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Abstract—Recurrent neural networks have become popular
models for system identification and time series prediction. Non-
linear autoregressive models with exogenous inputs (NARX) neu-
ral network models are a popular subclass of recurrent networks
and have been used in many applications. Although embedded
memory can be found in all recurrent network models, it is
particularly prominent in NARX models.

We show that using intelligent memory order selection through
pruning and good initial heuristics significantly improves the
generalization and predictive performance of these nonlinear
systems on problems as diverse as grammatical inference and
time series prediction.

Index Terms—Automata, autoregressive, embedding theory,
gradient descent training, latching, long-term dependencies,
memory, NARX networks, pruning, recurrent neural networks,
tapped-delay lines, temporal sequences, time series.

I. INTRODUCTION

NONLINEAR autoregressive models with exogenous in-
puts (NARX) recurrent neural architectures [6], [44],

as opposed to other recurrent neural models, have limited
feedback architectures that come only from the output neuron
instead of from hidden neurons. It has been shown that in
theory, one can use NARX networks, rather than conventional
recurrent networks, without any computational loss and that
they are at least equivalent to Turing machines [56]. Not
only are NARX neural networks computationally powerful
in theory, but they have several advantages in practice. For
example, it has been reported that gradient-descent learning
can be more effective in NARX networks than in other
recurrent architectures with “hidden states” [27].

Part of the reason can be attributed to the embedded
memory of NARX networks. This embedded memory will
appear as jump-ahead connections that provide shorter paths
for propagating gradient information more efficiently when the
networks are unfolded in time to backpropagate the error signal
and thus reduce the network’s sensitivity to the problem of
long-term dependencies[36], [38]. Recently, it has been shown
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that such embedded memory can help gradient-based learning
in other recurrent neural network architectures [22].

Not only can the embedded memory reduce the sensitivity
to long-term dependencies, but it also plays an important role
in learning capability and generalization performance [37]. In
particular, forecasting performance could be seriously deficient
if a model’s memory architecture is either too little or too
much memory. Therefore, choosing the appropriate memory
architectures for a given task is a critical issue in NARX
networks.

The problem of memory-order selection is analogous to
that of choosing an optimal subset of regressors variables
in statistical model building. In optimal subset selection, it
is desired that the model includes as many regressors as
possible so that the information content in these regressors
will influence the predicted value of the dependent variable;
on the other hand, it is also desired that the model includes as
few regressors as possible because the variance of the model’s
predictions increases along with the increasing number of
regressors [41].

According to theembedding theorem[48], [54], [60], the
memory orders need to be large enough in order to pro-
vide a sufficient embedding. The problem of choosing the
proper memory architecture corresponds to giving a good
representation of input data. A good representation can make
useful information explicit and easy to extract. Two different
representations can be equivalent in terms of expressive power
but may differ dramatically in the efficiency or effectiveness
of problem solving.

When there is no prior knowledge about the model of the
underlying process, traditional statistical tests can be used,
for example, Akaike information criterion (AIC) [1] and the
minimum description length (MDL) principle [53]. Such mod-
els are judged on their “goodness-of-fit,” which is a function
of the likelihood of the data given the hypothesized model
and its associated degrees of freedom. Fogel [16] applied the
modification of AIC to select a “best” network. However, the
AIC method is complex and can be troubled by imprecision
[25], [55]. Such model complexity and regularization methods
are readily used for nonlinear models such as neural networks;
see, for example [24], [42], and [67].

Evolutionary programming [2], [18] is another search mech-
anism. This algorithm operates on a population of models.
Offspring models are created by randomly mutating parents
models. Competition between offspring models for survival
are judged according to thefitness function. Fogel [17] used
evolutionary programming for order selections of linear mod-
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els in a time series of ocean acoustic data, but the algorithm can
be computationally expensive when the underlying process is
complex and nonlinear.

Alternatively, an adaptive algorithm that treats the delay
operators as ordinary adjustable parameters can be a useful
technique. This algorithm iteratively determines the memory
of a model based on the gradient information. Originally
proposed by Etter, it was used as an “adaptive delay filter,”
which included variable delays taps as well as variable gains,
for modeling several sparse systems [7], [15]. Recently, others
[4], [13], [14], [35] have also extended neural networks to in-
clude adaptable time delays. Because the error function of the
adaptable time delays depends on the autocorrelation function
of input signals [7], [15], the gradient of the delay operator
will depend on the derivative of input signals. However, a
closed form of the derivative of the input signal cannot always
be determined in general. Therefore, there is no guarantee
that such a modified algorithm for a nonlinear model would
converge to the optimum solution.

