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Abstract—Recurrent neural networks have become popular that such embedded memory can help gradient-based learning
models for system identification and time series prediction. Non- in other recurrent neural network architectures [22].
linear autoregressive models with exogenous inputs (NARX) neu- Not only can the embedded memory reduce the sensitivity

ral network models are a popular subclass of recurrent networks tol t d d . but it al | . tant rol
and have been used in many applications. Although embedded 0 long-term dependencies, but It also plays an important role

memory can be found in all recurrent network models, it is N learning capability and generalization performance [37]. In

particularly prominent in NARX models. particular, forecasting performance could be seriously deficient
We show that using intelligent memory order selection through jf a model’s memory architecture is either too little or too

pruning and good initial heuristics significantly improves the much memory. Therefore, choosing the appropriate memory

generalization and predictive performance of these nonlinear hitect f . task i itical i in NARX
systems on problems as diverse as grammatical inference and@fCNIECIUres Tor a given task Is a critical 1ssue In

time series prediction. networks.

Index Terms—Automata, autoregressive, embedding theory, The problem of memqry-order selection is analogoqs to
gradient descent training, latching, long-term dependencies, that of choosing an optimal subset of regressors variables
memory, NARX networks, pruning, recurrent neural networks, in statistical model building. In optimal subset selection, it
tapped-delay lines, temporal sequences, time series. is desired that the model includes as many regressors as
possible so that the information content in these regressors
will influence the predicted value of the dependent variable;
on the other hand, it is also desired that the model includes as
N ONLINEAR autoregressive models with exogenous sy regressors as possible because the variance of the model’s

puts (NARX) recurrent neural architectures [6], [44]predictions increases along with the increasing number of
as opposed to other recurrent neural models, have |imitﬁ§bressors [41].
feedback architectures that come only from the output NeuroNaccording to theembedding theorerfd8], [54], [60], the
instead of from hidden neurons. It has been shown that rWemory orders need to be large enough in order to pro-
theory, one can use NARX networks, rather than conventionghe 5 sufficient embedding. The problem of choosing the
recurrent networks, wi;hout any computationa! loss and thﬁftoper memory architecture corresponds to giving a good
they are at least equivalent to Turing machines [56]. Ngkpresentation of input data. A good representation can make
only are NARX neural networks computationally powerful;sefy| information explicit and easy to extract. Two different
in theory, but they have several advantages in practice. k@presentations can be equivalent in terms of expressive power
example, it has been reported that gradient-descent learning may differ dramatically in the efficiency or effectiveness
can be more effective in NARX networks than in otheps problem solving.
recurrent architectures with “hidden states” [27]. When there is no prior knowledge about the model of the

Part of the reason can be attributed to the embeddggyerlying process, traditional statistical tests can be used,
memory of NARX networks. This embedded memory wilk,, example, Akaike information criterion (AIC) [1] and the

appear as jump-ahead connections that provide shorter pafisimum description length (MDL) principle [53]. Such mod-
for propagating gradient information more efficiently when thgis gre judged on their “goodness-of-fit,” which is a function

networks are unfolded in time to backpropagate the error sigR@lihe likelihood of the data given the hypothesized model

and thus reduce the network’s sensitivity to the problem gf, jis associated degrees of freedom. Fogel [16] applied the
long-term dependenci¢86], [38]. Recently, it has been shownp, g gification of AIC to select a “best” network. However, the

AIC method is complex and can be troubled by imprecision
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els in atime series of ocean acoustic data, but the algorithm can
be computationally expensive when the underlying process is
complex and nonlinear.

