
Cloud Computing: A Digital Libraries Perspective
(To appear in IEEE Cloud 2010)

Pradeep Teregowda, Bhuvan Urgaonkar
Computer Science and Engineering,

Pennsylvania State University,
University Park, PA 16802, USA

C. Lee Giles
Information Sciences and Technology,
Computer Science and Engineering,

Pennsylvania State University,
University Park, PA 16802, USA

Abstract—Provisioning and maintenance of infrastructure for
Web based digital library search engines such as CiteSeerx
present several challenges. CiteSeerx provides autonomous ci-
tation indexing, full text indexing, and extensive document
metadata from documents crawled from the web across com-
puter and information sciences and related fields. Infrastructure
virtualization and cloud computing are particularly attractive
choices for CiteSeerx, which is challenged by both growth in
the size of the indexed document collection, new features and
most prominently usage. In this paper, we discuss constraints
and choices faced by information retrieval systems like CiteSeerx
by exploring in detail aspects of placing CiteSeerx into current
cloud infrastructure offerings. We also implement an ad-hoc
virtualized storage system for experimenting with adoption of
cloud infrastructure services. Our results show that a cloud
implementation of CiteSeerx may be a feasible alternative for
its continued operation and growth.

I. INTRODUCTION

Cloud computing [4] offers information retrieval systems,
particularly digital libraries and search engines, a wide variety
of options for growth and reduction of maintenance needs
and encourages efficient resource use. These features are
particularly attractive for digital libraries, repositories, and
search engines such as CiteSeerx [12], [8]. The dynamic and
elastic provisioning features of a cloud infrastructure allow
rapid growth in collection size and support a larger user base,
while reducing management issues.

The pace of growth of information available on the Web
and the challenge in finding relevant and authoritative sources
of information make information retrieval systems such as
CiteSeerx very useful. CiteSeerx is an application instance
of SeerSuite [22], a framework for building digital libraries,
repositories and search engines. SeerSuite was developed as
a result of extensive research and development with the goal
of enabling efficient dissemination of scientific information
and literature. The autonomous citation indexing feature [11],
exhaustive document metadata and the size of documents
indexed make CiteSeerx an effective and popular tool in
research.

SeerSuite adopts a service-oriented architecture and takes
advantage of numerous open source applications, modules and
components. Prominent among these are Apache Solr [2] for
indexing documents and relations, the java spring framework
for applications and user interfaces, and metadata extraction
modules written in perl and java. SeerSuite uses state of the

art, machine learning methods for automated metadata extrac-
tion, autonomous citation indexing, author disambiguation and
other proposed features. The use of these application compo-
nents have helped reduce feature and software development
time and improve efficiency of maintenance and operations.
As such, an examination of cloud computing infrastructure is
particularly relevant for SeerSuite application instances as in
CiteSeerx.

The rest of this paper is arranged as follows, We begin
with background and related work in section II and describe
the architecture of SeerSuite and its deployment in CiteSeerx.
We discuss cloud computing infrastructure in the context of
SeerSuite in section III, and the cost estimation for hosting
CiteSeerx on cloud offerings in section IV. We examine in
detail optimizing cloud hosting by placing selected services in
the cloud in section V. Virtualization can be part of SeerSuite
implementations and is discussed in sections VI and VII. We
discuss future work in VIII and conclusions in IX.

II. BACKGROUND AND RELATED WORK

Cloud computing and infrastructure have been discussed in
the context of information retrieval systems which are related
to grid computing and distributed computing [15]. In these
discussions, the focus has been either on cloud computing for
data storage infrastructure or the compute infrastructure. A
discussion of cloud computing for scalability in preprocessing,
harvesting, transformation and storage is provided by [19] in
the context of crawling the Web with Sindice.

In the following sub sections, we briefly overview the
architecture of the SeerSuite application framework and its
deployment as CiteSeerx. This section is meant to provide
an understanding of the application requirements that are
crucial for understanding the challenges and the need for
infrastructure virtualization and abstraction.