In this paper, we propose a pruning-based algorithm (the
delay damage algorithm) to determine the optimal memory-
order of NARX and input time delay neural networks. This
algorithm can also incorporate several useful heuristics, such
as weight decay [31], which are used extensively in static
networks to optimize the nonlinear function. (For a survey of
pruning methods for feedforward neural networks, see [52].)

The procedure of the algorithm starts with a NARX network
with enough degrees of freedom in both input and output
memory or taps and then deleting those memory orders with
small sensitivity measure after training. After pruning, the
network is retrained. Of course, this procedure can be iterated.
This method should be contrasted with other recurrent neural
network pruning procedures where recurrent nodes are pruned
based on output values [23] and where second-order methods
are used to prune input taps and single order feedback taps for
fully recurrent neural networks [50]. The sensitive measure of
each memory order is calculated by estimating the second-
order derivative of the error function with respect to each
memory order. Le Cunet al. [11] originally calculated the
“saliency” by estimating the second-order derivative for each
weight. The success of their algorithm had been implemented
in identification of handwritten ZIP codes by pruning the
weights of feedforward networks [10], [11].

II. NARX N EURAL NETWORK

An important and useful class of discrete-time nonlinear
systems is the NARX model [6], [34], [39], [57], [58]

(1)

where and represent input and output of the model at
time , and are the input-memory and output-memory
order, and the function is a nonlinear function. When the
function can be approximated by a multilayer perceptron
(MLP), the resulting system is called aNARX recurrent neural
network [6], [44]. Fig. 1 shows a NARX network with input
memory of order 2 and output memory of order 3. It has been

Fig. 1. NARX neural network with two input-memory taps and three out-
put-memory taps.

demonstrated that NARX neural networks are well suited for
modeling several nonlinear systems such as heat exchangers
[6], waste water treatment plants [57], [58], catalytic reforming
systems in a petroleum refinery [58], nonlinear oscillations
associated with multilegged locomotion in biological systems
[61], time series [9], and various artificial nonlinear systems
[6], [44], [51].

When the output-memory order of NARX network is zero, a
NARX network becomes a time delay neural network (TDNN)
[32], [33], [63], which is simply a tapped delay line input into
a MLP. In general, the TDNN implements a function of the
form

(2)

Tapped delay lines can be implementations ofdelay space
embeddingand can form the basis of traditional statistical
autoregressive (AR) models. In time series modeling, subset
models are often desirable in the hope of capturing the global
behavior of the data. A subset autoregressive (SAR)1 time
series model is defined as

(3)

where and are the th coefficient and th order,
respectively, and is the white noise innovation with
zero mean. SAR models have demonstrated their long-term
prediction capability in various applications [40], [45] and can
easily be extended into nonlinear models. A nonlinear version
of a SAR is the NSAR.2

A primary problem associated with the nonlinear subset
model is how to optimally select the subset orders. Various
methods have been suggested for the determination of the
orders in the linear case [45], [69]. In designing the nonlin-
ear sparse models, we can determine the memory order by
applying the delay damage algorithm, which is described in
the next section. The delay damage approach is based on the
assumption that the memory order of an initial network should

1This doesnot mean synthetic aperture radar.
2We use the term NSAR and not TDNN to differentiate between networks

that are driven by previous values and those by external inputs. However, these
distinctions are not always made nor are they standard. For example, NARX
networks have also been called nonlinear autoregressive moving average
(NARMA) networks. It would also be possible to refer to a NSAR as an
NAR model.
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be given enough degrees of freedom to learn the given task in
a reasonable amount of training time.

III. D ELAY DAMAGE ALGORITHM

The delay damage algorithm attempts to select optimal
memory orders of NARX networks by calculating the sen-
sitivity of the error to each memory order after the network is
trained by gradient-based learning algorithm.

Several methods for sensitivity calculations have been pro-
posed [26], [30], [43]; for details, see the survey paper by
Reed [52]. Our method of calculating sensitivity is based on
evaluating the second-order derivative of the cost function with
respect to each memory order [50].

We assume the cost function () is the mean-squared error

(4)

where and denote the pattern index and time index,
respectively. The MLP of a NARX network can be described
as

(5)

(6)

where

output of hidden node;
weighted-sum input;
nonlinear function;
real-valued connection weight from nodeto node .

