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Abstract—A significant number of scholarly articles in com-
puter science and other disciplines contain algorithms that
provide concise descriptions for solving a wide variety of compu-
tational problems. For example, Dijkstra’s algorithm describes
how to find the shortest paths between two nodes in a graph.
Automatic identification and extraction of these algorithms from
scholarly digital documents would enable automatic algorithm
indexing, searching, analysis and discovery. An algorithm search
engine, which identifies pseudocodes in scholarly documents and
makes them searchable, has been implemented as a part of the
CiteSeerX suite. Here, we illustrate the limitations of start-of-
the-art rule based pseudocode detection approach, and present
a novel set of machine learning based techniques that extend
previous methods.

I. INTRODUCTION

Algorithms are ubiquitous in Computer Science and re-

lated literature. They offer concise stepwise instructions for

solving many computational problems such as searching,

sorting, hashing, clustering, decoding, machine learning, etc.

Furthermore, in various fields other than Computer Science,

efficient solutions to important problems involve transforming

the problem into an algorithmic one, often use fairly standard

algorithms from other fields. For example, algorithms for stock

portfolio optimization are used for diversifying search results

in information retrieval systems [1]. Likewise, in bioinformat-

ics, Hirschberg’s algorithm [2] is widely used to find maximal

global alignments of DNA and protein sequences. In addition,

a thorough knowledge of state-of-the-art algorithms is also

crucial for developing efficient software systems.

Conference No. of Algorithms
SIGIR 75

SIGMOD 301
STOC 74
VLDB 278
WWW 142

TABLE I
APPROXIMATE NUMBER OF ALGORITHMS PUBLISHED IN COMPUTER

SCIENCE CONFERENCES 2005 - 2009.

A. Algorithms in Scholarly Documents

Researchers are constantly developing new algorithms to

either solve new problems that have not been solved before, or

algorithms that improve upon existing ones. Often, researchers

report their new algorithms in scientific publications. Bhatia

et al. [3] provide an estimate of the number of algorithms

published in some major computer science conferences during

2005 - 2009, which we reproduce here (Table I) for reference.

With dozens of new algorithms being reported in these con-

ferences every year, it is crucial to have systems that automat-

ically identify, extract, index and search the ever increasing

collection of algorithms, both new and old. Such systems can

prove useful to researchers and software developers looking

for cutting-edge solutions to their problems.

Finding well-known standard algorithms is not difficult,

as they are usually already cataloged and made searchable,

especially those in online catalogs. We define a standard

algorithm as an algorithm that is well known and is usually

recognized by its name. Examples of standard algorithms

include Dijkstra’s shortest-path algorithm, Bellman-Ford algo-

rithm, Quicksort algorithm, and Knuth-Morris-Pratt algorithm.

Standard algorithms are usually collected and cataloged manu-

ally in algorithm textbooks (e.g. [4]), encyclopedias (especially

the ones available online such as Wikipedia1), and websites

targeted at computer programmers (e.g. Rosettacode.org2).

As an initial survey, we parsed Wikipedia algorithm pages

in 2010, and found that roughly, at the time of this paper,

1,765 standard algorithms are cataloged in Wikipedia.org. The

National Institute of Standards and Technology (NIST)3 also

has a dictionary of over 289 standard algorithms. However,

unlike these well-known standard algorithms, newly published

algorithms are not cataloged by the sources mentioned above,

because they are simply too new and too many, making it also

difficult to manually catalog them.

Manually searching for these newly published algorithms is

a nontrivial task. Researchers and others who aim to discover

efficient and innovative algorithms usually actively search and

monitor relevant new publications, usually in their fields, to

keep abreast of the latest algorithmic developments. Having to

read an entire document is tedious. The problem is more prob-

lematic if algorithm searchers are novices in document search,

especially those who choose poor search keyword(s). Thus to

alleviate this problem, we propose automatic identification and

extraction of algorithms, in particular their pseudocode since

many algorithms are written as such, from digital documents.