Alternatively, an adaptive algorithm that treats the delay
operators as ordinary adjustable parameters can be a useful :
technique. This algorithm iteratively determines the memory
of a model based on the gradient information. Originally
proposed by Etter, it was used as an “adaptive delay filter,”
which included variable delays taps as well as variable gains,
for modeling several sparse systems [7], [15]. Recently, others
[4], [13], [14], [35] have also extended neural networks to in-
clude adaptable time delays. Because the error function of the
adaptable time delays depends on the autocorrelation functfigh 1 NARX neural network with two input-memory taps and three out-
of input signals [7], [15], the gradient of the delay operatd)rm'memOry taps.
will depend on the derivative of input signals. However, a
closed form of the derivative of the input signal cannot alwaygemonstrated that NARX neural networks are well suited for
be determined in general. Therefore, there is no guaranteedeling several nonlinear systems such as heat exchangers
that such a modified algorithm for a nonlinear model woult], waste water treatment plants [57], [58], catalytic reforming
converge to the optimum solution. systems in a petroleum refinery [58], nonlinear oscillations

In this paper, we propose a pruning-based algorithm (tassociated with multilegged locomotion in biological systems
delay damage algorithm) to determine the optimal memorf61], time series [9], and various artificial nonlinear systems
order of NARX and input time delay neural networks. Thig6], [44], [51].
algorithm can also incorporate several useful heuristics, suchWhen the output-memory order of NARX network is zero, a
as weight decay [31], which are used extensively in statARX network becomes a time delay neural network (TDNN)
networks to optimize the nonlinear function. (For a survey ¢82], [33], [63], which is simply a tapped delay line input into
pruning methods for feedforward neural networks, see [52]3 MLP. In general, the TDNN implements a function of the

The procedure of the algorithm starts with a NARX networform
with enough degrees of freedom in both input and output
memory o? taps%nd then deleting those men?ory orders v‘\)/ith y(#) = flult=Du), -+, ult=1), u(®)]: 2)
small sensitivity measure after training. After pruning, the Tapped delay lines can be implementationsddefay space
network is retrained. Of course, this procedure can be iterateghbeddingand can form the basis of traditional statistical
This method should be contrasted with other recurrent neugaltoregressive (AR) models. In time series modeling, subset
network pruning procedures where recurrent nodes are prumeddels are often desirable in the hope of capturing the global
based on output values [23] and where second-order methbd#avior of the data. A subset autoregressive (SAiR)e
are used to prune input taps and single order feedback tapsderies model is defined as

uk) uk-1) uk2) yk-3) yk-2) yk-1)

fully recurrent neural networks [50]. The sensitive measure of m
each memory order is calculated by estimating the second- y(t) = Zamy(t — o)+ ult) (3)
order derivative of the error function with respect to each i=1

memory order. Le Curet al. [11] originally calculated the \yhere a.. and «; are theith coefficient andith order,
“saliency” by estimating the second-order derivative for ea‘?@spectivély, andu(¢) is the white noise innovation with
weight. The success of their algorithm had been implementgghy mean. SAR models have demonstrated their long-term
in identification of handwritten ZIP codes by pruning theyegiction capability in various applications [40], [45] and can

weights of feedforward networks [10], [11]. easily be extended into nonlinear models. A nonlinear version
of a SAR is the NSAR.
II. NARX NEURAL NETWORK A primary problem associated with the nonlinear subset
An important and useful class of discrete-time nonlinedfdel is how to optimally select the subset orders. Various
systems is the NARX model [6], [34], [39], [57], [58] methods have been suggested for the determination of the
orders in the linear case [45], [69]. In designing the nonlin-
y(t) = flu(t=Du), ..., u(t=1), u(t) ear sparse models, we can determine the memory order by
cy(t=Dy), ..., y(t—1)] (1) applying the delay damage algorithm, which is described in

the next section. The delay damage approach is based on the
whereu(t) andy(t) represent input and output of the model atssumption that the memory order of an initial network should
timet, D, and Dy ar_e the_ mput-mgmory and _OUtpUt_memory 1This doesnot mean synthetic aperture radar.
order_, and the functiorf 'S_ a nonlinear func_tlon' When the 2y yse the term NSAR and not TDNN to differentiate between networks
function f can be approximated by a multilayer perceptromat are driven by previous values and those by external inputs. However, these

(MLP), the resulting system is called\ARX recurrent neural distinctions are not always made nor are they standard. For example, NARX
’k 61 [441. Fia. 1 sh NARX K with i networks have also been called nonlinear autoregressive moving average
networ [ ]' [ ] Ig. 1 shows a network with input (NARMA) networks. It would also be possible to refer to a NSAR as an

memory of order 2 and output memory of order 3. It has be@®R model.
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be given enough degrees of freedom to learn the given task in
a reasonable amount of training time.

