li and Gray [21]. Images
of pathological tissue taken under a microscope or computed
tomography images are considered photographs. Similarly,
pictures generated by computer graphics techniques, e.g.,
dinosaur shots from the movies, also fall into this class. Fur-
ther classification and analysis of photographs is becoming
a main problem in the image retrieval field [23].
Non-photograph. A non-continuous-tone image, as defined
by Li and Gray [21]. That is, a figure is either classified as a
photograph or a non-photograph due to the exclusive nature
of these definitions. In practice, however, there can be cases
of a composite figure with a part of it from a photograph and
the rest with no continuous tones. Another example can be a
photograph of some man-made objects that has no or mini-
mal continuous tones. The classification of these images can
depend on the propotions of continuous tones in them. Exam-
ples of photographs and non-photographic images contained
within documents are presented in Fig. 2.
2-D plot. A non-photographic image that contains a two-
dimensional coordinate system (i.e., horizontal and vertical
axes) and a series of points, lines, curves, or areas that rep-
resent the variation of a variable in comparison with that of
another variable. Examples of 2-D plot include scatter plots,
curves, and histogram bar charts.
3-D Plot. A non-photographic image that contains a
three-dimensional coordinate system and a series of points,
lines, curves, or areas that represent the variation of a variable
in comparison with that of two other variables.

123

Automated analysis of images in documents for intelligent document search 69

Fig. 2 a is classified as a “photograph” figure because it include con-
tinuous tones; b is a computer graphics, belonging to “non-photograph”

Diagram. A non-photographic image that shows arrange-
ments and relational dependencies among a series of com-
ponents. Components in the diagram are usually represented
by closed contours such as: rectangles, ovals, diamonds, etc.
Relational dependencies among components are represented
by lines, arrows, etc. An Entity–Relationship diagram for
modeling a database application is a typical example of dia-
gram.
Other. A non-photographic image that does not belong to 2-
D plot, 3-D plot, or diagram classes. Additional classes of
figures will be created out of this class in the future. Some
examples are pie charts and figures with sub-figures.

Currently, we attempt to classify images contained within
documents into five classes: photograph, 2-D plot, 3-D plot,
diagram, and others. In the future, more image classes may
be defined depending on user requirements and the potential
for successful algorithm development (Fig. 3).

Fig. 3 Some example
non-photographic figures
extracted from prior
publications. a 2-D Plot,
b 3-D Plot, c Diagram

Shape feature

Texture feature

Color feature

extraction

extraction

extraction

123

70 X. Lu et al.

Extraction
Global Feature Part Feature

Extraction

Document

Image Extraction

Image Preprocessing

Classification

Semantic Class

Fig. 4 The process for automatic classification of images within doc-
uments

3.2 Classification process overview

The process for automatic classification of images within
documents is illustrated in Fig. 4. First, images within docu-
ments are extracted. Next, extracted images are preprocessed
and converted to a common format. Then, both global image
features and part image features [41] are extracted to capture
the global patterns of images as well as properties of specific
objects within images. Finally, a statistical model is trained
to classify images into different classes.

3.3 Image extraction and preprocessing

We use off-the-shelf tools to extract images from the embed-
ding documents. For instance, images in PDF documents
can be extracted by Adobe Acrobat image extraction tools.
Images contained within HTML document can be extracted
by special HTML parsers. Images extracted from PDF are
usually in “PNG” format. Web images are typically in GIF
format.

Based on our observations, the majority of images ex-
tracted from PDF documents are stored in raster format and
may also contain color information. Typically, humans do
not need to see the images in full color in order to determine
the class label of an image, though full color certainly helps
in understanding the meanings of the images. Thus, we con-
vert all images to gray scale format in order to standardize
the input format of our system. Specifically, we convert all
images to the Portable Gray Map (PGM) format, a gray scale
image format which is easy to manipulate.

3.4 Extracting texture features

Global features refer to global properties of an image, e.g.,
the average gray level. Statistics about small image blocks

are calculated as global texture features of an image. The
global texture features are designed to discriminate photo-
graphs from non-photographic images.

First, we apply a region-based document image classifica-
tion algorithm developed by Li and Gray [21]. We now pro-
vide a brief explanation of the algorithm. In the algorithm,
every image is divided into non-overlapping small blocks
(e.g., blocks of size 4× 4 or 8× 8 pixels) based on the needs
of the application. The one-level Haar wavelet transform is
performed on every image block and wavelet coefficients
in high frequency bands are recorded. Vetterli and Kovac-
evic have reported that wavelet coefficients of photographs
in the high frequency bands tend to follow Laplacian distri-
butions [43]. The goodness of fit between the distribution of
wavelet coefficients in every image block and the Laplacian
distribution is calculated. In addition, the likelihood of the
wavelet coefficients being composed of highly concentrated
values is calculated. Combining these two values, the algo-
rithm uses context-based multiscale classification techniques
to classify every image block into one of three classes: pho-
tograph, text, and background. Then, the relative frequencies
of photograph, text, and background image blocks are calcu-
lated as: fi = ni/N , i = 1, 2, 3, where N is the total number
of image blocks in an image, ni represents the number of pho-
tograph, text, and background image blocks, respectively.

3.5 Extracting line features

A part feature refers to a part of an image with some spe-
cial properties, e.g., a circle or a line. Based on our defi-
nitions of several non-photographic image classes and our
experimental data, we observed correlations of certain ob-
jects with corresponding image classes. For example, a two-
dimensional coordinate system, consisting of two axes, are
commonly seen in 2-D plots; rectangles, ovals and diamonds
are common objects in diagrams. Thus, we attempt to design
part image features for basic objects in non-photographic
images and use them to discriminate different classes of
non-photographic images.

