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Abstract—Author Name Disambiguation (AND) is the task
of clustering unique author names from publication records
in scholarly or related databases. Although AND has been
extensively studied and has served as an important preprocessing
step for several tasks (e.g. calculating bibliometrics and sciento-
metrics for authors), there are few publicly available tools for
disambiguation in large-scale scholarly databases. Furthermore,
most of the disambiguated data is embedded within the search
engines of the scholarly databases, and existing application
programming interfaces (APIs) have limited features and are
often unavailable for users for various reasons. This makes it
difficult for researchers and developers to use the data for various
applications (e.g. author search) or research. Here, we design
a novel, web-based, RESTful API for searching disambiguated
authors, using the PubMed database as a sample application. We
offer two type of queries, attribute-based queries and record-
based queries which serve different purposes. Attribute-based
queries retrieve authors with the attributes available in the
database. We study different search engines to find the most
appropriate one for processing attribute-based queries. Record-
based queries retrieve authors that are most likely to have
written a query publication provided by a user. To accelerate
record-based queries, we develop a novel algorithm that has a
fast record-to-cluster match. We show that our algorithm can
accelerate the query by a factor of 4.01 compared to a baseline
naive approach.

Index Terms—Web services, search, PubMed, author name
disambiguation

I. INTRODUCTION

Scholarly databases usually consist of publication records

from several data sources. For example, PubMed1 and Web

of Science2 records are gathered from several publishers and

venues. CiteSeerX3 automatically gathers publicly available

scientific papers from the web. Since data representation can

vary across sources, unique identifiers are needed to identify

the same entities. For example, an author named “Jane Doe”

may appear with her full name “Jane Doe” in one publication,

and with her first initial and last name “J. Doe” in another. For

many reasons, identifying unique author entities is important

for many problems, such as handling author-related queries

and calculating bibliometric and scientometric measures for

authors.

1http://ncbi.nlm.nih.gov/pubmed
2http://webofknowledge.com
3http://citeseerx.ist.psu.edu

There are at least two different ways to identify unique

authors. One approach is to generate a system that assigns

an unique ID for each researcher and to encourage others

to register and identify their publications. ORCID4 is an

example of this approach. The advantage of such an approach

is that it can maintain high-quality disambiguated results if

the author ID exists. The disadvantage is low completeness

because researchers must enter their publications manually.

Currently there are 4.3M ORCID IDs, but only 1.7M IDs have

populated records (publications, affiliations, e-mail addresses,

etc.). Another approach is to automatically identify unique

authors among publication records, using machine learning

classifiers to determine authorship. This approach is known

as Author Name Disambiguation (AND), and many search

engines of scholarly databases use it in their author search

feature.

Although AND for large-scale scholarly databases has been

extensively studied recently [7], [8], [10], [11], [13], [23],

[24], only an early version of the CiteSeerX5 and AMiner6

disambiguation code is publicly available. Several scholarly

databases provide a search module for disambiguated authors

in their search engines, but few of them have publicly available

APIs to allow direct queries without their search interface.

Furthermore, existing databases allow only simple queries (e.g.

querying by name), so the user can retrieve only limited

information. For example, since PubMed does not provide

author name disambiguation in their raw data, researchers

use an outdated result of the Author-ity data, which was

built around 2009 by Torvik and Smalheiser, with an update

still in progress [23]. While the data are available, Author-ity

Exporter7 does not provide any APIs which would make it

easier to acquire and use the disambiguated data.

For these reasons, access to disambiguated authors for all

scholarly databases is limited. This makes it difficult for

developers to use disambiguated author information in their

products, and is equally challenging for researchers who wish

to use disambiguated results in their research. To address this

4https://orcid.org/
5https://github.com/SeerLabs/CiteSeerX
6https://github.com/askerlee/namedis
7http://abel.lis.illinois.edu/cgi-bin/exporter/search.pl
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problem, we propose a novel web service that provides a web-

based, RESTful API for searching disambiguated authors.

The main contribution of this paper is to provide two

types of author queries which serve different purposes: one is

attribute-based and the other is record-based. Attribute-based

queries use an internal resource (attribute) to query authors,

which is supported by indexing records with attributes. An

example is querying an author with the name ”Jane Doe”.

For record-based queries, users provide their own resource to

query authors. An example is to find author and publication

records from a dissertation record that does not exist in the

database. We discuss how to accelerate record-based queries

using our proposed record-to-cluster pairwise classification.