A. SeerSuite Architecture

Figure 1 provides an overview of SeerSuite architecture.
SeerSuite includes components of both web search sys-
tems [18] and digital libraries [3], [5]. SeerSuite consists
of several components and services loosely coupled together
with REST and SOA interfaces. We group components of
the framework into Web application, data storage, extraction,
ingestion, and maintenance systems. These components can
function as standalone applications.

Fig. 1. SeerSuite Architecture

1) Web Application: The primary interface between users
and SeerSuite is the Web application. Users can search,
browse, and traverse the collection through this interface.
Queries in SeerSuite are supported through an interface over
REST to an index, an inverted file data structure which allows
for fast and accurate retrieval. Results obtained from the
index are processed by the application and with the database
displays search results. Users can view document metadata
from summary pages. These summary pages allow a user to
download a cached copy or be directed to another source, view
citations from the document, view tags created by users, and
track changes to the document.

The autonomous citation indexing feature enables users to
rank documents based on citations to the document inside the
collection as well as browse the collection through citation
links. These features require the citation graph structure of the
collection to be stored in the database. In addition to providing
user access through web pages, SeerSuite supports an Open
Archives and an Application Programming Interface, which
provide programmatic access to the database.

CiteSeerx supports myCiteSeer, a personalization portal
which with support of the database, allows users to store
queries, document portfolios, tag documents and make cor-
rections to document metadata.

2) Crawling and Metadata Extraction: The document ac-
quisition process of SeerSuite includes two major tasks. The
first is to obtain documents relevant to the collection. A
focused crawler [7] traverses the web to find documents
relevant to a particular topic. In SeerSuite, a focused crawler
scans web pages from a crawl list and fetches documents,
mostly PDF, embedded in these pages. Before metadata ex-
traction can take place, the incoming documents are filtered
and converted into text by filtering and document conversion
modules. Conversion modules use standalone off the shelf
applications such as PDFTet or PDFBox for converting doc-
uments. SeerSuite adopts state of the art metadata extraction

methods to extract document metadata using heuristics and
machine learning methods. The header parser [17] extracts
document title, author, abstract and affiliation information. A
reference parser, ParsCit [9] extracts reference information
including citations and citation metadata. Documents can
be processed individually or through a batch process, using
Business Process Execution Language(BPEL), orchestration of
individual service oriented modules.

3) Ingestion: Processed documents from the extraction
system are ingested into the collection. In the first step, the
metadata extracted from the documents and metadata from
the crawl are aggregated into a single file, which serves as
the source for updates to the database. Ingestion involves the
database, the repository and the extraction systems. This step
adds information about the incoming document and embedded
objects to the database and updates the citation graph structure.
The document metadata, processed files with metadata ex-
tracted by different modules, and original document are placed
in the repository.

4) Maintenance: Updates to the index, generating charts
and statistics are part of the maintenance service. The mainte-
nance flow generally involves the database, the index and the
repository.

5) Federated Services: While SeerSuite offers several fea-
tures for document/citation search and indexing, services such
as table, algorithm, figure search are also valuable to users.
However, such services may have their own stack of com-
ponents and interfaces. The table search feature in CiteSeerx

is one such service. The components are hosted along with
existing CiteSeerx services, but the interface and storage
services for table search are independent of the main index
and database. Such a federated approach is useful for services
still being researched or developed.

6) Backup and Replication: CiteSeerx maintains both of-
fline and onsite backups for the repository, database and index.

B. Deployment

CiteSeerx indexes more than one and half million docu-
ments currently serving two million hits every day. It utilizes
several terabytes of storage for storing the cached copies of
crawled documents, database, index and information extracted
from documents. Services supporting CiteSeerx are distributed
across several machines. Infrastructure for CiteSeerx services
is off the shelf and heterogeneous in nature.

Figure 2 shows the deployment of SeerSuite for CiteSeerx.
The components are labeled as follows. The group of machines
labeled 1 refer to the load balancers in a hot-cold cluster.
These direct traffic arriving to the Web server cluster labeled
2. The index, based on Apache Solr, for documents and tables
are grouped under label 3. The Web servers are supported by
the database in group 4. CiteSeerx uses a MySQL database.
The document cache requests and storage for the system
are handled by the repository labeled 5. This repository is
shared with Web servers using the Redhat Global File System
(GFS) over Global Network Block Device (GNBD). The block
labeled 6 is the ingestion system, which operates from the

machine hosting the repository. It interacts with the database,
repository and DOI service. The crawler labeled 8, makes use
of an NFS based storage labeled 7, shared with the extraction
system at 9.