I1l. DELAY DAMAGE ALGORITHM

The delay damage algorithm attempts to select optimal
memory orders of NARX networks by calculating the sen-
sitivity of the error to each memory order after the network is
trained by gradient-based learning algorithm.

Several methods for sensitivity calculations have been pro-
posed [26], [30], [43]; for details, see the survey paper by
Reed [52]. Our method of calculating sensitivity is based on
evaluating the second-order derivative of the cost function witk
respect to each memory order [50].

We assume the cost functio&’) is the mean-squared error

t1
E=3Y Y 1) - @) @ TR
poT=to s
where p and 7 denote the pattern index and time index':ig' 2. A 512-state finite memory machine with input order 5 and output
order 4.
respectively. The MLP of a NARX network can be describedr o
as
in the same order of complexity as computing the first-
zi(t) = flai(t)] (®)  order derivatives and nonnegative quantities. The second-order
ai(t) =Y wijz;(t) (6) information of the hidden nodes at timecan be calculated by
J the backpropagation procedure. Proceeding to the earlier time
where steps, the effect of the injection error should be taken into

account. Therefore, the second-order gradient of the output

z;(t) output of hidden node; nodek at interval timet, < 7 < #; will become

a;(t) weighted-sum input;

f nonlinear function; R2E R2E
w;;  real-valued connection weight from nogléo node:. W = flax(r)’] |1+ Z wfk m . (10
By the chain rule, the first-order derivative Bfwith respect b J b
to output node: at time¢ = ¢, is given as The procedure is computed down %@+ 1.
or y y 7 In order to compute the second-order derivative with respect
dar(ty) Filaw(t)]er(t1) () to each memory order of a NARX neural network, the function

_ f of each memory order can be defined such that there is a
where ¢x(t1) is the error between the output node and thgyy o) Jayer of linear neurons between the memory taps and
target output. The gradient information of the hidden nodese first hidden layer. Each memory tap connects to each linear
can be obtained by backpropagating the gradient informatign ;o with a fixed weight 1.0. The adjustable weights that
from the output node. For the earlier time steps, there Wille\iously connect memory taps and the nonlinear neurons
be an injection errorfrom the target output into the outputyi connect the virtual linear node and the nonlinear neurons.
node. Thus, not only is the gradient information determinef}qrefore, the functionality of these two networks is the same.
by a backward pass through the unrolled network, but t¢\e error signal of each memory tap is propagated through the
injection errors are also taken into account in reverse ordgfear neuron with fixed weight 1.0. Therefore, the sensitivity
The error signalthe injection erroj of output node: at time ¢ input-memory order(k — n) and output-memory order

to <7 <t will become y(k — m) can be described, respectively, as

oF , oL 0’E
Far(r) ~ Il | eal) + EJ: gy | @ du(k — n)?
2
Differentiating the first-order derivative once more yields the WPt — )2 w? o°E 11
second-order information. For the output nddat the last time zp: z; b ) zJ: I 8[@?(7)]2 ()
stepty, the second-order information can be described by 2E
O*E “m?
sty = P — e M)l @ O
NS

0*E
The Levenberg—Marquardt approximation was used by Le Z Z [y"(t = m)]? Z wf.m AP (12)
Cun et al. to drop the second term of (9). This will result poT J !
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Fig. 3. Number of errors in the testing set, which consists of 250 positive strings and 250 negative strings from length 20-150, as a functiontiof the leng
of the strings for a NARX neural network trained on the data from the 512-state finite memory machine.