Our service with proposed queries has several use cases.

First, policy makers are eager to understand how scientific

research impacts technological progress. By querying for a

patent, the record-based query will allow people to determine

whether a patent had a scientist as an inventor and view

that scientists’ scholarly research [1]. Second, universities are

eager to understand how the training they provide translates

into subsequent research. The record-based query will make it

possible to enter a dissertation title and the identify the subse-

quent articles that a degree recipient has published. Third, the

relationship between age and scientific productivity is a classic

question in the science of science, one that is increasingly

important as our scientific workforce ages. However, it has

typically been studied using small-scale hand-curated datasets

[6], [12], [21], [28]. Disambiguated data allows researchers to

impute career age for population-scale data and estimate how

productivity varies over a career at scale [17], [22]. Finally, the

new UMETRICS project provides detailed data on the teams

employed on research projects. The ability to link people to the

articles they publish will allow researchers to determine how

the size and composition of teams is related to the quantity

and quality of the research that they produce [27].

In this paper, we particularly use the PubMed database to

test and deploy our web service. We choose this database

because the raw data is publicly available from the National

Library of Medicine’s website8. However, our service is not

limited to the PubMed, and its architecture can be easily

adapted to other scholarly databases. Our web service is

publicly online9. We also made a PubMed author search engine

named PubMedseer10 as a sample application demonstrating

our proposed web service.

The rest of the paper is organized as follows. Section II

discusses related work on our author search web service.

Section III discusses the API design of our web service.

Section IV offers an overview of our architecture of the web

service, highlighting each part in detail. Section V discusses

how we processed the query requests. Section VI explains the

experiments we performed to evaluate the web service. Section

VII concludes and offers directions for future work.

8https://www.nlm.nih.gov/databases/download/pubmed medline.html
9http://heisenberg.ist.psu.edu:5000
10http://pubmedseer.ist.psu.edu:5000

II. RELATED WORK

AND has been studied in the context of various large-scale

scholarly databases [5], including PubMed [13], [23], [24],

CiteSeerX [7], [8], Web of Science [11], and USPTO patent

databases [10]. Although several scholarly databases provide a

search module for disambiguated authors with their associated

search engines, there exist few services to directly query

disambiguated authors without their search module. DBLP11

and Semantic Scholar12 offer an API to query authors, but

users have to go through several steps to obtain the desired

result. DBLP returns the author ID, but the user needs to

perform the query again with the ID to obtain the list of

publications and only through their search engine. Semantic

Scholar offers an API to query with author ID, which the user

needs to obtain from querying the specific papers. ArXiv13

and PubMed offer API for querying publications records,

but querying authors is not specifically provided and their

author records are not disambiguated. For PubMed, Torvik and

Smalheiser [23] developed a search tool, Author-ity Exporter,

to query their disambiguated authors, but their results are

from 2009 and are still being updated. AMiner and Microsoft

Academic14 have APIs to query authors with some attributes

(e.g. name, affiliation, language, etc.). AMiner returns only

the basic information on authors, and Microsoft Academic is

a commercial API and provides only limited access to free

users. Moreover, Google Scholar15 does not provide any APIs

from their service.

These existing services are generally intended for a specific

scholarly database. Also the APIs are mostly provided by

their backend search engine, so their use is not intuitive for

users. They provide only basic query APIs, which feature

querying with names and only a few attributes. In this work,

we propose a web service that is highly modularized, and can

be easily adopted to any scholarly database. Since each module

is independent each other, one can easily modify and use more

appropriate algorithm to adopt to support queries better for

other scholarly database. For example, one can use another

AND algorithm to disambiguate the authors, and then use the

remaining part for supporting queries.

We provide two types of queries to satisfy different users’

needs. One is an attribute-based query which allows users

to query using attributes of each author record, similar to

other services currently provided. Another is a record-based

query, which allows users to query using a specific publication

record from any database. The task is similar to the online

disambiguation [8], [19], which assigns a new record to

existing authors.

Some web services and tools are available to handle specific

tasks on scholarly databases. CiteSeerExtactor [25] provides

a web service to extract metadata from headers and citations.

11http://dblp.uni-trier.de/
12https://www.semanticscholar.org/
13https://arxiv.org/
14http://academic.research.microsoft.com/
15https://scholar.google.com/
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TABLE I
LIST OF AVAILABLE RESTFUL APIS

API Method URL Attributes Description Returns

POST / file=filename Upload a PDF document or BibTeX to query resource ID

GET /attribute/ attribute name=value Query with attribute(s). If attribute name is not specified, it
queries with the author full name. Multiple pairs of attributes
and values (concatenated with &) can be used for query.