The infrastructure consists of heterogeneous systems; ex-
traction systems with dual core processors, 3 GB of RAM,
web servers and index with two dual core CPUs, 16 GB of
RAM, and storage systems with two dual core CPUs, 16 GB
of RAM and 11 TB of storage space. Services are distributed
based on expected load and functionality.

Fig. 2. CiteSeerx Infrastructure Overview

Limitations: This setup poses limitations on future growth.
Shared storage over GNBD and GFS, without an underlying
storage infrastructure such as a NAS or SAN, cause locking of
the storage space with disruption to other services. Addition-
ally, growth in services offered places considerable stress on
compute resources. Growth also exposes the lack of resources
for management of infrastructure and services.

III. CLOUD INFRASTRUCTURE FOR CITESEERx

SeerSuite based applications are particularly suited for tak-
ing advantage of virtualized hardware resources and cloud
infrastructure. Virtualization of resources can reduce the main-
tenance requirements considerably. Dynamic computational
needs of processing documents and Web applications can take
advantage of the elasticity provided by cloud infrastructure.
With some exceptions in the Web application particularly
the myCiteSeer component, most of the data stored with
SeerSuite instances is freely available on the Web. This aspect
of SeerSuite data enables easy adoption of cloud infrastructure.

Before such a deployment can be considered, the cost and
feasibility of hosting these components and processes on the
cloud need to be studied. The key questions we are interested

in answering is whether moving CiteSeerx to a cloud would
be (a) feasible and (b) cost effective. With respect to (b), we
are interested in the following refinement: instead of moving
the entire application to a cloud, how cost effective would it
be to move well chosen components to the cloud and host
the rest locally ? In the remainder of this section, we discuss
the feasibility of being able to run components in a cloud as
well as the amount of effort needed for such a migration. We
also conduct a qualitative discussion of cost concerns. In the
next section, we conduct a quantitative analysis of the cost
involved in moving CiteSeerx components to representative
cloud environments. We look at cost analysis for moving parts
of CiteSeerx to a cloud in section V.

A. Services and the Cloud

All services supporting SeerSuite can be hosted on cloud in-
frastructure with modifications. We study various components
of CiteSeerx and their characteristics, to help understand any
advantages or disadvantages obtained by placing these com-
ponents on the cloud. We discuss this issue in two contexts,
the effort required to migrate a component or service to cloud
infrastructure and the cost of such placement.

1) Web Application: Other then the user interface hosted on
the Web servers, the database, the index and repository are part
of the the application response to user requests. The variation
in user load makes these services attractive as candidates for
hosting this application on cloud infrastructure.

• Migration effort: In addition, the application would re-
quire modifications to state information stored as part of
myCiteSeer.

• Costs: The Web application has a large footprint, in traffic
passing through it, hence likely to be expensive to host
this service on current cloud offerings.

• Other considerations: This service has significant data
access requirements, hosting is linked to the location of
the database, index and repository services.

2) Metadata extraction and Conversion: The metadata ex-
traction and conversion services are responsible for acquiring
documents for the collection. If the documents are acquired
one at a time (when users submit documents) the extraction
and conversion services are not resource intensive. In the
case of batch processing documents, the process is resource
intensive for the period of operation and benefits from elas-
ticity. When batch processing documents, infrastructure can
be dedicated to the service and once processing is complete
resources can be freed.

• Migration effort: Most extraction and conversion mod-
ules, use multiple programming languages and applica-
tions, which may not be supported by most current cloud
offerings. Refactoring effort is significant.

• Costs: The costs are likely to be reasonable as the traffic
through this process is limited.

Thus, metadata extraction services in the batch processing
mode are strong candidates for hosting on the cloud. This fact
has been borne out by earlier literature covering distributed

computing [15], use of peer to peer resources [21] and cloud
computing [19] efforts.