We detect straight lines in an image and choose the longest
lines, i.e., the most significant lines, as part features for the
image. Specifically, the Canny edge detector [4] is applied
to an image and an edge map (binary image) is generated
for the original image. On the binary edge image, the Hough
transform algorithm [8] is applied to detect straight lines. As
shown in Fig. 5, the Hough transform performs a mapping
from the original image space (also called x–y space) to the
ρ − θ space (parameter space for straight line), where ρ, θ

represent solutions of the line equation x cos θ+ y sin θ = ρ.
Thus, every cell in the ρ− θ space represents a potential line
position in the image space, and the corresponding line in
the image space can possibly be constructed under certain
parameters such as the minimum number of points on the

123

Automated analysis of images in documents for intelligent document search 71

Fig. 5 A line in the image space is represented by a cell in the ρ − θ

space

line, maximum gap between neighboring points, etc. In the
Hough transform algorithm, every foreground point in the
image space votes for the corresponding cells in the ρ − θ

space. After the voting process, the cells in ρ− θ space with
the top votes are retrieved and corresponding lines in the
image space are constructed. In this work, we select the lon-
gest lines in an image and record their (ρ, θ, l) values as part
image features.

3.6 Classification

We attempt to classify images into different classes based on
extracted global and local features. In the feature space, opti-
mal boundaries between different classes of images need to
be found, which makes a machine-learning based approach
naturally suitable.

We choose the Support Vector Machine (SVM) as the
learning and classification tool due to its good generaliza-
tion performance and ability to handle high-dimensional data
[18]. For every image, the SVM uses a feature vector con-
sisting of global and local features. In the current system,
every feature vector has 45 dimensions including five global
features and forty line features representing the ten longest
lines in an image. The five global features include height
and width of the image and three global texture features. For
every selected line, there are four features representing ρ, θ ,
and (x, y) coordinate of the end point closer to the bottom
left corner of the image.

4 Extracting text and numerical data from 2-D plots

Two-dimensional (2-D) plots represent a quantitative rela-
tionship between a dependent variable and an independent
variable. Extracting data from 2-D plots and converting them
to a machine-processible form will enable users to analyze
the data and compare them with other data. Extracting the
metadata related to 2-D plots will enable retrieval of plots and
corresponding documents and will help in the interpretation
of the data. We developed a system for extracting metadata

Binarization

Axis Detection

Label
Detection

OCR

Legend
Detection

OCR

Data Points
Detection Curve Detection

Solid Line

Text Data
Generation

Numerical Data
Generation

Metadata Generation

A
xi

s
La

be
ls

Le
ge

nd

Fig. 6 The process for automatic data extraction from 2-D plots

from single-part 2-D plot images, i.e., a single 2-D plot in
the 2-D plot image.

4.1 Extraction process overview

The process for extracting text and numerical data from 2-D
plots is illustrated in Fig. 6. First, images are preprocessed
and binarized. Then, axis lines in 2-D plots are detected and
the image is segmented into different regions. After that, text
data, including axis labels and legends, are extracted using
text block extraction techniques. Finally, numerical data are
extracted by detecting special data points or solid line curves
in 2-D plots.

4.2 Axis detection and plot segmentation

Detecting axis lines in 2-D plots consists of two steps: detect-
ing candidate lines and finding axis lines. In the first step, a
customized Hough transform algorithm is designed to detect
candidate axis lines. Axis lines are then selected using a set
of heuristic rules.

The two axis lines in 2-D plots are almost always perpen-
dicular and lie in horizontal and vertical directions
respectively. Therefore, the customized Hough transform is
designed to detect lines in these two directions. An illustra-
tion of the customized Hough transform is shown in Fig. 7. In
the figure, the total rectangle area represents the two-dimen-
sional parameter space (ρ−θ space) of a Hough transform for
line detection, while the shaded area represents the param-
eter space of the customized Hough transform for detecting
candidate axis lines. Specifically, the shaded area where θ is
close to 90 correspond to parameter cells for vertical lines
and the shaded area where θ is close to 0 or 180 correspond to
parameter cells for horizontal lines. The width of the shaded

123

72 X. Lu et al.

space

0 90 180

Fig. 7 In the customized Hough transform algorithm, the size of θ

dimension in the ρ − θ space is greatly reduced to detect potential
candidate axis lines

area, corresponding to the range of θ values in the customized
Hough transform, is dependent upon the desired tolerance
for slight skewness of 2-D plot images. Compared with the
Hough transform, the customized Hough transform improves
both memory and computation efficiency.

After candidate axis lines are detected, a set of rules are
used to determine the pair of axis lines in a 2-D plot. The
rules are designed to represent expected visual characteris-
tics of axis lines: the relative position between axis lines, the
location of axis lines in a 2-D plot, and the relative length of
axis lines in a 2-D plot.
Relative position between a pair of axis lines. As shown in
Fig. 8(1), two pairs of features, {d1, d2} and {d3, d4}, are
used to define the relative position between a pair of axis
lines. Specifically, d1/d2 represents the position of the ver-
tical axis line relative to the horizontal axis line, while d3/d4
represents the position of the horizontal axis line in rela-
tive to the vertical axis line. The rules for these features are:
−t1 < d1/d2 < t1 and −t2 < d3/d4 < t2, where t1 and
t2 are adjustable threshold values in the range of (0.1, 0.2).
Location of an axis line in a 2-D plot. As shown in Fig. 8(2),
d5/width and d6/height represent locations of the vertical
axis line and the horizontal axis line in a 2-D plot respec-
tively. The rules for these features are: d5/width < t3 and
d6/height < t4, where t3 and t4 are adjustable threshold
values in the range of (0.2, 0.5).
Relative length of a axis lines in a 2-D plot. As shown in
Fig. 8(3), d7/width and d8/height represent the lengths
of the horizontal axis line and the vertical axis line relative
to the image width and height, respectively. The rules for
these features are: d7/width > t5 and d8/height > t6,
where t5 and t6 are adjustable threshold values in the range
of (0.4, 0.6).

4.3 Extracting text

Text data present in 2-D plots have special characteristics:
(a) the distribution of text data is sparse, (b) there may be
many very short text strings, and (c) heterogeneous mixture
of text and graphical objects in local areas. Based on these
characteristics, we adopt a connected components based

(a) (b) (c)

(d) (e) (f)

(a)

(a) (b) (c) (d)

(b)

Fig. 8 Illustration of the features used for finding the pair of axis lines.
1 Relative position between candidate axis lines, 2 Relative position of
candidate axis lines, 3 Relative length of candidate axis lines

approach because texture-based methods generally have dif-
ficulties in separating graphics and text in a small local area,
e.g., in the legend of 2-D plots. In order to increase the accu-
racy of text recognition, which is important for our applica-
tion, since there may be very few data in a 2-D plot image, we
devised a connected component based method to detect the
bounding box of every text character and to separate over-
lapped characters.