Once the sensitivity of each node is evaluated, nodes &apethe memory order selections in NARX networks [37].
pruned based on a predescribed sensitivity threshold or rafithe purpose of this experiment is to see how the delay
and retraining occurs. Pruning stops when a certain error, tod@mage algorithm can improve the generalization performance

or otherwise, is reached. of NARX networks with unnecessary memory structures.
In this experiment, the finite memory machine has 512
IV. EXPERIMENTAL RESULTS states. The machine has input order of 5 and output order

. . . of 4. Its transition function can be described as the simple
Here, we discuss experimental results for a gramma‘ucigl ic function

inference problem and time series prediction problems, sUP
spot daFQ, and laser intensit_y daj[a from the Santa Fe t_ime series y(k) = a(k — 5)a(k) + a(k — 5)y(k — 4)
competition. The grammatical inference problem will use a ulk — 5V — 4 13
NARX neural network, whereas the time series problems will +uk)u(k - 5)g(k - 4) (13)

use degenerate forms of the NARX network: the NSAR’?Nherey andu, represent output and input, respectively, and

we also_ give a b”e.f mtro_ductlon o the the_ory of _dynam| ‘epresents the complementaf The FSM is shown in Fig. 2.
embedding before discussing the results of time series pre

tion. In order to also optimize the architecture of the MLP e depthd of the machine is 9. The training set was 300
' strings randomly chosen from the complete set. The complete
of a NARX network or NSAR, several methods of weigh g y P P

Lo . l9NLet Which consists of all strings of length from 1 dot 1
ellmlne}npn [5], [3.1]’ [47], [64], [66].can be |pcorporated N0 ten in this case) are shown to be able to sufficiently identify
the training algorithm. In the following experiments, network

. . . . finite memory machine with depth[20]. The strings were
are trained using weight decay [31]. All experiments wer ¢ pth[20] 9

. ) . X &ncoded such that input values of 0’s and 1's and target output
trained using back-propagation through time (BPTT) [68]. labels “negative” and “positive” corresponded to floating-point

values of 0.0 and 1.0, respectively.

Initially, before pruning the NARX networks were chosen
to have four hidden nodes, ten input taps, and ten output taps.
NARX networks have been shown to be able to simulatehe number of weights was 91. The memory order of the
and learn a class of finite state machines [8], [21] calledeural network was chosen to be large enough to make sure the
respectivelydefinite and finite memory machin&¥hen being architecture had enough degrees of freedom to learn the large
trained on strings that are encoded as temporal sequenceachine within a reasonable amount of time. The networks
NARX networks are able to “learn” rather large (hundredwere trained with the BPTT algorithm at the learning rate of
to thousands of states) machines, provided that they haué& and weight decay of 0.001. The training time was set to
enough memory, and the logic implementation is not td®000 epochs. For more details, see [20] and [21]. For each of
complex. However, the generalization performance and th® experiments, the weights were randomly initialized within

size of extracted machines are also found to be very sensitthe range of 0.5, 0.5].

A. Grammatical Inference: Learning a 512-State
Finite Memory Machine
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Fig. 4. Sunspot data for years 1700 to 1979.
TABLE |
NORMALIZED MSE FOR ONE-STEP AHEAD PREDICTION ON THE SUNSPOT DATA
Network NMSE No. of parameters
Train (1700-1920) | Test (1921-1955) [ Test (1956-1979)
A (Weigend et al) 0.082 0.086 0.35 43
B 0.094 0.1065 (.449 69
C 0.0966 0.1013 0.4033 31
D (Svarer et al. ) 0.090 0.082 0.35 14