3) Ingestion and Maintenance: The ingestion system has
one of the smallest footprints in the system, This process
includes obtaining the digital object identifiers and methods
for adding processed documents into the collection.

• Migration effort: Minimal, the code is homogeneous and
supported, with minor modifications required.

• Costs: The traffic flow through this process is low. Hence
costs are likely to be reasonable.

• Other considerations: If placed on the cloud by itself,
some modification to other services will be required.

4) Focused Crawler and Submissions: Focused crawlers are
responsible for acquiring documents from the Web for addition
to the collection.

• Migration effort: Minimal, the code is fairly homoge-
neous and supported in many cloud offerings.

• Costs: The traffic flow through this service is minimal.
Hence costs are likely to be reasonable.

Since the load factor of the crawler is fairly elastic, it is
well suited to take advantage of the underlying infrastructure.
This fact is also borne out by [19].

5) Maintenance: The maintenance functions are responsi-
ble for updating the index, generating citation graphs, statis-
tics, and inference based corrections to document metadata.

• Migration effort: Minimal, the code is fairly homoge-
neous and supported in many cloud offerings.

• Costs: The maintenance system by itself consumes very
little traffic and does not generate significant amounts of
data. Thus, we feel hosting costs are likely to be minimal.

• Other considerations: Each of the maintenance service
interactions occur over large sections of data which
includes those stored in the database and the repository.

Thus, the maintenance system must be based near to the
database and repository. Similarly the placement of the data
should be near where it is used for computation [14].

6) Federated Services: Federated services include services
not part of the framework which share the main CiteSeerx

infrastructure. These services may use separate databases,
index.

• Migration effort: Most services offered under federated
services are still under development or in research so it
will require minimal effort to adopt these services in the
cloud.

• Costs: The size of the metadata processed by most of
these services is much less than the size of the data
processed by the production services. Hence costs are
likely to be minimal.

IV. ESTIMATION OF COST

In this section, we explore the cost of hosting CiteSeerx in
the cloud. Costs are estimated from publicly available figures
at the websites of cloud providers [1], [13]. We provide a break
down of costs for setting up the system and hosting for a 30
day month. In these scenarios, backup and staging systems are

maintained locally on an incremental basis. The cost of data
transfer for these backups are not included. Federated service
costs are not included. Calculations are made using figures
provided in Table I.

The cost for hosting and running CiteSeerx at present
is provided gratis by the College of Information Sciences
and Technology at The Pennsylvania State University. The
hardware infrastructure is provided from funding by sponsors
of CiteSeerx.

We consider Amazon EC2 and the Google App Engine
cloud offerings, since SeerSuite can easily be adapted to
run on these services without major refactoring of SeerSuite.
Refactoring is required when using Software as a Service
platforms and support for libraries and frameworks are not
available. Statistics are obtained for each component by using
iostat or by log analysis.

Type Value
Documents 1.5 (1,518,739) Million
Database 120 GB
Repository 1.5 TB
Index (Document and Citation) 31 GB
Index (Tables and Authors) 750 MB
Traffic (Hits - Average) per day 2 Million
Growth per week 4000 Documents
Crawled documents 5000 documents

TABLE I
CITESEERx PROFILE

A. Amazon EC2 and EBS

Amazon EC2 offers an infrastructure based approach to
cloud computing. SeerSuite can take advantage of this ap-
proach, since its underlying architecture is scalable and ro-
bust. SeerSuite components are amenable to replication with
very few state linked features. The amount of modifications
required for the conversion and metadata extraction processes
are minimal.

The application is assumed to be hosted on EC2 and the
data storage on EBS. A reserved instance is considered, due
to benefits in costs offered by Amazon for such instances. This
estimation assumes that all services provided by SeerSuite are
hosted in the cloud. Some of the services such as the DOI
issue service are not included, since its footprint is very small
compared to other services. Billing is determined by the data
to be stored, the number of I/O operations and data transferred.
Data used for these calculations are provided in the tables I
and II. Table II provides the transactions per second observed
for particular systems for the disk unit storing the operating
system and the disk unit storing data.