Query results (JSON)

GET /resource ID/ order=n Query with the uploaded record. Must specify the author
position to select which author to query. If no position is
specified, the first author is queried.

Query results (JSON)

DELETE /resource ID Delete the resource specified. Success / Error code

Petinot et al. [18] discuss the web API services provided in

CiteSeerX. Shen et al. [20] developed a tool to visualize simi-

larities of ambiguous names so as to interactively disambiguate

author names.

III. API DESIGN

Recall that our API supports two different types of queries

for the disambiguated authors: attribute-based and record-

based. The key difference is what resource is used to query

the disambiguated author data. An attribute-based query uses

internal resources (indexed attributes), while a record-based

query uses external resources (e.g. a publication record) pro-

vided by a user. Managing both internal and external resources

is important in our system. In particular, external resources

should be efficiently and securely stored during the query, and

it is important to ensure that they are deleted properly after

usage. For efficient resource management, we design our APIs

as RESTful APIs. RESTful APIs are known to be light-weight,

scalable and easily accessible [26]. RESTful APIs consist of

four types of HTTP requests, GET, PUT, POST, and DELETE.

GET is used for lookup requests, POST for resource creation,

PUT for mutation, and DELETE for deletion.

Table I shows a list of web APIs provided with our web

servers. Attribute-based queries use a single GET API with

the URL /attribute to query the record and return the result in

JSON format. They query with the full name of the author

as default, and also can query with attribute(s) including

title, name, coauthors, affiliation, venue, and MeSH terms. In

contrast, record-based queries involve the creation, usage, and

deletion of user-provided resources, and so have POST, GET,

and DELETE APIs respectively. Users provide the publication

record to query with a POST API, and the web service parses

the user input to obtain associated author records, and return

a resource ID to identify it. The Resource ID is generated in a

secure manner with a randomized string to keep it secure from

other users and applications. Currently the query data can be

provided by users in either PDF format or BibTeX format.

Additional formats can be supported with associated parsers.

The GET API retrieves disambiguated authors associated with

the query record in JSON format. Users need to specify which

author in the query record to query; the default is to query

the first author. The DELETE API removes the user-provided

resource after its usage, and returns a success code to confirm

the deletion with the user. It is used for explicitly removing

TABLE II
AUTHOR RECORD EXAMPLE

Attribute Value

PMID 11032038

Name C. Lee Giles

Affiliation NEC Research Institute, Princeton, NJ, USA

Title Learning chaotic attractors by neural networks.

Abstract An algorithm is introduced that trains a neural network · · ·
Venue Neural Computation

Volume 12

Issue 10

Pages 2355-83

Year 2000

Coauthors R Bakker, J C Shouten, F Takens, C M van den Bleek

MeSH Algorithms, Artificial Intelligence, Neural Networks · · ·
Chemicals (empty)

Grants (empty)

the user resource, our web server also tracks all resources with

the time to live (TTL) to ensure that all resources are deleted

after certain amount of time.

IV. ARCHITECTURE DESIGN

In this section, we discuss the architecture of the proposed

service and briefly discuss each module. Figure 1 shows an

overview of our proposed system. We first need to disam-

biguate all authors in the scholarly databases offline. We store

the disambiguation results in a SQL database and then index

authors in a search engine to handle attribute-based queries.

The record-to-cluster matching module handles record-based

queries, by finding the appropriate disambiguated author who

most likely wrote the record queried by the user. Users and

other applications use the proposed RESTful API in Table I

to make a request, and the API web server distributes those

requests to the modules appropriately. We discuss each module

further in the following subsections.

A. Author Name Disambiguation

AND identifies unique authors from all author records in

the scholarly databases [5]. Table II shows an example of an

author record in PubMed. The record has several basic pieces

of information on the author, such as name and affiliation, and

also publication information. The goal of AND is to cluster

all author records R = {r1.r2, · · · , rn} and generate a list of
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Fig. 1. Architecture Overview

Fig. 2. Author Name Disambiguation Pipeline

TABLE III
FEATURES USED FOR PAIRWISE CLASSIFICATION FOR DISAMBIGUATION

Attribute Features

Title Cosine (Bag-of-Words), Cosine (Word Embedding)

Abstract Cosine (Bag-of-Words), Cosine (Word Embedding)

Afilliation Cosine (Bag-of-Words)

Venue Cosine (Bag-of-Words)

Grant Cosine (Bag-of-Words)

Chemical Cosine (Bag-of-Chemical Words)

MeSH Cosine (Bag-of-MeSH Terms)

Coauthor Cosine (Bag-of-Names (First Name Initial + Last Name))

Year Absolute Year Difference

unique authors {A1, A2, · · · , Am} and their publication lists

L1, L2, · · · , Lm where
m⋃
i=1

Li = R.