The average training time was approximately 600 epocldeterministic dynamic system is the information necessary to
After training, the trained networks were tested on the remaidetermine the entire future evolution of the system. A time
ing strings of the complete set. A zero error rate showed treries is a set of measures of an observable quantity of the
the networks had learned the complete set. However, wh&ystem over time. An observable quantity is a function only of
trained networks were tested on the strings of length longiwe state of the underlying system. The observatiging are
than ten, the number of errors was no longer zero and plottegrojection of the multivariate state space of the system onto
in the Fig. 3 as a function of the length of testing stringshe one-dimensional (1-D) space. In order to do prediction, we
Note that the performance of NARX networks can be strongheed to reconstruct as well as possible the state space of the
dependent on the selection of memory order [37]. In particulaystem using the information ig(n).
the new testing set consisted of 250 positive strings and 250The embedding theorem motivates the technique of using
negative strings from length 20 to 150 in increments of 10.time-delay coordinate reconstruction in reproducing the phase

Applying the delay damage algorithm described in Secti®pace of an observed dynamical system. A collection of time
Il to prune the taps with small sensitivity measure alwayags in a vector space af dimensions
resulted in the minimal NARX architectures with five input
memory orders and four output memory orders. Furthermore(t) = {y(t), y(t=1), y(t =21, ---, y[t = (d=1)T]} (14)

out of 50 pruning runs, the minimal NARX architectures . o )
always contain the proper subsetut), u(t—5), andy(t—4). will provide sufficient information to reconstruct the states of

The number of weights of pruned networks could be reducedtf dynamical system. The purpose of time-delay embedding
anywhere from 20-30, depending on the number of remainiifgto unfold the projection back to a multivariate state space
memory orders. The time to retrain the pruned networks todkat is representative of the original system [46], [49], [60].
on average, 70 epochs. Furthermore, the generalization ettovas shown that if the dynamical system and the observed
on the remaining strings of the complete set and the stringsantity were generic, then the delay coordinate map frein a
randomly generated from length 20 to 150 was reduce@to dimensional smooth compact manifold 2d + 1-dimensional
. reconstruction space wagdfeomorphismone-to-one differ-

B. The Theory of Embedding ential mapping). The theorem was further refined by Satier

In order to clarify the results of our experiments on timal. [54] such that a measured quantity led to a one-to-one delay
series prediction, we give a brief introduction to the theoryoordinate map as long as the reconstruction dimension was
of embedding; for more details, see [54]. Thtate of a greater than twice the box-counting dimension of the attractor.
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Fig. 5. Relative multistep prediction performance where results were normalized to a variance of 1535. Curves A and D are from previous works and curve
B and C are from the pruned networks; see Table | for more details. Both pruned network models perform better as the number of future predictons increas
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Fig. 6. Relative multistep prediction performance where results were normalized to the variance of the original data set. Curves A and D are from
previous work, and curves B and C are from the pruned networks; see Table | for more details. Both pruned network models perform better as the
number of future predictions increase.

The embedding theorem providessafficient condition for The predictive relationship between the current stftg
choosing the embedded dimensidi large enough so that and the next value of time series can be expressed as
the projection is theoretically able to construct the original

state space. Once a large enoufl: dg has been obtained,y(tJrl):f[S(t)]

any d > dg will also provide an embedding. =f{y®),yt=-T),y(t-2T), ---,y[t—(d=1)T]}. (15)



LIN et al. DELAY DAMAGE MODEL SELECTION ALGORITHM FOR NARX NEURAL NETWORKS 2725

300 T T T T T T T T T

250 - -

200 -

150

100

50

0 1 i 1 1 1 1 1 1 i

0 100 200 300 400 500 600 700 800 900 1000
Fig. 7. Original 1000 laser data.