1http://www.wikipedia.org/
2http://rosettacode.org/wiki/Rosetta Code/
3http://xlinux.nist.gov/dads/
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Fig. 1. Example pseudocode, taken from [6]

Fig. 2. Example pseudocode without a caption, taken from [7]

B. State-of-the-Art in Algorithm Detection

Identifying and extracting various informative entities from

scholarly documents is an active area of research. For al-

gorithm detection, Bhatia et al. [5] briefly describe methods

for automatic detection of pseudocodes in Computer Science

documents. Their method assumes that each pseudocode is

accompanied by a caption. An example of a pseudocode

with a caption is given in Figure 1. Such a pseudocode can

then be identified using a set of regular expressions to detect

the presence of the accompanied caption [3], [5]. Such an

approach, however, is limited in its coverage due to its reliance

on the presence of pseudocode captions and wide variations

in writing styles. From our dataset (DS2) of 258 scholarly

documents (see Sect. III), we found 275 pseudocodes, 25.8%

(71 out of 275) of which did not have an accompanied

caption. Figure 2 shows an example of a pseudocode without

a caption. Thus, these pseudocodes will remain undetected by

their approach.

Since algorithms represented in documents do not conform

to specific styles, and are written in arbitrary formats, this

becomes a challenge for effective detection and extraction.

Here we improve the performance of pseudocode detection

by capturing both pseudocodes with and without captions.

C. Our Contributions

This work has the following key contributions:

1) We propose three methods for detecting pseudocodes

in scholarly documents, including an extension of the

existing rule-based method proposed by Bhatia et al.

[5], one based on machine learning techniques, and a

combination of these two.

2) We use two datasets of scholarly documents selected

from CiteseerX repository: one for identifying rules and

features, one for evaluation (the datasets are available

for research purposes).

3) We evaluate our proposed methods on a dataset of 258

scholarly PDF documents selected from the CiteseerX

repository.

II. BACKGROUND AND RELATED WORK

Identifying and extracting informative entities such as math-

ematical expressions [8], [9], tables [10], [11], and figures

[12] from documents has been extensively studied. Image pro-

cessing and Optical Character Recognition (OCR) have been

used for automatic extraction of data points and text blocks

from 2-D plots in PDFs [12]. They also propose a way to

index the extracted information and make it available through

a search interface. TableSeer [13] automatically identifies and

extracts tables in digital documents. BioText4 search engine,

a specialized search engine for biology documents, also offers

the capability to extract figures and tables [14]. Bhatia et

al. [3], [5] propose a set of methods used for detecting

document-elements, e.g. tables, figures, and algorithms. Their

methods rely on the assumption that the document-elements

are presented along with captions. They detect the presence of

a document-element by detecting the corresponding caption

using a set of regular expressions. Bhatia et al. [3] propose

an algorithm search engine for software developers. Their

system collects pseudocodes available in scholarly documents

and make them searchable via full text search powered by

Solr/Lucene5. Our work here extends their pseudocode detec-

tion approach.

III. DATASETS

Two datasets are used in this paper. The first dataset (DS1)

contains 100 scholarly documents manually selected from the

CiteseerX repository to cover diverse types of pseudocodes.

This dataset is used to construct rules and regular expressions

for our rule-based methods, and determine feature sets for

our machine-learning based methods. The other dataset (DS2)

consists of 258 scholarly PDF documents randomly selected

from CiteseerX consisting of 275 pseudocodes. It is used for

validation.

A. Preprocessing

Textual information was extracted from each PDF document

using PDFBox6. Experiments across text extraction tools (i.e.

PDFTextStream7, Xpdf8, TET9, and PDFBox) found PDFBox

to be the most suitable because it best preserves line sequences.

We modified the source code in PDFBox to also extract font

size information from each text line.