The cost estimate includes a total of 6 machines with a
one-to-one mapping for the metadata extraction, repository,
database, index, web application, and crawler with standard
large reserved instances. The initial data transfer is assumed
to be free at this time. Estimates are provided in the table III.
The cost of hosting the services is $7000 for the initial setup

and a recurring cost of $1378.2 per month. This calculation

System Function TPS (OS) TPS (data)
Database 37 97
Repository 27 42
Index 40 61
Web server 1 8 12
Web server 2 7 6
Extraction 4 15
Crawler 1 4

TABLE II
CITESEERx DISK AND APPLICATION STATISTICS

Amazon Cloud Cost Estimates

Setup Instance Units Cost/Unit Total($)
Large Res. 6 1400 8400

Monthly
Type Units Cost/Unit Total

Instance 6 0.15/Hour 648
Data In 150 GB 0.10/GB 15

Data Out 3 TB 0.15/GB 450
Storage 1717 GB 0.10/GB 171.70

I/O 321.4 + 614.3 M 0.1/1M 32.1+ 61.4
Total 1378.2

TABLE III
COST ESTIMATION FOR HOSTING CITESEERX ON AMAZON EC2 WITH

DATA STORED ON AMAZON EBS

is based on the assumption that multiple instances will be
required. If the number of instances are reduced, the cost of the
deployment would reduce to $1400 for the initial setup with
a recurring cost of $838.2 dollars per month. An additional
advantage of using the Amazon EC2 services are tools such as
the SpringSource Cloud Foundry, which can be used to migrate
the Web application controller and views into the Amazon EC2
cloud.

B. Google App Engine

The Google App Engine is geared towards Web appli-
cations. App Engine recently began supporting Java based
applications for hosting. Metadata extraction and conversion
processes in the SeerSuite instance will need to be modified
to work with the tool sets available in Google App Engine.
The application would store document metadata as blobs with
the DataStore API [23].

In the case of the Google App Engine, the application would
need to be hosted with the billable quota enabled [13]. For case
of the setup costs, this estimate assumes that a single instance
would provide all the functionality required by CiteSeerx.
Estimates are provided in table IV. It is to be noted that I/O
costs are not included as our calculations indicate that such
costs fall within the Free Default Quota or the Billing Enabled
Default Quota. In this case the setup costs are much lower at
$172, as are the recurring monthly costs at $641 USD. An
assumption of linear rate of growth in the collection size does
not increase the recurring costs in a significant manner (<5%)
over the year.

V. HOSTING SELECTED SERVICES IN THE CLOUD

The graph in Figure 3 is useful for identifying the right set
of components to operate within a desired cost based on the

Google App Engine Estimates

Setup Costs Type Units Cost/Unit Total($)
Initial Transfer 1717 GB 0.1/GB 171.7

Recurring Costs
Type Units Cost/Unit Total

Data In 150 GB 0.1/GB 15
Data Out 3 TB 0.12/GB 368.63
Storage 1717 GB 0.15/GB 257.55

Total 641.18

TABLE IV
GOOGLE APP ENGINE

data stored. We use the logs at the index and web applications
to determine the data transfer needs of various components.
The database status monitoring provides the amount of data
transferred from the database. The size of the files modified
by the maintenance system is obtained from estimates of the
files created through this process. The data transfer between
the ingestion, extraction, and focused crawler is based on the
documents processed at these services. Figure 3 shows major

Fig. 3. Data Transfers within CiteSeerx

components of CiteSeerx and the data transferred between
these components. This graph is useful for identifying an
optimal set of nodes based on the data stored and the data
transfers in and out of a component. For example, if a fixed
budget is allocated for hosting, a subset of components can
be hosted staying within budget. From the graph it is apparent
that not hosting the repository, database, and web application
together will lead to significant costs. However, the focused
crawler, extraction and ingestion systems appear to be well
suited to be hosted away from the other components. This
configuration is also preferred as the hosting cost of data
transfer into the system is less expensive than the cost of data
transfer out of the system. Among the components, the index
appears to be the least expensive to be hosted on the cloud.