The embedding theorem provides a theoretical framewoeknbedding coordinates to reconstruct the mapping function.
for nonlinear time series prediction. Once an embeddirfidhe time lags in the initial embedding vector can be equally
dimension is chosen, one remaining task is to approximaie unequally spaced as long as the embedding dimension is
the mapping functiory. It has been shown that a feedforwardarge enough to unfold the state space.
neural network with enough neurons is capable of approximat-
ing any nonlinear function to an arbitrary degree of accurac o
[12], [19], [28], [29]. Neural networks thus can provide a goo& Prediction of Sunspot Data
approximation to the functiorf. These arguments provide Sunspots are dark botches on the sun and yearly averages
the basic motivation for the use of NARX networks to théave been recorded since 1700. The series is shown in Fig. 4
nonlinear time series prediction. and has served as a benchmark for time series prediction

It is still an open question as to how to optimally choose thgroblems. Several researchers have tested the prediction ability
embedding dimensiod and the delay tim&". The embedding of neural networks on this data. For example, Weigehdl.
theorem only guarantees that a sufficiently large embeddif@#] trained a NSAR (or TDNN) network with an embedded
dimensiondg will be capable of unfolding the state space. Itlimension of 12 with eight hidden neurons and pruned the
does not describe how complicated the mapping function willeights by adding a complexity term to the cost function.
be. One may be able to find a minimum embedding dimensi@hey were able to reduce a network with eight hidden nodes
to unfold the state space, but the mapping function may bethree. The embedding dimension remained the same. Svarer
too complicated to approximate. For example, two differewt al. [59] pruned the weights using a second-order sensitivity
embedded dimensions can be equivalent in terms of expressiveasure. Our approach is to prune the orders of networks
power, but the nonlinear function may dramatically differ imlirectly and use the weight decay technique to optimize the
the efficiency of approximation. It should be noted that wiien nonlinear mapping function.
is chosen, the embedding representation will always be equallyFor comparison, we treat the data in the same way as
spaced. This rules out the possibility of any unequally spacéétigendet al. [64] and partition it into a training set from
representation of the embedding dimension. 1700 through 1920 and a testing set from 1921 to 1979. The

In the following experiments, we will use the delay damageata set was scaled to be in the range of [0, 1.0]. We tried
algorithm to prune the taps of a neural network. After pruningarious architectures with various number of hidden nodes
the networks will be retrained at least twice. The final netwotdnd different embedding dimensions. The initial embedding
architecture ends up providing a unequally spaced tempodainension was usually close to 14. However, the largest initial
representation of the state space. These sparse delay archaeter depth was 33. The networks were trained as a one-step
tures can be regarded as the nonlinear versions of SAR modsiead predictor at the learning rate of 0.1 and weight decay
(NSAR’s), and the subset orders of the NSAR provide thef 0.001. After pruning the taps, the networks were retrained.
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Fig. 8. Normalized autocorrelation function of the 1000 laser data.

Our cost function was the normalized mean squared err@riance proposed by Weigenét al. [64] as a performance

defined as measure of the long-term behavior of the models. alerage
Ekes(targek _ predictiork)Q relative I-times iterated prediction variande defined as
NMSE(N) = =£ ‘ ‘
= starge - mean L
~ 11 (x — )2 (16) ary(iterated I) = = — > (we— 0, 1)? (17)
0'2 N bes 4 t=1

wherek = 1.--N enumerates the point in the data $&t where
and meap and o? denote the sample average and sample;,  real data point at time;

variance of the target value ifi. This measure removes the 37 difference between the period of the prediction @nd
data’s dependence on dynamic range and size of the data set, ; predicted value for time after I iterations.

To make comparisons with previous work, the variance W q4| that/ is the number of time steps into the future of the
normalized with the same.value of 1535 [64]. Training Waﬁrediction. The average relative iterated prediction variance is
stopped when the normalized mean squared error was Igf§yn in Fig. 5 and went through from 1921 to 1979. From
than 0.1. . . Fig. 5, it can be seen that the networks B and C that have
Our two best results from the architectures, which awg 5 sely connected tapped delay lines start to perform better
denoted asB and C, are reported in Table I. (Recently,5q ; js increased. Note that the arv is greater than 1.0 since
comparable improvements from committee mgchmes hay& variance of the original data 1920 through 1979 is fairly
been reported [70].) The final number of hidden nOdEférge. If we normalize the arv to the variance of the original

were, respectively, 6 and 3. The final subset orders of g5 set, the results are shown in Fig. 6. Again, the networks
two networks after pruning consisted &, z;—1, x+—9, B and C perform better af is increased.