4http://biosearch.berkeley.edu
5http://lucene.apache.org/solr/
6http://pdfbox.apache.org/
7http://snowtide.com/PDFTextStream
8http://www.foolabs.com/xpdf
9http://www.pdflib.com/products/tet/
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B. Data Labeling

A document is treated as a sequence of text lines, each

identified with a line number. We manually label each line as

follow:

0 Not part of pseudocode content

1 Part of pseudocode content

Note that a pseudocode caption is treated as pseudocode

content. A line labeled with 1 is said to be a positive line,

otherwise it is negative. A pseudocode is defined as a set of

consecutive positive lines.

IV. OUR APPROACHES

<CAPTION> ::= <DOC_EL_TYPE> <Integer> <DELIMITER> <TEXT>
<DOC_EL_TYPE> ::= <FIG_TYPE> | <TABLE_TYPE> | <ALGO_TYPE>
<FIG_TYPE> ::= FIGURE|Figure|FIG.|Fig.
<TABLE_TYPE> ::= TABLE|Table
<ALGO_TYPE> ::= Algorithm|algorithm|Algo.|algo.
<DELIMITER> ::= : | .
<TEXT> ::= <A String of Characters>

TABLE II
A GRAMMAR FOR DOCUMENT-ELEMENT CAPTIONS

Many scientific documents use pseudocodes for compact

and concise illustrations of algorithms. Pseudocodes are nor-

mally treated as document elements separate from the running

text, and usually are accompanied with identifiers such as

captions, function names, and/or algorithm names. Since pseu-

docodes can appear anywhere in a document, these identifiers

usually serve the purpose of being anchors, which can be re-

ferred to by context in the running text. Here we present three

algorithms for detecting pseudocodes in scholarly documents:

rule based (PC-RB), machine learning based (PC-ML), and

combined (PC-CB) methods.

A. Rule Based Method (PC-RB)

We previously proposed a rule-based pseudocode detec-

tion algorithm [3], [15], [16], which utilizes a grammar for

document-element captions to detect the presence of pseu-

docode captions (See Table II). Here, we extend the pre-

vious approach by adding the following rules to improve the

coverage and reduce false positives:

• A pseudocode caption must contain at least one algorithm

keyword, namely pseudocode, algorithm, and procedure.

• Captions in which the algorithm keywords appear after

prepositions (e.g. ‘Figure 15: The robust envelope ob-
tained by the proposed algorithm’) are excluded, as these

are not likely captions of pseudocodes.

Hence, given a document, the PC-RB method outputs a set of

line numbers, each of which represents a pseudocode caption.

B. Machine Learning Based Method (PC-ML)

The PC-RB method yields high precision, however it still

suffers from low coverage resulting in poor recall. We found

that 25.8% of pseudocodes in our dataset DS2 do not have

Fig. 3. Example of sparse regions (sparse boxes)

accompanied captions. These pseudocodes would remain un-

detected by the PC-RB method. To correct this, we propose

a machine learning based (PC-ML) method to directly detect

the presence of pseudocode content (instead of their captions).

This originates from the observation that most pseudocodes

are written in a sparse manner, resulting in sparse regions in

documents. We call such sparse regions sparse boxes. The PC-

ML method first detects and extracts these sparse boxes, then

classifies each box whether it is a pseudocode or not. The

following subsections explain the sparse box identification,

the feature sets, and the classification algorithms used. Given

a document, the PC-ML method outputs a set of tuples of

〈start, end〉 line numbers, each of which represents the start

and end lines of a pseudocode.

Though OCR based techniques have been explored, textual

content can be directly extracted from most PDF files. It seems

that converting documents into images and applying OCR

algorithms would just add more noise to the extracted text.
1) Sparse Box Extraction: We define a sparse box as a

set of at least N consecutive sparse lines. Figure 3 shows an

example of sparse boxes. A sparse line is a line whose ratio of

the number of non-space characters to the average number of

characters per line is less than threshold M. We found that N =

4 and M = 0.8 work best for our dataset DS2. We evaluate our

sparse box extraction method in two perspectives: coverage
and accuracy. Given a set of sparse boxes B extracted from

a document d, the coverage is defined as following:

Coverage =
|{l|l ∈ b, b ∈ B, l is positive}|

|{l|l ∈ b, b ∈ B}|
The coverage utilizes line-wise recall to quantify how much

pseudocode content can be captured within the extracted
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sparse boxes. Since the sparse box detection process filters in

candidates for pseudocodes, it is more favorable to have high

coverage to minimize the loss of actual pseudocode boxes. Our

sparse box extraction method yields a coverage of 92.99%.