Figure 2 shows the general pipeline of AND. Because

processing AND is not the main contribution of the paper,

we briefly explain our method to disambiguate PubMed.

For all author records, first preprocessing is done to unify

some attribute representations (e.g. removing punctuation, and

converting diacritics to the English alphabet). Then, blocking

is applied to distribute the data into small chunks and cluster

within each of them for efficiency. Next, for each block,

pairwise classification is done for each pair of data, which

classifies whether each pair of records is from the same person

Fig. 3. Precision-Recall of Pairwise Classification for the Method of Treer-
atpituk and Giles [24]

or not. Based on this result, finally we cluster the records to

identify unique authors.

We use a similar setting for each part in the pipeline as in

Kim et al. [10]. The Blocking function combines first initial
and last name. For the pairwise classification, we started with

the state-of-art method suggested by Treeratpituk and Giles

[24] and made a few changes to improve the result. We par-

ticularly choose this method because we proved that it gave the

best results in several databases with a supervised setting (e.g.

USPTO patent database [10], financial entity databases [9]), in

which there are abundant labeled data to train a classifier. Note

that one can also easily replace and use their own algorithm

for the disambiguation, and use our query methods for the web

service. First, we use a new feature set consisting of cosine

distance of Bag-of-words (BoW) vectors weighted with term

frequency-inverse document frequency (TF-IDF), and cosine

distance of word embedding [15] trained on title and abstract

of all PubMed publication, similar to the Müller [16]. Second,

we use additional filtering as in Khabsa et al. [8], to filter out

pairs that have incompatible first names and middle names.

Finally, we use Gradient Boosted Trees [3] instead of Random

Forest [2]; for the former, training and prediction time is faster

and is known to be more robust to overfitting. Figure 3 shows

the improvement in accuracy in pairwise classification result
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compared to that of Treeratpituk and Giles [24]. Evaluation is

done with the same NIH dataset used in the evaluation of the

web service. A detailed explanation of the dataset is provided

in Chapter VI. For clustering, we use density-based clustering

(DBSCAN) [4], which does not require prior guessing of the

number of clusters.

B. Search Engine

A search engine is used to index all attributes of the author

records and store their publication lists, so that it handles the

attribute-based queries. We use Elasticsearch16 as our backend

search engine. In section V-A, the selection of search engine

and the handling of attribute-based queries is covered in detail.

C. Record-to-Cluster Matching

The record-to-cluster matching module is used to process

the record-based queries. Given the author record uploaded

by a user, it returns the disambiguated author cluster that is

likely to be the author of the record. Our proposed record-

to-cluster matching algorithm is used to retrieve the relevant

disambiguated author. A detailed explanation of our proposed

method is in Section V-B.

D. Web Server with RESTful API

We run a web server using the micro web framework

Python Flask17 to handle all API requests from the users

and to manage user resources. We choose Flask because it is

light-weight, and does not require particular tools or libraries.

However, it can be replaced easily with any web framework

that can handle HTTP requests and that manages user file

resources for record-based queries.

The web server is responsible for handling all APIs de-

scribed in Table I. It handles the GET request by sending the

queries to two corresponding modules introduced in Section

V-A and V-B, and returns the query results in JSON format.

Figure 4 shows an example of search results returned by our

API. The server also manages user file resources created by

POST and deleted by DELETE requests. The POST request

accepts user resource data either in BibTeX18 or PDF format.

We use BibTeXParser19 (for LaTeX input) and GROBID [14]

(for PDF input) to extract metadata of the publication, and

keep the metadata in JSON format for the file system. These

resources are maintained with a unique ID generated with the

Linux mkstemp command, to keep them secure and intractable.

It sets each resource created by a user with time to live (TTL)

to ensure that all resources are deleted after use, even without

the user requesting the DELETE API explicitly. This allows a

reasonable volume of storage to be maintained in the server.

The web server is also responsible for returning error codes

of our web service, such as a bad request error (code 400) for

an unknown API request, and a not found error (code 404)

when the user requests GET API with an unknown resource

ID.