Tt_11, Tt—13, Tt—14, Tt—31, Tt—33), and (x4, Te_1, Ti—2,
Zt—8, Tr—10, Tt—11, Lt—19, Tt—22), respectively. Table |
lists the one-step-ahead prediction performance of variods
models on the data set. Comparing the NMSE, the single-stepn order to explore the capability of capturing the global
prediction qualities of different models are quite comparabléehavior of NSAR neural networks, we also tested them on

We also compared long-term prediction results to one athe laser data of the Santa Fe competition. The data set consists
other. To do the long-term prediction, the predicted output ¢f laser intensity collected from a laboratory experiment [65].
fed back into the neural network. Hence, the inputs consist Afthough deterministic, its behavior is chaotic as seen in
predicted value as opposed to actual data of the origin tirRég. 7. Fig. 8 shows the normalized autocorrelation function
series. We used theverage relative I-times iterated predictionof the first 1000 training data points.

Prediction of Laser Data



LIN et al. DELAY DAMAGE MODEL SELECTION ALGORITHM FOR NARX NEURAL NETWORKS 2727

300 T T T T T T T T T

250 —

150 |

100 v

50 AL

-
amm——
ane——
-

-50 1 1 1 1 1 1 1 i 1

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Fig. 9. Solid line represents 500 data points predicted by the pruned network when using closed-loop iteration.

The networks were trained as a one-step-ahead predigoadient information of previous time steps. In our experiment,
using the first 1000 points. The data was scaled to zero meha initial learning rate was 0.01, and the cost boruwas
and unit variance. We give the results of our best performifig001. The network was trained with the previously discussed
neural network. The network was chosen to have two hidderean squared error cost function in the batch mode (i.e., errors
layers. The first hidden layer had five neurons, and the secamére accumulated until the end of the data). When the average
layer had three neurons. We used the hyperbolic tangsquared error is less than 0.004, training was stopped, and
function as the nonlinear function in the two hidden layers. Thguning commenced. This procedure was performed twice.
output layer had only one output neuron with linear function. The trained and pruned neural network NSAR gave some
We chose the embedding dimension to be 25. However, tinderesting long-term predictive behavior of the time series.
depth of the tapped delay line was very long (up to 500). Wihe network was able to predict 1000 data points using closed-
used the last 13 subsets: three subsets from the past 100 Watp iteration. By closed-loop iteration, we mean the network
points (i.e.,x:_g9, T:_100, T:—101), and ten subsets from theran autonomously without any reference to the true data. Fig. 9
past 445 data points (i.ex;_443, - - *» Tr—455). We heuristically shows the 500-step iterated prediction from time= 1000.
chose the memory order by observing that the autocorrelatibiy. 10 shows the 1000-step iterated prediction; note that the
function of the training data set was peaked in these areagtwork was able to predict three collapses and that there were
The total number of weights was 152. only two collapses in the training data set. We pruned five

In this experiment, we used the adaptive learning rateps of the original network when trained on the first 1000
algorithm and batch data presentation. The algorithm worlgta points. The final architecture had only 127 weights. It
as follows. The cost function is monitored during trainings worth noting that our experiments with training the same
If the increase of the cost function at tinteis not larger network without pruning quickly led to predictions that were
than the product of the cost of previous time step éimel either noisy or a constant value.
cost bonusx, the learning rate is increased by 10% until the
learning rate reaches the maximum learning rate 1.0, and the
weights are updated. If the increase of the cost function at the
present time step is larger than the product of the cost bonu®etermining of the proper architecture of a dynamical
and the cost of earlier time step, the weight vector of theetwork is a difficult yet critical task. Not only can the
previous time step is restored, and the learning rate decreaseslinear architectures affect the performance, but the memory
by half until it reaches the minimum learning rat®t®); the architecture of dynamical model can have a significant impact
weights are updated according to the smaller learning rate andits dynamical behavior.
the gradient information of one time step ahead. Of course,In this paper, we proposed a pruning-based algorithm to de-
this requires one to keep track of the weight vector and thermine the embedded memory order of NARX recurrent neu-