Among all the sparse boxes detected in our dataset, we found

237 (out of 275 (86.18%) actual pseudo codes) pseudocode

boxes.
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Fig. 4. Distribution of upper boundary deltas of pseudocode boxes
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Fig. 5. Distribution of lower boundary deltas of pseudocode boxes

The accuracy is measured using the delta evaluation for

the pseudocode boxes. For each pseudocode box, we measure

both the upper boundary delta (the start line number of the

actual pseudocode minus the start line number of the sparse

box) and lower boundary delta (the end line number of the

actual pseudocode minus the end line number of the sparse

box). Figures 4 and 5 show the upper and lower boundary

delta distributions of the 237 pseudocode boxes.

2) Feature Sets: We extract 47 features from each of the

sparse boxes. These features are classified into 4 groups: font-

style based (FS), context based (CX), content based (CN),

and structure based (ST). The FS features capture the various

font styles used in pseudocodes. The CX features detect the

presence of pseudocode captions. The CN features capture

the pseudocode specific keywords and coding styles. The

ST features characterize the sparsity of pseudocodes and the

symbols used.

3) Pseudocode Classification: Each detected sparse box

is classified whether it is a pseudocode box or not. We

try 12 baseline classification algorithms namely, Logistic

Model Trees (LMT), Multinomial Logistic Regression (MLR),

Repeated Incremental Pruning to Produce Error Reduction

(RIPPER), Linear Logistic Regression (LLR), Support Vector

Machine (SVM), Random Forest (RF), C4.5 decision tree,

REPTree, Decision Table (DT), Random Tree (RT), Naive

Bayes (NB), and Decision Stump (DS).

In addition to the baseline classifiers listed above, we also

try ensemble methods such as uniform weighted majority

voting and probability averaging methods among these base

classifiers. First, the 12 base classifiers are tested and ranked

by their precision, recall, and F1 scores. Then, the first 2, 3, ...,

12 ranked classifiers in each ranked list are used for majority

voting and probability averaging methods. Note that we also

try other ensemble methods such as AdaBoost, Bagging, and

Rotation Forest but overall the majority voting and probability

averaging methods perform much better.

C. Combined Method (PC-CB)

Though the PC-ML method can capture the pseudocodes

that do not have accompanied captions, some pseudocodes

that are not first captured in one of the sparse boxes would

still remain undetected. Mostly, such pseudocodes are either

written in a descriptive manner (hence do not result in sparse

regions in the document), or are figures (the text extractor

cannot extract images). In our dataset DS2, 35 pseudocodes

(out of 275 actual pseudocodes) cannot be captured using the

sparse box extraction. However, these undetected pseudocodes

may have accompanied captions and hence might still be

detected using the PC-RB method. We propose a combined

method (PC-CB) of the PC-RB and the PC-ML using a simple

heuristic as follows:

STEP1 For a given document, run both PC-RB and PC-ML.

STEP2 For each pseudocode box detected by PC-ML, check

whether there is a pseudocode caption detected by PC-RB

nearby. If there is, the pseudocode box and the caption are

combined.

V. EVALUATION AND DISCUSSION

We evaluate the three pseudocode detection algorithms on

dataset DS2, using 10-fold document-wise cross validation.