An alternative approach would be to identify the peaks of
traffic at CiteSeerx and use cloud based services for peak
load scenarios. This would involve hosting parts of the web
services, repository services in the cloud. When a peak load
is detected by the load balancers, the traffic could be directed

to cloud based services. Further detailed analysis is required
for such an approach.

VI. VIRTUALIZATION OF COMPONENTS

In the previous sections we discussed hosting SeerSuite
services in the cloud. Such a hosting provides several ad-
vantages to SeerSuite instances. In this section we explore
virtualization solutions, which can be part of SeerSuite itself.
Such features can enable large scale SeerSuite instances,
without the use of expensive hardware solutions. From our
earlier discussions, we recognize the repository as the single
largest data storage component of SeerSuite instances. The

Fig. 4. Download Traffic

graph in Figure 4 indicates that a significant portion (60-80%)
of the user traffic to CiteSeerx is a result of downloads or
access to cached copies stored in the repository. Cost efficient,
scalable solutions to handle this traffic become crucial for large
deployments. Thus, addressing virtualization of the repository
is important.

The repository serves as a file storage service, which al-
lows documents, metadata and corrections to be stored and
retrieved. Graphs embedded in the document summary page
are also stored in the repository. By function, the repository
contains sets of document related files, a majority of which
are never altered. The repository grows with an increase
in the size of the collection. From statistics collected, the
repository size grows by approximately one megabyte for the
addition of one document. This measure includes a copy of
the document, the text, sections of the document, document
metadata, charts, individual metadata files, and version files in
case of corrections. The repository is exposed in the current
setup as a shared resource between web servers. This is due
to the fact that changes to the repository which includes
corrections, updates to charts, etc. have to be reflected across
all services. Writes to the repository occur as a result of
ingestion, corrections, or when charts are generated by the
maintenance service for each document. These operations are
less frequent and thus not constrained by performance issues.

Of these, corrections are initiated at the web application
by the user. An XML file with a snapshot of the document

metadata is generated and stored in the repository. This pro-
cess ensures that database and index can be recreated from
metadata if necessary. Currently, citation charts are generated
periodically by the administrator.

Scalability of the repository presents a challenge for Seer-
Suite applications, especially CiteSeerx. This is further ex-
acerbated, by future plans to store and offer video, images
and presentations linked to the document. In order to grow
beyond the present collection size, the repository services have
to be hosted on cost-efficient scalable infrastructure. Solutions
involving storage systems, particularly SAN or NAS can be
expensive to adopt and maintain. In this regard, virtualized
hardware or cloud infrastructure services offer a desirable
solution. In this context, we examine the user document

Fig. 5. Document Download Frequency

download pattern, which is one of the primary functions of
the repository. The graph in Figure 5 identifies document
download frequency on a log/log scale (for 6 months). Down-
load frequency for user initiated downloads (red) and crawler
initiated downloads (blue) are provided along with the citation
ranking for documents in the collection. The frequency of
documents downloaded in the graph follows a power law
distribution. The behavior of crawlers and users can be clearly
identified. The bots download documents less frequently, but
download more documents overall. This information is useful
in estimating the size of the collection accessed most by users.
By identifying the most frequently accessed documents, we
can determine a subset of documents which need to be placed
either locally or in the cloud. This is relevant in the case where
part of the collection is hosted in the cloud by placing the most
frequently accessed documents there. From the graph we can
infer which subset of the actual documents (1.5 Million) are
actually downloaded either by users or bots. Another approach
would be to pick only those documents cited in the collection
(564,818), which is a conservative estimate. On the other end
is the set of documents downloaded by crawlers - 1,394,669
documents.

The above figures can be misleading if overlap between
individual sets is not considered. The overlap between the set
of documents cited in the collection with the ones downloaded
by users is 334,264. But documents downloaded by both

bots and users number 874,100. These figures provide an
illustration of the complexities involved in placing resources
and optimizing costs at the component level.