16https://www.elastic.co/products/elasticsearch
17http://flask.pocoo.org/
18https://www.ctan.org/pkg/bibtex
19https://github.com/sciunto-org/python-bibtexparser

Fig. 4. Example of a Search Result in JSON Format

E. Author Search Interface

As a demonstration application of our web service, we

developed a web search interface named PubMedSeer ,

for PubMed disambiguated authors. The interface uses the

proposed web APIs to handle all queries, supporting both

attribute-based and record-based queries proposed in our web

service.

V. QUERY PROCESSING

In this section, we describe how we process the two types

of queries we proposed in the backend of our web service.

A. Attribute-based Query

An attribute-based query uses one or multiple attributes in

the author record to retrieve disambiguated authors. To handle

this type of query, we index attributes of each disambiguated

author with a search engine, including title, name, coauthors,

affiliation, venue, and MeSH terms of each publications in

offline mode. We reformulate the attribute-based query request

to the appropriate query to the search engine, and return the

result to users in JSON format.

Recently, Apache Solr20 and Elasticsearch have been widely

used for this purpose. Both use Apache Lucene Core21 to

index the data and provide similar functionalities. While Solr

has good community support and is well documented, Elastic-

search is easy to use and light-weight. Elasticsearch allows us

to make efficient filtering queries and aggregations while Solr

is text search oriented. We particularly choose Elasticsearch

because of its flexibility and scalability. Shards are used as

index partitions for Lucene core. Elasticsearch has a cache

per shard which is useful in case of rapidly changing data,

while Solr uses a global cache. If data is changed in a single

shard, only the corresponding cache is invalidated rather than

the whole global cache, which makes the Elasticsearch flexible

20http://lucene.apache.org/solr/
21https://lucene.apache.org/
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TABLE IV
FEATURES USED FOR PAIRWISE CLASSIFICATION FOR RECORD-BASED

QUERIES

Attribute Features

Title Cosine (Bag-of-Words), Cosine (Word Embedding)

Abstract Cosine (Bag-of-Words), Cosine (Word Embedding)

Afilliation Cosine (Bag-of-Words)

Venue Cosine (Bag-of-Words)

Coauthor Cosine (Bag-of-Names (First Name Initial + Last Name))

Year Absolute Year Difference

Fig. 5. Comparison of Pairwise Classification Results of Feature Sets for
Disambiguation (Table III) and Record-based Queries (Table IV)

in dynamic environment. Scalability is important in our service

because the scholarly databases grows exponentially, and also

better flexibility let us to update the index easily if we need

to update the schema.

B. Record-based Query

A record-based query retrieves the author who most likely

wrote the publication queried by the user. To handle this type

of query, we utilize the pairwise classification method used

during the disambiguation process to find a match between

the query record and disambiguated authors.

1) Reduced Feature Set for Record-based Query: Because

users can provide any type of publication from a wide range of

sources and scholarly databases, we train a new classifier using

a set of features that exist in virtually all publication records.

Table IV shows our reduced set of features which excludes

PubMed-specific attributes from the original features used

for PubMed disambiguation (Table III). Figure 5 shows the

pairwise precision and recall of the new classifier compared

to the original one used for the PubMed disambiguation, tested

on NIH PI dataset (see Section VI for detail). The result

shows some loss of accuracy in general, due to the limited

information used for training the classifier. This loss can be

thought as a trade-off to cover any type of publication record

from various sources.

2) Record-to-Cluster Pairwise Classification: Khabsa et al.

[8] proposed a method to find the most relevant author cluster

for a publication using pairwise classification results. The

method is originally used for online disambiguation, which

dynamically disambiguates new author records from existing

disambiguation results. Although our purpose is different, we

can apply their method to handle record-based queries, and

use their method as a baseline here.

They assign each new author record to an existing cluster

according to the following process: 1) apply blocking on the

author record, 2) find matches among all the records in the

block by measuring record-wise similarity with the pairwise

classifier (which we refer as record-to-record pairwise clas-
sification from now on), 3) assign the new record to the

disambiguated author cluster with the highest vote. The time

complexity of the algorithm is O(mn), where m is the number

of clusters and n is the largest number of author records

among all the clusters in the block. Although this can solve

our problem, the query time can be extremely slow if the block

size is large, e.g. for some Asian names.