To perform the component analysis, we apply the
connected component labeling scheme [9] that tags all the
different connected components in the image. Text possesses
certain spatial properties such as horizontal alignment and a
certain spacing between characters, which distinguish the
characters of a text string from other components in the
image. These spatial characteristics of the text components
may be utilized to perform the component analysis that pro-
vides the probabilistic location of the text in the 2-D plot.
Specifically, we employ fuzzy rules based upon the spatial
alignment of the characters to cluster the components into po-
tential strings of text, which can be recognized using existing
OCR software.

Let I (j, k) denote the raster matrix of a 2-D figure. We
have text blocks in figures occupy only a small area in them.

123

Automated analysis of images in documents for intelligent document search 73

Therefore, after connected component labeling, components
that have an area above a certain threshold are not considered
as candidates for being extracted as text blocks. The result of
performing the connected component labeling is a numbered
set of pixel matrices corresponding to each component, i.e.,
CC L(I (j, k)) = {Ci }Ni=1, where the area of the component
is below the threshold.

After obtaining the connected components representing
single letters, we need to determine which letters constitute
a single text block. This could be accomplished through pro-
posing thresholds by which we would determine if two letters
are adjacent. However, defining a fixed threshold would not
lead to good accuracy since different figures use different
fonts and spacing. Therefore, we use the distribution of the
spacing and the vertical distance of the connected compo-
nents, to identify which letters are adjacent and which are
parts of separate blocks. Let Xh

i , Xl
i , Y h

i , Y l
i represent the

corresponding maximum and minimum x and y coordinates
of the i th component, which indicate the height and width of
a component. Let C y

i j denote the vertical distance between

any two components Ci and C j , i.e. C y
i j = Y l

i − Y l
j ; and Cx

i j
denote the horizontal distance or spacing between Ci and
C j i.e. Cx

i j = Xl
i − Xh

j . The spatial alignment of the text
characters can be encoded using the following fuzzy rule:

IF C y
i j ≈ a AND Cx

i j ≈ b, THEN Ci ← Ci ∪ C j . (1)

In the above equation, a and b approximate the spatial align-
ment parameters. The parameter a is the mean of the distribu-
tion of C y

i j for all pairs of i and j . The parameter b is defined
similarly. By applying the fuzzy rule, adjacent letters can be
merged to create a text block. In some cases, the text appears
vertically aligned, e.g., in the case of labels on the y-axis.
For these characters, a similar fuzzy rule can be defined by
replacing x with y in the equations above. The fuzzy rule in
Eq. 1 can be encoded as a bivariate Gaussian unit as follows:

P(Ri j) = e
− (C

y
i j−a)

2

2s2
1 e

− (Cx
i j−b)

2

2s2
2 (2)

In the above equation, s1 is the standard deviation corre-
sponding to a and denotes the allowed difference, i.e, vertical
spread, and s2 is the standard deviation corresponding to b
and denotes the allowed difference in the x-dimension. Ri j

is a random variable that gives the probability of Ci and C j

belonging to the same string or text block. However, the loca-
tion of the strings of text in X and Y regions (area below the
horizontal axis and to the left of vertical axis, respectively) is
easy to predict using the region profile, for example, see the
horizontal profile of only the X -axis region in Fig. 9b. This
extra information is useful in accounting for the differences
between various font shapes and can be used to approximate
the values of parameters of Eq. 2 on a per figure basis.

input : Binarized Image matrix Segmented with Regions
output: Strings set for OCR input

Initialize:1
strings − set = φ;2
cc − set = φ;3
δ = 20% of the image area;4

For X/Y Region:5
cc − set = ConnectedComponent Labeling;6
Detect the horizontal position of the text using horizontal7
profile for X region and Vertical profile for Y region;
separate the text strings using Vertical Profile of the text8
identified in previous step;

Approximate the parameters of Eq.(2);9
For Curve Region:10
cc-set = Connected Component Labeling;11
foreach each component Ci do12

if Area(Ci) > δ then13
cc-set=cc-set - Ci14

end15
foreach pair of components Ci &C j do16

Calculate P(Ri j) using Eq(2);17
if P(Ri j) > 0.05 then18

string − set = Ci , C j ;19
strings − set = string − set ;20

end21
return strings-set;22

Algorithm 1: Text data detection

4.3.1 Separation of overlapping characters

Once text regions have been detected in the image and
extracted, they are suitable for parsing by Optical Charac-
ter Recognition (OCR) software. We have used the GOCR
software1 amongst others, an open source optical charac-
ter recognition engine which was deemed flexible enough
for the current application. While this and other software
tools prove highly reliable for well-posed text, to tackle the
unique challenges provided by the text in figures, the text
blocks need to be pre-processed. For instance, the frequent
overlap of characters within text blocks is a potential cause
for error. This feature may be attributed to a variety of fac-
tors including software drivers, user editing, small fonts and
pixel noise. We propose a recursive segmentation algorithm
that deals with this particular preprocessing requirement. Our
connected component analysis treats the fused characters as
a single component. Overlap of a few characters in a bag of
strings can be detected by using profile-based heuristics as
shown below. The algorithm determines the average size of
the individual connected components, most of which are sin-
gle letters, and the standard deviation σ of the width of these
letters. For very large connected components, we compute
the vertical profile. Usually, at the point of contact between
two letters there will be a minima in the profile. The fused

1 http://jocr.sourceforge.net/.