V. CONCLUSION
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Fig. 10. Solid line represents 1000 data points predicted by the pruned network when using closed-loop iteration.

ral networks and degenerate forms such as NSAR networks. ACKNOWLEDGMENT

This algorithm can also incorporate several useful heuristics,tha authors would like to acknowledge useful discussions

e.g., weight decay, which have been used extensively in statjcy suggestions by G. Flake, D. Hush, M. Maggini, J. Principe,
networks to optimize the nonlinear function. We also show,q the referees.

that this algorithm can demonstrate improved performance on
both nonlinear predictions and grammatical inference tasks.
Furthermore, optimizing the memory architecture and the
nonlinear function through pruning often results in sparsely
connected architectures but with long time windows that arl] H. Akaike, “A new look at the statistical model identificatio ZEE
able o model the global features of the undeing systery, 7% AL CieL L0, 6, B IBIE
quite efficiently. It is an open question as to whether our * Networks vol. 5, pp. 130148, 1994.

pruning model will capture all important memory structure.[3] A. D. Back and A. C. Tsoi, “A comparison of discrete-time operator

- e : ; models for nonlinear system identification,” iddvances in Neural
Recent experiments on artificial problems imply that failure Information Processing Systems @. Tesauro, D. Touretzky, and T.

to capture important memory structure can lead to very poor |Leen, Eds. Cambridge, MA: MIT Press, 1995, pp. 883-890.
generalization performance. [4] U. Bodenhausen and A. Waibel, “The tempo 2 algorithm: Adjusting
. time-delays by supervised learning,” Advances in Neural Information
Though the embedding theorem demonstrates that the order Processing Systems 3San Mateo, CA: Morgan Kaufmann, 1991, pp.
of embedded memory should be large enough in order to 155-161.
provide a guarantee of forming a diffeomorphism mapping[5] Y. Cauvin, “A back-propagation algorithm with optimal use of hidden

. units,” in Advances in Neural Information Processing System®.1
choosing the proper memory order can be a challenge. Choos- 14 ety Ed., 1989, pp. 519-526.

ing different embedding memory architectures corresponds] S. Chen, S. A. Billings, and P. M. Grant, “Non-linear system identifica-

to giving different representations of the state space of the tligggsmg neural networks/ht. J. Contr, vol. 51, no. 6, pp. 1191-1214,

underlying system. The major issue is that such a represef yv.-F. cheng and D. M. Etter, “Analysis of an adaptive technique
tation plays an important role in solving problems. A good for modeling sparse systems|EEE Trans. Acoust., Speech, Signal

representation can make useful information explicit and easy, Bmsceéls(i)’:g(‘e’o'é 3|_7 ’ (‘;’i‘l’észs’él_é(sﬁ'o'r:neeb'aln?fg' W. Cottrell, “Time-delay

to extract. In this work, we only explored classic tapped delay = neural networks: Representation and induction of finite state machines,”
memory structures. It would be interesting to see if similar_ |EEE Trans. Neural Networks/ol. 8, pp. 1065-1070, 1997.

. [9] J. Connor, L. E. Atlas, and D. R. Martin, “Recurrent networks and
results could be achieved for other memory models [3]’ [62]' NARMA modeling,” in Advances in Neural Information Processing

However, a minimal representation does not necessarily mean Systems 4J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds., 1992,
a good representation. Two different representations can be pp. 301-308. . _ . iy

ivalent in terms of expressive bower but mayv make a ar :(Lﬁ_] Y. Le Cun, J. S. Denker, and S. A. Solla, “Handwritten digit recognition
equ'va en _m o p _p Yy g with a backpropagation network,Advances in Neural Information
difference in efficiency and effectiveness of problem solving.  Processing System&990, vol. 2, pp. 396-404.
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