Our approach is to reduce the total number of required

pairwise comparisons, by processing record-to-record pairwise
classification for only those candidate clusters that have a

high probability of being a match. To accelerate the process

of finding those candidate clusters, we propose a record-to-
cluster pairwise classification which estimates the similarity

between the query record and each cluster (we refer this

similarity as cluster-wise similarity) with a single classification

operation. To enable this, we calculate the pairwise feature

vector in Table IV between each cluster and the query record.

The idea is to treat each cluster as one single record, where

each attribute value is the union of all values of all records

in the cluster. So for each feature in Table IV, Bag-of-words

(BoW) vectors are calculated as the sum of the vectors within

the cluster,

BoWattribute(C) =
∑

r∈C

BoWattribute(r) (1)

where r is an author record of a cluster C. Each vector is then

used to generate features by calculating the cosine distance

with the BoW vector of the query record. Word embedding

features can also be calculated in the same manner. Then we

predict the cluster-wise similarity using the pairwise classifier.

Our assumption underlying this method is that we can

predict the cluster-wise similarity using the pairwise classifier

trained for record-to-record pairwise classification. To verify

this, we calculate the correlation between the actual match re-

sult and the cluster-wise similarity estimated with the proposed

method. We get a strong positive correlation (0.87), so we can

use the same pairwise classifier to estimate the cluster-wise

similarity.

3) Processing Record-based Query: We process the query

utilizing both the proposed record-to-cluster pairwise classi-
fication and previous record-to-record pairwise classification,

as shown in Algorithm 1. First, we calculate the cluster-wise

similarity using record-to-cluster classification for each cluster

and filter out clusters beneath the threshold tcluster. Then,

to further increase accuracy, we process a re-ranking step.

We process record-to-record pairwise classification for each
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Algorithm 1 Record-based Query

1: function RECORDBASEDQUERY(q)

2: B ← block with same blocking key as q
3: C ← all clusters in B
4: C ′ ← {}
5: for c ∈ C do
6: cluster simc ← PAIRWISERECORDTOCLUS-

TER(q, c)
7: if cluster simc > tcluster then
8: put c in C ′

9: end if
10: end for
11: for c ∈ C ′ do
12: record simc ← average of PAIRWISERECORD-

TORECORD(q, r) of all r ∈ c
13: joint simc ← α × cluster simc + (1 − α) ×

record simc

14: end for
15: return all c ∈ C ′ in descending order

16: end function

author record in the remaining clusters to calculate record-

wise similarities. The final joint similarity score is a linear

combination of the cluster-wise similarity and average of

record-wise similarity as in line 13. The parameters α, tcluster
is selected using grid search with the development set. From

our experiment, we tested in the range [0.0, 1.0] with an

increment of 0.01, and we use α = 0.48, tcluster = 0.54.

The time complexity of the algorithm is O(m) + O(mfn)
where m is the number of clusters and n is the largest

number of author records among all clusters in the block,

and mf is the number of remaining clusters after filtering

with cluster-to-record pairwise classification. It requires m
additional comparisons for cluster-wise similarity, and reduces

(m − mf )n comparisons by filtering out those non-relevant

clusters. Typically the latter is much larger than the former,

because we try to filter non-relevant clusters as much as

possible during the first step of our algorithm. Thus, our

method is faster than the baseline method [8].

VI. EXPERIMENTS

We conducted experiments to measure the query time and

accuracy of proposed attribute-based and record-based queries

for our web service.

A. Experiment Environment

For experiments, we use a single machine to run all compo-

nents of the web service. It has an Intel Xeon CPU E5-2630

V3 @ 2.40 GHz, and runs concurrently up to 32 threads. We

use no more than 64GB of memory, and the code is in python

2.7. We use Red Hat Enterprise Linux (RHEL) Server 7.4. We

use PubMed raw xml files downloaded in late 2017.

B. Experiments on Attribute-based Query

We measure the average query time of our attribute-based

queries for various scenarios. We didn’t measure accuracy of

the attribute-based queries because the accuracy heavily relies

on the attributes available on the data. Our data is indexed

with Elasticsearch on a single machine and is divided into 5

shards. We generated three different types of queries with each

type having 2000 queries. The first type performs searches

only over the name attribute. The second query type uses both

name and MeSH attributes as search criteria. The search key

for the last type combines name, MeSH and title attributes.

Average query time for single attribute, double attribute, and

triple attribute queries are 2.02s, 3.04s and 5.35s respectively.