123

http://jocr.sourceforge.net/

74 X. Lu et al.

Fig. 9 Text and data point
extraction on a sample 2-D
figure. a Text detection,
b Data points detection

(a) (b)

letters can be separated at the point where these minima oc-
cur, by examining the pixel columns immediately adjacent.
Should the output width still exceed X+σ , then the heuristic
algorithm is repeated recursively, until the output character(s)
have widths that fall within one standard deviation.

input : Connected components, output of text detection
algorithm

output: Connected components, overlapped characters
segmented

Calculate average character width x and standard deviation1
σ along horizontal dimension for input;

foreach character ai j do2
if width exceed X + σ then3

Create vector b j by summing along y and locate4
minima with indicies ε j ;

end5

foreach minima index ε j do6
examine pixels c with indicies αi along dimension y in7
original character ai j ;
if cαi ,ε j is bounded either side by zeros &&8
Sum(cαi ,ε j−1) > Sum(cαi ,ε j) < Sum(cαi ,ε j+1) then

this corresponds to a point of contact, and the9
compound character may be separated at the column
with index ε j ;

end10

Algorithm 2: Character overlap detection and sepa-
ration

4.4 Detecting data points

Once the text is identified in the figure, next, our system
locates the data points in the data region. Based on our
assumption that curves have similar pixel width as axes,
we adapt the k-median filtering algorithm [32] to filter out
curve lines. The K-median algorithm is a well-known tech-
nique to remove noise from images. For the benefit of reader,
a summary of the algorithm follows. A raster scan of the
image is performed with a window of (k × k) size with

k = 2 × w + 1. With each new position in the window, the
intensity of the most central pixel in the window is assigned
with the median intensity value of all the pixels that lie in
that window. The K-median filtering algorithm is especially
chosen to remove point pixel noise and the noise present on
the contours. Appropriate size of k is chosen to preserve the
curvature of the filtered features.

The K-median filtering algorithm uses a square window.
However, our system chooses two windows of size (1 × k)

and (k×1) where k = 2×w+1 and then performs the raster
scan of the image. This choice ensures the consideration of
pixels not within the central region of a single square win-
dow, which would otherwise fail to be examined owing to
the predominance of background pixels. Further, using two
one-dimensional windows preserves even those pixels at the
edges of the two-dimensional data point objects reasonably
well, but removes narrow lines from the figure (as desired).
The width and orientation of the data points is different to
pixels constituting the plotted curves. Additionally, the aver-
age pixel width of the curve is very similar to the axis width.
Therefore, w is set to be at most the value of axis width (recall
that the value of w determines the value of k). We calculate
the width of the axis during the plot segmentation stage using
the profile of the 2-D plot. Figure 9b shows the result of the
operation of two modified K-median filters.

4.5 Extracting data from solid line curves

In many 2-D plots, there are no special data points in the data
region. Thus, the numerical data is presented only by line
curves. We designed an automated algorithm for extracting
data from line curves in 2-D plots.

A line segment is a connected line without branches within
it. In our work, we extract data points from each single solid
line curve in a 2-D plot. A solid line curve is defined as a
special type of line composite, i.e., possibly consisting of
multiple line segments, with the following requirements:

123

Automated analysis of images in documents for intelligent document search 75

data set

Binarization

PCC CodingDenoisingLine
Segmentation

PCC level

image
2 D plot

Axis Detection Thinning

Curve Reconstruction pixel level

Fig. 10 The process for automatic data extraction from 2-D plots

Connectivity: All components in a single solid line curve
are connected.

Connectivity between line segments: For any pair of neigh-
boring line segments in a curve, the left end point of a line
segment should be connected with the right end point of
the other line segment.

Uniqueness: Any line segment should belong to at most one
curve except the intersection line segments which may be
shared among several curves.

Smoothness: A curve is as smooth as possible. At any inter-
section point or area, a curve continues in the direction
that minimizes the change of derivative at the intersec-
tion.

Maximum length: A curve has the maximum possible length
as long as it fulfills the above requirements.

The process for extracting numerical data from solid line
curves within 2-D plots is illustrated in Fig. 10. First, images
are preprocessed and binarized. Then, axis lines in 2-D plots
are detected and data regions are located. After that, thin-
ning, PCC coding, and noise reduction techniques are applied
to the data areas to obtain line segments. Finally, solid line
curves, corresponding to a special kind of composite line, are
constructed using the curve construction algorithm.

4.5.1 Thinning, chain coding, and noise reduction

After the axis lines in a 2-D plot have been detected, the
data region, where the curves are present, is processed. The
term “image” in the rest of this section refers to the part of
the original 2-D plot corresponding to the data region. Image
thinning, chain coding, and chain code based noise reduction
are applied to extract valid thin line segments.

We adopt the image thinning algorithm proposed by
O’Gorman [13], which peels the boundaries of foreground
regions, one layer of foreground pixels at a time, until the
regions have been reduced to thin lines.

After an image has been thinned, a chain coding based rep-
resentation of the image is obtained to facilitate subsequent
thin line analysis. In a chain coding based representation,
instead of storing the “ON” and “OFF” values for every pixel
as in the raster format, lists of “ON”-valued pixels along lines

E F
E E

E E E F

E E: End to End
E F: End to Feature

Fig. 11 Various types of noise on PCC representation level

and the direction from every pixel to the next pixel in its
neighborhood are stored. This chain coding based represen-
tation is convenient for tracing thin lines, which is necessary
for identifying the curve in the later steps. We choose the
primitive chain code (PCC) [32], an extension of the popu-
lar Freeman [10] chain code, which is designed to preserve
connection, branching, and junction topology. In PCC codes,
there are pixel chain codes and feature codes, representing
pixel connections, junction and end-point features.

Besides providing a high-level line representation, the
primitive chain code also provides some noise reduction.
Here, the noise refers to any unwanted “ON” pixels (fore-
ground pixels) that may have been brought into the image
during the original imaging process or the following image
processing steps. At the PCC level, it is possible to find corre-
lation among some types of noise and combinations of chain
codes. For example, as shown in Fig. 11, two types of noise in
the thinned image, isolated pixels and spurious pixels branch-
ing from lines, correspond to short “End to End” and “End to
Feature” line segments respectively. Thus, an effective noise
reduction method is to set threshold length values for dif-
ferent types of line segments and filter out segments shorter
than the corresponding threshold length.

4.5.2 Curve construction

Based on the definition of a solid line curve above, there are
five requirements that need to be considered in constructing
a curve. Among those, the “connectivity between line seg-
ments” and “uniqueness” requirements present critical issues
and need to be taken care of before a curve can be identified.

Connectivity between line segments

A line segment has two end points, called left end point and
right end point according to their locations in the image. In
the case that the two end points have the same X -coordinates
values in the x− y space of the image, either one of them can
be arbitrarily called the left end point and the other called the
right end point.