By the chain rule, the first-order derivative ofwith respect
to output node at time is given as

(7)

where is the error between the output node and the
target output. The gradient information of the hidden nodes
can be obtained by backpropagating the gradient information
from the output node. For the earlier time steps, there will
be an injection error from the target output into the output
node. Thus, not only is the gradient information determined
by a backward pass through the unrolled network, but the
injection errors are also taken into account in reverse order.
The error signal (the injection error) of output node at time

will become

(8)

Differentiating the first-order derivative once more yields the
second-order information. For the output nodeat the last time
step , the second-order information can be described by

(9)

The Levenberg–Marquardt approximation was used by Le
Cun et al. to drop the second term of (9). This will result

Fig. 2. A 512-state finite memory machine with input order 5 and output
order 4.

in the same order of complexity as computing the first-
order derivatives and nonnegative quantities. The second-order
information of the hidden nodes at timecan be calculated by
the backpropagation procedure. Proceeding to the earlier time
steps, the effect of the injection error should be taken into
account. Therefore, the second-order gradient of the output
node at interval time will become

(10)

The procedure is computed down to .
In order to compute the second-order derivative with respect

to each memory order of a NARX neural network, the function
of each memory order can be defined such that there is a

virtual layer of linear neurons between the memory taps and
the first hidden layer. Each memory tap connects to each linear
neuron with a fixed weight 1.0. The adjustable weights that
previously connect memory taps and the nonlinear neurons
will connect the virtual linear node and the nonlinear neurons.
Therefore, the functionality of these two networks is the same.
The error signal of each memory tap is propagated through the
linear neuron with fixed weight 1.0. Therefore, the sensitivity
of input-memory order and output-memory order

can be described, respectively, as

(11)

(12)
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Fig. 3. Number of errors in the testing set, which consists of 250 positive strings and 250 negative strings from length 20–150, as a function of the length
of the strings for a NARX neural network trained on the data from the 512-state finite memory machine.

Once the sensitivity of each node is evaluated, nodes are
pruned based on a predescribed sensitivity threshold or ratio,
and retraining occurs. Pruning stops when a certain error, total
or otherwise, is reached.

IV. EXPERIMENTAL RESULTS

Here, we discuss experimental results for a grammatical
inference problem and time series prediction problems, sun
spot data, and laser intensity data from the Santa Fe time series
competition. The grammatical inference problem will use a
NARX neural network, whereas the time series problems will
use degenerate forms of the NARX network: the NSAR’s.
We also give a brief introduction to the theory of dynamic
embedding before discussing the results of time series predic-
tion. In order to also optimize the architecture of the MLP
of a NARX network or NSAR, several methods of weight
elimination [5], [31], [47], [64], [66] can be incorporated into
the training algorithm. In the following experiments, networks
are trained using weight decay [31]. All experiments were
trained using back-propagation through time (BPTT) [68].

A. Grammatical Inference: Learning a 512-State
Finite Memory Machine

NARX networks have been shown to be able to simulate
and learn a class of finite state machines [8], [21] called,
respectively,definite and finite memory machines. When being
trained on strings that are encoded as temporal sequences,
NARX networks are able to “learn” rather large (hundreds
to thousands of states) machines, provided that they have
enough memory, and the logic implementation is not too
complex. However, the generalization performance and the
size of extracted machines are also found to be very sensitive

to the memory order selections in NARX networks [37].
The purpose of this experiment is to see how the delay
damage algorithm can improve the generalization performance
of NARX networks with unnecessary memory structures.

In this experiment, the finite memory machine has 512
states. The machine has input order of 5 and output order
of 4. Its transition function can be described as the simple
logic function

(13)

where and represent output and input, respectively, and
represents the complement of. The FSM is shown in Fig. 2.
The depth of the machine is 9. The training set was 300
strings randomly chosen from the complete set. The complete
set, which consists of all strings of length from 1 to
(ten in this case) are shown to be able to sufficiently identify
a finite memory machine with depth[20]. The strings were
encoded such that input values of 0’s and 1’s and target output
labels “negative” and “positive” corresponded to floating-point
values of 0.0 and 1.0, respectively.