A. Evaluation Metrics
Standard precision, recall, and F1 are used for evaluating

the performance. Let Tg be the set of all pseudocodes, Tr
be the set of detected pseudocodes, so that the correctly
detected pseudocodes are Tg

⋂
Tr. These metrics are defined

as follows:

precision =
|Tg

⋂
Tr|

|Tr|
, recall =

|Tg

⋂
Tr|

|Tg|
, F1 =

2 · precision · recall
precision + recall

B. Results

Table III lists notable results. As expected, the rule-based

method (PC-RB) yields high precision with a cost of low re-

call. Using machine learning techniques (PC-ML), the overall

performances (in terms of F1) are improved. The combine

method (PC-CB) of PC-RB and a majority voting of LMT,

Random Forest, and RIPPER classification models§ performs
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Method Model Pr% Re% F1%

PC-RB RuleBased 87.12 44.57 58.97

PC-ML MLR† 80.35 56.78 66.54
PC-ML !LMT-RF-RIPPER-MLR 85.31 57.04 68.37
PC-ML +NB-RIPPER-LMT-MLR 79.61 59.37 68.02
PC-ML !NB-RIPPER-LMT-MLR 78.26 60.05 67.96
PC-ML !LMT-RF-RIPPER 88.84 53.74 66.97

PC-CB LMT‡ 79.64 67.89 73.30

PC-CB !LMT-RF-RIPPER§ 87.37 67.17 75.95
PC-CB +LMT-RF-RIPPER 83.49 67.92 74.90
PC-CB !NB-RIPPER-LMT-MLR 78.28 70.72 74.31
PC-CB NB 37.86 75.89 50.52

TABLE III
PRECISION, RECALL, AND F1 OF THE PSEUDOCODE DETECTION METHODS

USING DIFFERENT CLASSIFICATION METHODS. (‘!’ DENOTES MAJORITY

VOTING, ‘+’ DENOTES PROBABILITY AVERAGING)

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0 2 4 6 8 10 12 14

F
1

# Base Classifiers

CB-Maj. Vote CB-Prob. Avg. CB-LMT

Maj. Vote Prob. Avg. Logis�c

Fig. 6. Comparison of the ensemble methods against the best baseline
classifiers in PC-ML and PC-CB. The dash lines and solid lines compare the
performance between single classifier, majority vote, and probability averaging
performance of PC-ML and PC-CB methods respectively.

the best in terms of F1, improving the performance over the

state-of-the-art (the rule based method) by 16.98% (The recall

is improved by 22.6%, while the precisions are on par.).

C. Impact of Ensemble Methods

The ensemble methods result in a greater improvement

compared to only using baseline classifiers. Figure 6 compares

the performances (in terms of F1) between the ensemble

methods and the best baseline classifiers for PC-ML (MLR†)

and PC-CB (LMT‡). The X-axis denotes the first k baseline

classifiers, ranked by their F1 scores, used in each ensemble

method. We conclude that the ensemble methods are useful

when the best baseline classifiers are combined. However, the

performance of ensemble methods can decrease as the number

of classifiers grows. This might be because bad classifiers

impede the collective decision of the good ones. Unlike

traditional document classification techniques wherein feature

space can grow large as the number of documents increases

(to handle the pattern and lexical diversity, etc.), all of our

proposed methods scale well with document growth as the

feature size is fixed.

VI. CONCLUSIONS

We have presented three methods for detecting pseudocodes

in scholarly documents: rule based (PC-RB), machine learning

based (PC-ML), and combined (PC-CB) methods. Our PC-
RB method extends the state-of-the-art approach. The PC-ML
method employs machine learning techniques to extract sparse

boxes from a document and classifies each of them whether it

is pseudocode or not using a novel set of 47 features. PC-
CB captures the benefits of the both former methods. The

best performance in terms of F1 is achieved by the PC-CB
method with the combination of the rule-based method and the

majority vote of LMT, RF, and RIPPER classifiers. Moreover,

we present an analysis of the performance increase using the

ensemble methods. Future work could investigate scalability

for large datasets such as the over 3 million documents in

CiteseerX repository.
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