Two line segments are connected if there exist two end
points, one from each line segment, which are connected

123

76 X. Lu et al.

(a)

(b)

Fig. 12 Illustration of the connection point between line segments and
the intersection area between two curves. a Connection point between
line segments. b Intersection area between two curves

according to eight-connectivity. However, there are cases that
two end points must be treated as connected even though
they are not in each other’s eight-connectivity neighborhood.
Figure 12a shows the cross-over area of a 2-D plot, where
there are three line segments, numbered 1, 2, and 3. There
are three special points, labeled as A, B, and C. A is the right
end point of line segment 1, B is the right end point of line
segment 2, and C is the left end point of line segment 3. Based
on eight-connectivity, A is connected to both B and C. Even
though B and C are not in each other’s neighborhood, they
should be treated as connected since they both are connected
to a common point. Figure 12a illustrates the case where two
end points are connected via another “bridge” point. Two end
points may also be connected via multiple hops of connected
“bridge” points.

Intersection between curves

An intersection between multiple curves may appear as a
single point or a collection of points (constituting a single
line segment or multiple line segments). In Fig. 12b, we see
that two curves intersect. The pixel-level illustration of the
intersection area shows that the intersection appears as a line
segment, namely line segment 3.

According to the “uniqueness” requirement in the defini-
tion of a solid line curve, an intersection line segment may
be shared by multiple curves while a non-intersection line
segment should belong to only one curve. Thus, it is neces-
sary to identify intersection line segments so that it can be
treated differently. Furthermore, according to the “smooth-
ness” requirement, there exist intersection areas where the
continuation of multiple curves need to be decided based on
the derivative of line segments.

A manual examination of about five hundred 2-D plots
from the CiteSeer [12] digital library and from the Internet
showed that even though intersections are common in plots,

Fig. 13 Three categories of intersection areas between two crossing
curves

it is not common to have more than two curves intersect at
the exact same point. In our work, we assume that any inter-
section segment is shared by two curves. This assumption
simplifies the problem. The handling of more general cases
is beyond the scope of this work. Based on this assumption,
we have defined three types of intersection segments, as illus-
trated in Fig. 13, namely L-type, R-type and M-type intersec-
tion segments. A L-type intersection segment has zero left
connections and two right connections; a R-type intersection
segment has two left connections and zero right connections;
a M-type intersection segment has two left connections and
two right connections. Based on this definition, the line seg-
ment 3 in Fig. 12b is a M-type intersection.

Curve construction algorithm

An algorithm designed to construct curves contained within
a 2-D plot based on the set of line segments present in the
image is shown in Algorithm 3. In the Algorithm 3, the
Sort_Line_Segments function sorts line segments from left
to right based on the left end point of every line segment.
If there is a tie among multiple line segments, they can be
ordered in any way. The Check_I ntersection_Segment
function determines if a line segment is an intersection seg-
ment based on its left and right connected line segments.
For an intersection line segment, two tickets are assigned
to it allowing it to be visited twice. The Select_Right_
Connection procedure selects the next line segments follow-
ing j , which minimizes the change of derivative compared
with line segment j or the line segment before j on the curve.

The curve construction algorithm generates a set of solid
line curves. Depending on application requirements, post
processing may filter out invalid curves.

5 Experiments

We have implemented the algorithms mentioned above for
automated analyses of images within documents and tested
on real-world datasets. In this section, we present the experi-
mental systems, tests, and results of automatic classification
of images within documents, and data extraction from 2-D
plot images.

123

Automated analysis of images in documents for intelligent document search 77

Input: {lineSegments}
Output: {solid LineCurves}
Sort_Line_Segments;1
foreach lineSegments(i) do2

Check_I ntersection_Segment (i);3
if is I ntersectionSegment (i) then4

v_ticket (i) = 2;5

else6
v_ticket (i) = 1;7

end8

end9
repeat10

Start_New_Curve_At (i);11
j = i ;12
repeat13

V isi t (j);14
v_ticket (j) = v_ticket (j)− 1;15
if hasUnvisi ted RightConnection(j) then16

j = Select_Right_Connection(j);17

until noReightConnection;18

until noUnvisi ted Segments;19

Algorithm 3: The curve construction algorithm.

Table 1 Composition of the figure dataset

Class No. of figures Percentage

Photograph 460 23

2-D plot 341 17

3-D plot 20 1

Diagram 93 5

Others 1,066 54

Total 1,980 100

5.1 Classification of images within documents

5.1.1 Experimental data

We collected a dataset from the CiteSeer scientific
literature digital library. About two thousand PDF files were
randomly selected in the experiments. The Adobe Acrobat
image extraction tool is used to extract images from docu-
ments. After extracting figures from the dataset, we manually
classify figures—required for the training and verification of
our automated algorithms—to the pre-defined image clas-
ses: photograph, 2-D plot, 3-D plot, diagram, and others.
The number of images in every class as well as their corre-
sponding ratios are shown in Table 1.

Recall, that before we extract line features from contents
of images, Canny edge detection is applied. We have tested
various parameter settings of the Canny edge detector for
our figure images. The parameters we used are: (1) the stan-
dard deviation of Gaussian smoothing filter is set to 0.6; (2)
the high value to be used in hysteresis thresholding is set to
0.8, which specifies the percentage point in the histogram

Table 2 Precision and recall of photograph versus non-photograph
classification based on global image features

Class No. of images Precision (%) Recall (%)

Photograph 460 68.3 77.8

Non-photograph 1,520 93.0 89.0

of magnitude of gradient; and (3) the low value to be used
in hysteresis thresholding is set to 0.3, which specifies the
fraction of the computed high threshold edge-strength value.

Three classification problems have been tested on our
dataset: (1) ‘photograph’ versus ‘non-photograph’; (2) five
classes of images: ‘photograph’, ‘2-D plot’, ‘3-D plot’,
‘diagram’, and ‘others’; and (3) ‘2-D plot’ versus other ‘non-
photograph’.

For the first test, only global features are used. In the sec-
ond test, both global features and part features (line features)
are used because we need to test the effectiveness of com-
bined features on discriminating all image classes. In the third
experiment, we used line features and heuristics.