Initially, before pruning the NARX networks were chosen
to have four hidden nodes, ten input taps, and ten output taps.
The number of weights was 91. The memory order of the
neural network was chosen to be large enough to make sure the
architecture had enough degrees of freedom to learn the large
machine within a reasonable amount of time. The networks
were trained with the BPTT algorithm at the learning rate of
0.1 and weight decay of 0.001. The training time was set to
5000 epochs. For more details, see [20] and [21]. For each of
50 experiments, the weights were randomly initialized within
the range of [ 0.5, 0.5].
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Fig. 4. Sunspot data for years 1700 to 1979.

TABLE I
NORMALIZED MSE FOR ONE-STEP AHEAD PREDICTION ON THE SUNSPOT DATA

The average training time was approximately 600 epochs.
After training, the trained networks were tested on the remain-
ing strings of the complete set. A zero error rate showed that
the networks had learned the complete set. However, when
trained networks were tested on the strings of length longer
than ten, the number of errors was no longer zero and plotted
in the Fig. 3 as a function of the length of testing strings.
Note that the performance of NARX networks can be strongly
dependent on the selection of memory order [37]. In particular,
the new testing set consisted of 250 positive strings and 250
negative strings from length 20 to 150 in increments of 10.

Applying the delay damage algorithm described in Section
III to prune the taps with small sensitivity measure always
resulted in the minimal NARX architectures with five input
memory orders and four output memory orders. Furthermore,
out of 50 pruning runs, the minimal NARX architectures
always contain the proper subset of , , and .
The number of weights of pruned networks could be reduced to
anywhere from 20–30, depending on the number of remaining
memory orders. The time to retrain the pruned networks took,
on average, 70 epochs. Furthermore, the generalization error
on the remaining strings of the complete set and the strings
randomly generated from length 20 to 150 was reduced tozero.

B. The Theory of Embedding

In order to clarify the results of our experiments on time
series prediction, we give a brief introduction to the theory
of embedding; for more details, see [54]. Thestate of a

deterministic dynamic system is the information necessary to
determine the entire future evolution of the system. A time
series is a set of measures of an observable quantity of the
system over time. An observable quantity is a function only of
the state of the underlying system. The observations are
a projection of the multivariate state space of the system onto
the one-dimensional (1-D) space. In order to do prediction, we
need to reconstruct as well as possible the state space of the
system using the information in .

The embedding theorem motivates the technique of using
time-delay coordinate reconstruction in reproducing the phase
space of an observed dynamical system. A collection of time
lags in a vector space of dimensions

(14)

will provide sufficient information to reconstruct the states of
the dynamical system. The purpose of time-delay embedding
is to unfold the projection back to a multivariate state space
that is representative of the original system [46], [49], [60].
It was shown that if the dynamical system and the observed
quantity were generic, then the delay coordinate map from a-
dimensional smooth compact manifold to -dimensional
reconstruction space was adiffeomorphism(one-to-one differ-
ential mapping). The theorem was further refined by Saueret
al. [54] such that a measured quantity led to a one-to-one delay
coordinate map as long as the reconstruction dimension was
greater than twice the box-counting dimension of the attractor.
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Fig. 5. Relative multistep prediction performance where results were normalized to a variance of 1535. Curves A and D are from previous work, and curves
B and C are from the pruned networks; see Table I for more details. Both pruned network models perform better as the number of future predictions increase.

Fig. 6. Relative multistep prediction performance where results were normalized to the variance of the original data set. Curves A and D are from
previous work, and curves B and C are from the pruned networks; see Table I for more details. Both pruned network models perform better as the
number of future predictions increase.

The embedding theorem provides asufficient condition for
choosing the embedded dimension large enough so that
the projection is theoretically able to construct the original
state space. Once a large enough has been obtained,
any will also provide an embedding.

The predictive relationship between the current state

and the next value of time series can be expressed as

(15)
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Fig. 7. Original 1000 laser data.

The embedding theorem provides a theoretical framework
for nonlinear time series prediction. Once an embedding
dimension is chosen, one remaining task is to approximate
the mapping function . It has been shown that a feedforward
neural network with enough neurons is capable of approximat-
ing any nonlinear function to an arbitrary degree of accuracy
[12], [19], [28], [29]. Neural networks thus can provide a good
approximation to the function . These arguments provide
the basic motivation for the use of NARX networks to the
nonlinear time series prediction.