C. Experiments on Record-based Query

We compare our method for the record-based query in

Section V-B to the baseline method [8] which only uses

record-to-record pairwise classification to retrieve the most

relevant disambiguated author.

1) Performance and Accuracy Evaluation with Labeled
Dataset: We use the NIH PI dataset to compare accuracy and

performance. The dataset comprises (PI ID, PI name, list of

publications in PubMed) tuples, and has 54,260 individuals

and 1,178,459 records. We apply blocking to those records

and then extract 100 popular blocks (which have the largest

number of individuals), and then divide it into two sets for

development and test sets. We use the largest blocks as an

evaluation set to generate evaluation query samples as much

as possible. The remaining blocks are used as a training set.

The training set is used to train the pairwise classifiers for dis-

ambiguation (Section IV-A) and record-based queries (Section

V-B). Approximately 10M positive and negative samples are

generated from the training set. The development set is used

to tune the parameters of the classifiers and the parameters in

the record-based query (Algorithm 1) using a grid search.

The test set is used for the evaluation where we compare

the baseline method [8] and our proposed method. We also

compare our method without the re-ranking step, so that we

only use cluster-wise similarity for ranking retrieved clusters.

This is to see whether we lose accuracy by excessive filtering

(first step of our algorithm), and also to see whether using both

record-to-cluster and record-to-record pairwise classification
improves the results (second step of our algorithm). We form

author clusters with the test dataset, randomly sample 20%

of all records and then remove them from author clusters.

Removed records are used as test queries. To evaluate the

accuracy, for each query we check whether a method retrieves

the correct author cluster (to which the query record originally

belonged). We use the metric recall@k, which checks whether

the right author cluster appears in the top k result of each

query result. Also, we calculate the mean average precision

(MAP), which is the average of inversed rank. If a query has

the right author cluster in rank k, the precision is calculated

as 1/k. Since each query has only one true positive result in

our experiment, the MAP result is identical to mean reciprocal

rank.

The evaluation of the baseline method and our proposed

method tested with 3,538 queries is shown in Table V. Even

without the re-ranking step our method tends to find more
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TABLE V
ACCURACY AND AVERAGE QUERY TIME OF RECORD-BASED QUERIES ON

THE NIH PI DATASET. R@K IS RECALL@K, MAP IS MEAN AVERAGE

PRECISION, AND TIME IS AVERAGE QUERY TIME.

Method r@1 r@5 r@10 MAP Time

Baseline [8] 0.9562 0.9898 0.9901 0.9726 27.37ms

Ours w/o re-ranking 0.9401 0.9958 0.9966 0.9673 8.39ms

Ours w/ re-ranking 0.9661 0.9960 0.9966 0.9817 8.72ms

TABLE VI
AVERAGE QUERY TIME FOR 300 RECORD-BASED QUERIES ON PUBMED

Method Time (w/o caching) Time (w/ caching)

Baseline [8] 247.559s 23.329s

Ours 195.017s 5.815s

relevant clusters than the baseline, although it looses some

accuracy when finding them in the first rank. This shows that

our method successfully filters out only those clusters that are

less likely to be a match during the record-to-cluster pairwise
classification. The result with the re-ranking shows that the

second step of our algorithm further improves the accuracy

using both cluster-wise and record-wise similarity, and when

compared to the baseline, our final method has better accuracy

for all ranges of recall@k. Also, we can see that our final

method has better MAP compared to the baseline and method

without re-ranking. This shows that the relevant cluster can be

found in a higher rank in our method, and also less frequently

entirely missed from the query result. Note that the overhead

of re-ranking is tolerable, and compared to the baseline, our

method is 3.14 times faster.

2) Actual Performance Evaluation: Since the NIH PI

dataset consists of a small portion of all the disambiguated

author data, the query time above does not reflect the actual

query time that users can expect from our service. To compare

and measure the actual performance, we tested on the entire

disambiguated PubMed data. We tested with 300 queries with

each query associated with a different block. We carefully

selected blocks to have varying sizes in order to accurately

measure processing times. Table VI shows the comparison

of the query time between the baseline method and ours. As

we can see from the query time without caching, the speed

improvement from our method is much lower. The lower gain

is due to excessive database queries, so we store and cache

the input vectors for pairwise classification to improve the

query time. We can see that our method is 4.01 times faster

than the baseline method with caching, which shows a similar

result to the experiment we conduct on the labeled dataset. One

can use the threshold tcluster to adjust the balance between

the accuracy and query speed. Higher threshold improves

the speed by filtering clusters more aggressively, while lower

threshold improves the accuracy by considering more clusters.