5.1.2 Performance measures

We use precision and recall to measure the classification per-
formance. For a single figure class, we denote A as the num-
ber of figures correctly classified by the system, B as the
number of figures classified by the system to that class, and
C as the number of figures classified by a human in that class.
The precision and recall of the classification are precision =
A/B and recall = A/C , respectively. Precision measures
the percentage of correctly classified figures in relation to the
number of figures classified by a computer to the class. Recall
measures the percentage of the figures correctly classified to
each class, compared with human classification.

5.1.3 Results

We used SVM Light [18] to classify photograph and
non-photographic figures based on the global image features.
Under default parameters, experimental results using five-
fold cross-validation are reported in Table 2. As can be seen
from the result, global image features are fairly effective in
discriminating photographs from non-photographic figures.

We used the SVM Multi-class package [18] to classify
figures into five classes using both global and part image
features. We have adjusted one learning parameter, trade-
off between training error and margin, by setting it to 1.0
based on our experimental results. Precision and recall for
every class are presented in Table 3. The results show that
precision and recall for photographs and 2-D plot figures are
much higher than those for 3-D plot and diagram figures.

123

78 X. Lu et al.

Table 3 Precision and recall of multi-class classification

Class No. of images Precision (%) Recall (%)

Photograph 460 59 82

2-D plot 341 31 55

3-D plot 20 2 15

Diagram 93 8 20

Others 1,066 79 24

Table 4 Precision and recall of retrieving 2-D plots from
non-photograph images

No. of 2-D plots Precision (%) Recall (%)

362 82 83

Table 5 Experimental results of text block detection

Total Recall (%) Precision (%)

X Labels 504 84.9 96

Y Labels 504 87.5 96

Legend text 504 79.0 95

We have checked the classification results and analyzed
the nature of several false cases. For instance, some
non-photographic images that contain computer-generated
graphics have been classified as photographs due to relatively
smooth coloring within images. In addition, some non-pho-
tographic images have been classified as 2-D plots due to
the existence of significant straight lines that are actually
not axis lines. Even though line features show their potential
for certain classes of figures, e.g., 2-D plot figures, they do
not work well by themselves. It is essential to design more
effective image features to improve the classification of non-
photographic images.

We also tested the retrieval of 2-D plot images from non-
photographic images using the set of rules for axis detection
illustrated in Sect. 4.2. Under the heuristics, the existence of
a pair of axis lines in a non-photographic image indicates that
the image contains a 2-D plot. The performance is shown in
Table 4.

5.2 Extracting text from 2-D plots

We randomly selected 504 2-D images for the text block
detection. After using our tool to extract text data from these
2-D plots, we manually check the outputs for calculating
experimental results. We consider a X label, Y label, or a
legend text block correctly identified if at least 70% of the
letters in a block are correctly extracted. Results for the sam-
ple 2-D plots are reported in Table 5.

Table 6 Experimental results of
overlapping characters separa-
tion

No. of Accuracy (%)
characters

1320 83.5

Table 7 Experimental results of
data point extraction

Total # Correct Recall (%)
(%)

504 92 76

5.3 Separation of overlapping characters

We tested the separation of overlapping characters on a
dataset of 1,320 random 16 point font Arial characters, with
random case and word spacing. The performance of correct
separation is reported in the Table 6.

5.4 Extracting data points from 2-D plots

After text blocks have been detected, we performed data
extraction on 2-D plot images. We randomly selected 212 2-D
images that had scattered or curve-fitted plots in it. After the
data point detection process, we check the result manually.
We accept a plot if more than 90% of the data points gets
correctly extracted with their shape preserved, otherwise we
treat it as a failure. Table 7 shows the recall for the data
extraction algorithm.

5.5 Extracting data from solid line curves in 2-D plots

5.5.1 Experiments

We tested our data extraction system on three datasets: from
the CiteSeer [12] scientific literature digital library, the Inter-
net, and a third set generated using MATLAB plotting tools.
Plots from CiteSeer. We randomly selected about 2,000 doc-
uments from the CiteSeer database, extracted images from
documents, and collected 2-D plot images based on manual
labels.
Plots from the Internet. Since Google image search engine is
based on keyword search, we have tried combinations of key-
words. Keywords have been tried including “curve”, “plot”,
“2-D plot”, “curve plot”, etc, among which the “curve plot”
search gives back the maximum number of 2-D plot images.
Synthetic plots. We use MATLAB plotting tools to generate
a set of 2-D plots. Comparisons can be made between the
original data and the extracted data from 2-D plots. The data
set contains random linear and quadratic plots and combina-
tions of them. We use “L”, “Q”, “LL”, “LQ”, “QQ”, “LLQ”,
and “LQQ” to represent seven categories of plots contain-
ing a single linear curve, a single quadratic plot, two linear

123

Automated analysis of images in documents for intelligent document search 79

Table 8 Correspondence between the original 2-D plots and the
redrawn plots

Data set # Curves # Matched Match ratio (%)

Synthetic 177 153 86

CiteSeer 77 48 62

Web 40 29 73

curves, one linear curve and one quadratic curve, two qua-
dratic curves, two linear curves and one quadratic curve, one
linear curve and two quadratic curves respectively.

5.5.2 Results

The performance of data extraction is measured by the cor-
respondence between the original 2-D plots and the plots
redrawn using extracted data. Since the original data values
are not available for 2-D plots from published scientific doc-
uments and from the Web, we manually check the original
plots and redrawn plots to obtain the ratio of matched curves
between them. The recorded correspondence for the three
data sets are shown in Table 8.

In addition to the correspondence measure, the correctness
of extracted data are evaluated for the synthetic dataset gen-
erated using MATLAB by comparing the original data with
the extracted data. Specifically, for every pair of matched
original curve and redrawn curve, the X and Y dimension
values are normalized to 0–10 and 0–100, respectively. A set
of data points are selected from each curve so that their X
dimension values are uniformly distributed over the range of
valid X dimension values. Finally, the Mean Squared Error
(MSE) between Y dimension values of the original data sets
and the extracted data sets are calculated. The average MSE
between the original data sets and the extracted data sets are
illustrated in Table 9.