It is still an open question as to how to optimally choose the
embedding dimension and the delay time . The embedding
theorem only guarantees that a sufficiently large embedding
dimension will be capable of unfolding the state space. It
does not describe how complicated the mapping function will
be. One may be able to find a minimum embedding dimension
to unfold the state space, but the mapping function may be
too complicated to approximate. For example, two different
embedded dimensions can be equivalent in terms of expressive
power, but the nonlinear function may dramatically differ in
the efficiency of approximation. It should be noted that when
is chosen, the embedding representation will always be equally
spaced. This rules out the possibility of any unequally spaced
representation of the embedding dimension.

In the following experiments, we will use the delay damage
algorithm to prune the taps of a neural network. After pruning,
the networks will be retrained at least twice. The final network
architecture ends up providing a unequally spaced temporal
representation of the state space. These sparse delay architec-
tures can be regarded as the nonlinear versions of SAR models
(NSAR’s), and the subset orders of the NSAR provide the

embedding coordinates to reconstruct the mapping function.
The time lags in the initial embedding vector can be equally
or unequally spaced as long as the embedding dimension is
large enough to unfold the state space.

C. Prediction of Sunspot Data

Sunspots are dark botches on the sun and yearly averages
have been recorded since 1700. The series is shown in Fig. 4
and has served as a benchmark for time series prediction
problems. Several researchers have tested the prediction ability
of neural networks on this data. For example, Weigendet al.
[64] trained a NSAR (or TDNN) network with an embedded
dimension of 12 with eight hidden neurons and pruned the
weights by adding a complexity term to the cost function.
They were able to reduce a network with eight hidden nodes
to three. The embedding dimension remained the same. Svarer
et al. [59] pruned the weights using a second-order sensitivity
measure. Our approach is to prune the orders of networks
directly and use the weight decay technique to optimize the
nonlinear mapping function.

For comparison, we treat the data in the same way as
Weigendet al. [64] and partition it into a training set from
1700 through 1920 and a testing set from 1921 to 1979. The
data set was scaled to be in the range of [0, 1.0]. We tried
various architectures with various number of hidden nodes
and different embedding dimensions. The initial embedding
dimension was usually close to 14. However, the largest initial
order depth was 33. The networks were trained as a one-step
ahead predictor at the learning rate of 0.1 and weight decay
of 0.001. After pruning the taps, the networks were retrained.
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Fig. 8. Normalized autocorrelation function of the 1000 laser data.

Our cost function was the normalized mean squared error
defined as

NMSE
target prediction

target mean

(16)

where enumerates the point in the data set,
and mean and denote the sample average and sample
variance of the target value in. This measure removes the
data’s dependence on dynamic range and size of the data set.
To make comparisons with previous work, the variance was
normalized with the same value of 1535 [64]. Training was
stopped when the normalized mean squared error was less
than 0.1.

Our two best results from the architectures, which are
denoted as and , are reported in Table I. (Recently,
comparable improvements from committee machines have
been reported [70].) The final number of hidden nodes
were, respectively, 6 and 3. The final subset orders of the
two networks after pruning consisted of

and
, respectively. Table I

lists the one-step-ahead prediction performance of various
models on the data set. Comparing the NMSE, the single-step
prediction qualities of different models are quite comparable.

We also compared long-term prediction results to one an-
other. To do the long-term prediction, the predicted output is
fed back into the neural network. Hence, the inputs consist of
predicted value as opposed to actual data of the origin time
series. We used theaverage relative I-times iterated prediction

variance proposed by Weigendet al. [64] as a performance
measure of the long-term behavior of the models. Theaverage
relative I-times iterated prediction varianceis defined as

arv iterated (17)

where

real data point at time;
difference between the period of the prediction and;
predicted value for time after iterations.

Recall that is the number of time steps into the future of the
prediction. The average relative iterated prediction variance is
shown in Fig. 5 and went through from 1921 to 1979. From
Fig. 5, it can be seen that the networks B and C that have
sparsely connected tapped delay lines start to perform better
as is increased. Note that the arv is greater than 1.0 since
the variance of the original data 1920 through 1979 is fairly
large. If we normalize the arv to the variance of the original
data set, the results are shown in Fig. 6. Again, the networks
B and C perform better as is increased.

D. Prediction of Laser Data

In order to explore the capability of capturing the global
behavior of NSAR neural networks, we also tested them on
the laser data of the Santa Fe competition. The data set consists
of laser intensity collected from a laboratory experiment [65].
Although deterministic, its behavior is chaotic as seen in
Fig. 7. Fig. 8 shows the normalized autocorrelation function
of the first 1000 training data points.
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Fig. 9. Solid line represents 500 data points predicted by the pruned network when using closed-loop iteration.