VII. CONCLUSION

We propose a web service with a RESTful API for searching

disambiguated authors in scholarly databases. Two types of

queries are supported in our service. An attribute-based query

searches appropriate disambiguated authors using attributes

of the author record. A record-based query retrieves the

disambiguated author most likely to be the author of the

publication record provided as a query. The two queries need

to be processed differently since the former uses internal

resources, and the latter uses external resources. Resource

management is provided with RESTful APIs. We studied

two different search engines to handle attribute-based queries

and proposed a novel record-to-cluster pairwise classification
and algorithm to accelerate record-based queries. Our results

show that the record-based query is four times faster than the

baseline method.

Future work could explore record linkage between disam-

biguated authors in other databases and construct a web service

containing unified profiles of multiple scholarly databases. As

an example for our web service with PubMed, we could match

each cluster to Google Scholar and ORCID profiles.
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[13] W. Liu, R. Islamaj Doğan, S. Kim, D. C. Comeau, W. Kim, L. Yeganova,
Z. Lu, and W. J. Wilbur, “Author name disambiguation for pubmed,”
Journal of the Association for Information Science and Technology,
vol. 65, no. 4, pp. 765–781, 2014.

[14] P. Lopez, “Grobid: Combining automatic bibliographic data recognition
and term extraction for scholarship publications,” in International Con-
ference on Theory and Practice of Digital Libraries. Springer, 2009,
pp. 473–474.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[16] M.-C. Müller, “Semantic author name disambiguation with word embed-
dings,” in International Conference on Theory and Practice of Digital
Libraries. Springer, 2017, pp. 300–311.

[17] M. Packalen and J. Bhattacharya, “Age and the trying out of new ideas,”
National Bureau of Economic Research, Tech. Rep., 2015.

[18] Y. Petinot, C. L. Giles, V. Bhatnagar, P. B. Teregowda, H. Han, and
I. Councill, “A service-oriented architecture for digital libraries,” in
Proceedings of the 2nd international conference on Service oriented
computing. ACM, 2004, pp. 263–268.

[19] Y. Qian, Q. Zheng, T. Sakai, J. Ye, and J. Liu, “Dynamic author name
disambiguation for growing digital libraries,” Information Retrieval
Journal, vol. 18, no. 5, pp. 379–412, 2015.

[20] Q. Shen, T. Wu, H. Yang, Y. Wu, H. Qu, and W. Cui, “Nameclarifier:
A visual analytics system for author name disambiguation,” IEEE
transactions on visualization and computer graphics, vol. 23, no. 1,
pp. 141–150, 2017.

[21] D. K. Simonton, “Creative productivity: A predictive and explanatory
model of career trajectories and landmarks.” Psychological Review, vol.
104, no. 1, p. 66, 1997.

[22] R. Sinatra, D. Wang, P. Deville, C. Song, and A.-L. Barabási, “Quan-
tifying the evolution of individual scientific impact,” Science, vol. 354,
no. 6312, p. aaf5239, 2016.

[23] V. I. Torvik and N. R. Smalheiser, “Author name disambiguation
in medline,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 3, no. 3, p. 11, 2009.

[24] P. Treeratpituk and C. L. Giles, “Disambiguating authors in academic
publications using random forests,” in Proceedings of the ACM/IEEE
Joint Conference on Digital Libraries(JCDL’09), 2009, pp. 39–48.

[25] K. Williams, L. Li, M. Khabsa, J. Wu, P. C. Shih, and C. L. Giles,
“A web service for scholarly big data information extraction,” in Web
Services (ICWS), 2014 IEEE International Conference on. IEEE, 2014,
pp. 105–112.

[26] H. Zhao and P. Doshi, “Towards automated restful web service composi-
tion,” in Web Services, 2009. ICWS 2009. IEEE International Conference
on. IEEE, 2009, pp. 189–196.

[27] N. Zolas, N. Goldschlag, R. Jarmin, P. Stephan, J. Owen-Smith, R. F.
Rosen, B. M. Allen, B. A. Weinberg, and J. I. Lane, “Wrapping it up
in a person: Examining employment and earnings outcomes for ph. d.
recipients,” Science, vol. 350, no. 6266, pp. 1367–1371, 2015.

[28] H. Zuckerman and R. K. Merton, “Age, aging, and age structure in
science,” Higher Education, vol. 4, no. 2, pp. 1–4, 1972.

273