Many factors affect the correctness of data extraction: im-
age preprocessing, thinning, curve construction algorithm,

Table 9 Mean squared error between original MATLAB plots and
redrawn plots

Category # Matched MSE

L 15 0.0662

Q 12 0.1408

LL 30 1.1086

LQ 20 0.1609

QQ 22 0.4122

LLQ 27 0.6215

LQQ 27 4.7180

Average 153 1.2575

etc. Among them, curve tracing at cross-points is the most
influential factor. We see a higher MSE for data extraction
in “LQQ” plots since there are more cross-points in those
plots.

The experimental results using CiteSeer and Internet plots
indicate that a higher error rate occurs in CiteSeer plots due
to various reasons: scanned documents, skewness of docu-
ments, poor image quality, etc. Resolving these problems
is beyond the scope of this work. In summary, since the
tracing of a curve relies on connectivity, the method has
difficulty in tolerating broken curves. In addition, random
noise in poor quality images presents another challenge, since
thinned noisy lines may accidentally be traced as curves.
Post-processing of the extracted curves may alleviate the
problem of noisy lines in many cases.

6 Conclusion and future work

We have argued that in digital libraries, it is essential to
extract information from image content to facilitate efficient
document retrieval without human intervention. Data repre-
sented in these images is often invaluable to the end-user. We
defined several classes of images that are common in elec-
tronic documents and we outlined algorithms that enable us
to classify the images into five classes. We have proposed
methods for extracting both point data and lines from 2-D
plots. We also show how one can extract the axes in the
plots, their labels, identify legends in these plots and extract
the data shapes and the text associated with them, and extract
other textual metadata from 2-D plots. We demonstrated the
effectiveness of our proposed algorithms on synthetic and
real-world data obtained from the CiteSeer digital library as
well as via an online search.

There are several steps toward extending this work. First,
the performance of multi-class classification needs to be
improved. Incorporating further part object features will im-
prove classification of non-photographic figures. The perfor-
mance of algorithms dedicated to extraction tasks may also
be improved. For example, the application of the k-median
algorithm to data point detection may be improved by the use
of different window geometries.

Second, we need to design systems for extracting
information from important data-rich diagrams and more
difficult objects such as bitmapped or scanned documents.
In this work, we focused on electronically generated PDF
documents because they are more prevalent in recently gen-
erated documents. For bitmapped or scanned documents,
pre-processing using connected components labeling in con-
junction with Hough-based algorithms and heuristics should
allow for the identification of bitmaps pertaining to useful
image content and other extraneous objects.

123

80 X. Lu et al.

Acknowledgments This work was supported in part by the US
National Science Foundation under grants 0535656, 0347148, 0454052,
and 0202007, Microsoft Research, and Internet Archive. The authors
would like to thank Jia Li for providing the source code for the region-
based document image classification [21]. We used the Canny edge
detection program [15] and the SVM Light package available in the
public domain. Anonymous reviewers have provided constructive sug-
gestions on the manuscript.

References

1. Antani, S., Gargi, U., Crandall, D., Gandhi, T., Kasturi, R.:
Extraction of text in video. Technical Report, Department of
Computer Science and Engineering, Pennsylvania State Univer-
sity, CSE-99-016, August 30 (1999)

2. Blostein, D., Lank, E., Zanibbi, R.: Treatment of diagrams in doc-
ument image analysis. In: Proceedings of the International Confer-
ence on Theory and Application of Diagrams, pp. 330–344 (2000)

3. Bouaziz, B., Mahdi, W., Hamadou, A.B.: A new video images text
localization approach based on a fast Hough transform. In: Pro-
ceedings of the International Conference on Image Analysis and
Recognition, pp. 414–425 (2006)

4. Canny, J.: A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

5. Carberry, S., Elzer, S., Demir, S.: Information graphics: an
untapped resource for digital libraries. In: proceedings of the inter-
national conference on research and development in Information
Retrieval. pp.581–588 (2006)

6. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines
for histogram-based image classification. IEEE Trans. Neural
Netw. 10(5), 1055–1064 (1999)

7. Datta, R., Li, J., Wang, J.Z.: Content-based image retrieval—
approaches and trends of the new age. In: Proceedings of the
7th International Workshop on Multimedia Information Retrieval,
Singapore, November 2005, pp.253–262 (2005)

8. Duda, R.O., Hart, P.E.: Use of the Hough transform to detect lines
and curves in pictures. Commun. ACM 15, 11–15 (1972)

9. Fletcher, L.A., Kasturi, R.: A robust algorithm for text string sepa-
ration from mixed text/graphics images. IEEE Trans. Pattern Anal.
Mach. Intell. 10(6), 910–918 (1988)

10. Freeman, H.: Computer processing of line-drawing images. ACM
Comput. Surv. 6(1), 57–97 (1974)

11. Futrelle, R.P.: Summarization of diagrams in documents. Advances
in automated text summarization. MIT Press, Cambridge (1999)

12. Giles, C.L., Bollacker, K., Lawrence, S.: CiteSeer: An automated
citation indexing system. In: Proceedings of the ACM Conference
on Digital Libraries, pp. 89–98 (1998)

13. O’Gorman, L.: k × k thinning. Comput. Vis. Graph. Image Pro-
cess. 51(2), 195–215 (1990)

14. Haralick, R.M., Dinstein, I., Shanmugam, K.: Textural features for
image classification. IEEE Trans. Syst. Man Cybernet. 3, 610–
621 (1973)

15. Heath, M., Sarkar, S., Sanocki, T., Bowyer, K.: A robust visual
method assessing the relative performance of edge-detection algo-
rithms. IEEE Trans. Pattern Anal. Mach. Intell. 19(12), 1338–
1359 (1997)

16. Jain, A.K., Karu, K.: Learning texture discrimination masks. IEEE
Trans. Pattern Anal. Mach. Intell. 18(2), 195–205 (1996)

17. Jeong, K.Y., Jung, K., Kim, E.Y., Kim, H.J.: Neural network-based
text location for news video indexing. In: International Conference
on Image Processing, pp.319–323 (1999)