The networks were trained as a one-step-ahead predictor
using the first 1000 points. The data was scaled to zero mean
and unit variance. We give the results of our best performing
neural network. The network was chosen to have two hidden
layers. The first hidden layer had five neurons, and the second
layer had three neurons. We used the hyperbolic tangent
function as the nonlinear function in the two hidden layers. The
output layer had only one output neuron with linear function.
We chose the embedding dimension to be 25. However, the
depth of the tapped delay line was very long (up to 500). We
used the last 13 subsets: three subsets from the past 100 data
points (i.e., , , ), and ten subsets from the
past 445 data points (i.e., , , ). We heuristically
chose the memory order by observing that the autocorrelation
function of the training data set was peaked in these areas.
The total number of weights was 152.

In this experiment, we used the adaptive learning rate
algorithm and batch data presentation. The algorithm works
as follows. The cost function is monitored during training.
If the increase of the cost function at timeis not larger
than the product of the cost of previous time step andthe
cost bonus , the learning rate is increased by 10% until the
learning rate reaches the maximum learning rate 1.0, and the
weights are updated. If the increase of the cost function at the
present time step is larger than the product of the cost bonus
and the cost of earlier time step, the weight vector of the
previous time step is restored, and the learning rate decreases
by half until it reaches the minimum learning rate ( ); the
weights are updated according to the smaller learning rate and
the gradient information of one time step ahead. Of course,
this requires one to keep track of the weight vector and the

gradient information of previous time steps. In our experiment,
the initial learning rate was 0.01, and the cost bonuswas
0.001. The network was trained with the previously discussed
mean squared error cost function in the batch mode (i.e., errors
were accumulated until the end of the data). When the average
squared error is less than 0.004, training was stopped, and
pruning commenced. This procedure was performed twice.

The trained and pruned neural network NSAR gave some
interesting long-term predictive behavior of the time series.
The network was able to predict 1000 data points using closed-
loop iteration. By closed-loop iteration, we mean the network
ran autonomously without any reference to the true data. Fig. 9
shows the 500-step iterated prediction from time .
Fig. 10 shows the 1000-step iterated prediction; note that the
network was able to predict three collapses and that there were
only two collapses in the training data set. We pruned five
taps of the original network when trained on the first 1000
data points. The final architecture had only 127 weights. It
is worth noting that our experiments with training the same
network without pruning quickly led to predictions that were
either noisy or a constant value.

V. CONCLUSION

Determining of the proper architecture of a dynamical
network is a difficult yet critical task. Not only can the
nonlinear architectures affect the performance, but the memory
architecture of dynamical model can have a significant impact
on its dynamical behavior.

In this paper, we proposed a pruning-based algorithm to de-
termine the embedded memory order of NARX recurrent neu-
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Fig. 10. Solid line represents 1000 data points predicted by the pruned network when using closed-loop iteration.

ral networks and degenerate forms such as NSAR networks.
This algorithm can also incorporate several useful heuristics,
e.g., weight decay, which have been used extensively in static
networks to optimize the nonlinear function. We also show
that this algorithm can demonstrate improved performance on
both nonlinear predictions and grammatical inference tasks.
Furthermore, optimizing the memory architecture and the
nonlinear function through pruning often results in sparsely
connected architectures but with long time windows that are
able to model the global features of the underlying system
quite efficiently. It is an open question as to whether our
pruning model will capture all important memory structure.
Recent experiments on artificial problems imply that failure
to capture important memory structure can lead to very poor
generalization performance.

Though the embedding theorem demonstrates that the order
of embedded memory should be large enough in order to
provide a guarantee of forming a diffeomorphism mapping,
choosing the proper memory order can be a challenge. Choos-
ing different embedding memory architectures corresponds
to giving different representations of the state space of the
underlying system. The major issue is that such a represen-
tation plays an important role in solving problems. A good
representation can make useful information explicit and easy
to extract. In this work, we only explored classic tapped delay
memory structures. It would be interesting to see if similar
results could be achieved for other memory models [3], [62].
However, a minimal representation does not necessarily mean
a good representation. Two different representations can be
equivalent in terms of expressive power but may make a great
difference in efficiency and effectiveness of problem solving.
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