18. Joachims, T.: Making Large-Scale Support Vector Machine Learn-
ing Practical. MIT Press, Cambridge (1998)

19. Jung, K., Kim, K.I., Jain, A.K.: Text information extraction in
images and videos: a survey. Pattern Recognit. 37(5), 977–997
(2004)

20. Lee, C.M., Kankanhalli, A.: Automatic extraction of characters
in complex scene images. Int. J. Pattern Recognit. Artif. Intell.
9(1), 67–82 (1995)

21. Li, J., Gray, R.M.: Context-based multiscale classification of doc-
ument images using wavelet coefficient distributions. IEEE Trans.
Image Process. 9(9), 1604–1616 (2000)

22. Li, J., Najmi, A., Gray, R.M.: Image classification by a
two-dimensional hidden Markov model. IEEE Trans. Signal
Process. 48(2), 517–533 (2000)

23. Li, J., Wang, J.Z.: Real-time computerized annotation of pictures.
In: Proceedings of the ACM international conference on Multime-
dia, pp. 911–920, Santa Barbara (2006)

24. Li, H., Doerman, D., Kia, O.: Automatic text detection and tracking
in digital video. IEEE Trans. Image Process. 9(1), 147–156 (2000)

25. Liu, Y., Lu, H., Xue, X., Tan, Y.P.: Effective video text detection
using line features. In: Proceedings of the International Confer-
ence on Control, Automation, Robotics, and Vision, pp. 1528–1532
(2004)

26. Liu, Q., Jung, C., Kim, S., Moon, Y., Kim, J.: Stroke filter for text
localization in video images. In: Proceedings of the International
Conference on Image Processing, pp. 1473–1476 (2006)

27. Mao, W., Chung, F., Lanm, K., Siu, W.: Hybrid Chinese/English
text detection in images and video frames. In: Proceedings of
International Conference on Pattern Recognition, pp. 31015–31018
(2002)

28. Maree, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwin-
dows for robust image classification. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 34–
40, June (2005)

29. Ohya, J., Shio, A., Akamatsu, S.: Recognizing characters in scene
images. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 214–
224 (1994)

30. Okazaki, A., Kondo, T., Mori, K., Tsunekawa, S., Kawamoto, E.:
An automatic circuit diagram reader with loop-structure-based
symbol recognition. IEEE Trans. Pattern Anal. Mach. Intell.
10(3), 331–341 (1988)

31. Pan, W., Bui, T., Suen, S.: Text segmentation from complex
background using sparse representations. In: Proceedings of the
International Conference on Document Analysis and Recognition,
pp. 412–416 (2007)

32. Seul, M., O’Gorman, L., Sammon, M.J.: Practical Algorithms for
Image Analysis. Cambridge University Press, Cambridge (2000)

33. Shao, M., Futrelle, R.P.: Recognition and classification of figures
in PDF documents. In: Proceedings of the International Workshop
on Graphics Recognition, pp. 231–242 (2005)

34. Shi, Z., Setlur, S., Govindaraju, V.: Text extraction from gray
scale historical document images using adaptive local connectivity
map. In: Proceedings of the International Conference on Document
Analysis and Recognition, pp. 794–798 (2005)

35. Sin, B., Kim, S., Cho, B.: Locating characters in scene images using
frequency features. In: Proceedings of International Conference on
Pattern Recognition, pp. 489–492 (2002)

36. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.:
Content-based image retrieval at the end of the early years. IEEE
Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

37. Song, Y.J., Kim, K.C., Choi, Y.W., Byun, H.R., Kim, S.H., Chi,
S.Y., Jang, D.K. Chung, Y.K. : Text region extraction and text
segmentation on camera-captured document style images. In: Pro-
ceedings of the International Conference on Document Analysis
and Recognition, pp. 172–176 (2005)

38. Srihari, R.K., Zhang, Z., Rao, A.: Intelligent indexing and seman-
tic retrieval of multimodal documents. Inform. Retr. 2(2), 245–275
(2000)

123

Automated analysis of images in documents for intelligent document search 81

39. Subramanian, K., Natarajan, P., Decerbo, M., Castanon, D.:
Character-stroke detection for text-localization and extraction.
In: Proceedings of the International Conference on Document
Analysis and Recognition, pp. 33–37 (2007)

40. Szummer, M., Picard, R.W.: Indoor–outdoor image classification.
In: International Workshop on Content-Based Access of Image and
Video Databases, Bombay, India, pp. 42–51 (1998)

41. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer
Vision. Prentice-Hall, Englewood Cliffs (1998)

42. Vailaya, A., Jain, A., Zhang, H.: On image classification: “city im-
ages vs. landscapes”. Pattern Recognit. 31(12), 1921–1935 (1998)

43. Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding.
Prentice-Hall, Englewood Cliffs (1995)

44. Yang, C., Dong, M., Fotouhi, F.: Region based image annotation
through multiple-instance learning. In: Proceedings of the ACM
international conference on Multimedia, pp. 435–438, Singapore
(2005)

45. Yu, Y., Samal, A., Seth, S.C.: A system for recognizing a large
class of engineering drawings. IEEE Trans. Pattern Anal. Mach.
Intell. 19(8), 868–890 (1997)

46. Zhong, Y., Karu, K., Jain, A.K.: Locating text in complex color
images. Int. Conf. Doc. Anal. Recognit. 1, 146–149 (1995)

123

	Automated analysis of images in documents for intelligent document search
	Abstract
	1 Introduction
	2 Related prior work
	2.1 Image classification
	2.2 Image analysis
	2.3 Text block segmentation
	2.4 Analyzing images for document search

	3 Classification of images
	3.1 Classification of images
	3.2 Classification process overview
	3.3 Image extraction and preprocessing
	3.4 Extracting texture features
	3.5 Extracting line features
	3.6 Classification

	4 Extracting text and numerical data from 2-D plots
	4.1 Extraction process overview
	4.2 Axis detection and plot segmentation
	4.3 Extracting text
	4.4 Detecting data points
	4.5 Extracting data from solid line curves

	5 Experiments
	5.1 Classification of images within documents
	5.2 Extracting text from 2-D plots
	5.3 Separation of overlapping characters
	5.4 Extracting data points from 2-D plots
	5.5 Extracting data from solid line curves in 2-D plots

	6 Conclusion and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