VII. AN AD-HOC SOLUTION

Fig. 6. Virtualized Storage

The SeerSuite architecture provides flexibility in adding
new features. Replacing components of the system with other
components is possible as long as the two interfaces are
compliant. We take advantage of this fact, and experiment
with a virtualized storage solution. This solution allows us
to identify and estimate with greater accuracy parameters and
bottlenecks for adopting a cloud infrastructure in SeerSuite.

The virtualized storage solution uses a REST based interface
for the entire system. The storage allows GET, POST, and
DELETE commands for downloading, adding, and deleting
documents. Aspects of this system were inspired by distributed
file systems [10], [6]. The architecture of the system is shown
in figure 6. The master node serves as an index for finding
documents in the storage system. Requests for documents are
made to the master node, which redirects the client to the
storage server containing the particular file. Writes or adds
bypass the master. In case there are multiple copies of the
document with the same version number available, the master
redirects the user to the latest copy as per the database.

The storage node is the basic unit of the system, storing
files on the underlying file system. Storage nodes allow users
access to cached documents through GET requests. Storage
nodes accept additions while logged into a central database.
Additions log the location/storage server where the addition
was made. The files are stored in the same hierarchical format
as in the SeerSuite repository with the top directory and leaves
labeled with the repository id and with the complete DOI,
respectively.

Features such as version information, document checksums,
and sizes are currently stored in the database. The system
is primitive in that it provides no assurance on consistency
or locking by itself. An important feature of such a system
is that it can be deployed over already existing collections
(with collaborators) without incurring significant costs by
simply updating the database with document locations at the
collaboration source.

A. Impact on other services

The introduction of virtualized storage has a major impact
on the ingestion, maintenance, and web application processes
and services. It has relatively little or no impact on the crawler
and metadata extraction services. And the introduction is
transparent to the user.

The ingestion system now uses POST calls to add docu-
ments to the repository. This allows the ingestion process to
run on different systes. The impact on ingestion performance
is minimal. The web application now points to the director for
cached document downloads. For corrections applied to doc-
uments, a POST request is made to the repository containing
the document to update metadata. Significant changes occur
to the document index update process and to the citation chart
generation. Indexing maintenance scripts now obtain body
and full text of documents with GET requests to the storage
servers. Citation charts are generated by javascript libraries,
removing the need for static generation and storage in the
repository. This approach adds costs to the application and
clients. The Web application must obtain data for these charts
from the database.

In summary, the system is more scalable as dependence on
shared storage systems is reduced. Another positive feature is
metadata about files in the repository can easily be exposed
to users and researchers. Queries on dimensions such as size
and checksum and can be made to the storage master.

This approach allows CiteSeerx to distribute load across
collaborative engines. By identifying the closest repository
containing the document across collaborating engines, faster
downloads can be achieved.

B. Performance

A deployment of the ad-hoc system discussed in the earlier
sections, containing documents available in the CiteSeerx

collection was built. The deployment employs 3 systems, each
with dual core processors, 3 GB of RAM, and 1.5 TB of
storage, as two storage nodes and one master node (the master
node also hosts the database).

To identify bottlenecks, we subject this setup to a JMe-
ter [16] stress test. Test case data was obtained from log
analysis presented earlier. Requests are replayed to emulate
scenarios. Tests with different number of users (virtual users)
and user introduction rate (ramp up time) with five repeats
in each test were performed. Results for one set of ramp up
times are shown in figure 7. The number of virtual users
were varied, with time in which all the users arrive at the
server constant at ten seconds. Each request was for documents
choosen at random. From the graph as the number of virtual
users increase, the error rate rises in an significant manner
with 70 virtual users introduced in 10 s. Test results indicate
errors occur when the number of active users is > 97. An
examination of the master error logs indicates that database
connection errors were the cause for server errors. When
compared to the CiteSeerx system, the ad-hoc system has
a significantly higher throughput. These results indicate that
particular care must be taken when building or deploying

Fig. 7. Ad-Hoc Cloud Performance

CiteSeerx on virtualized infrastructure. Both CiteSeerx and the
underlying system must support the expected load.

VIII. FUTURE WORK

Migrating an application such as CiteSeerx to the cloud
requires a detailed examination of the services, processes,
and effectiveness. However, complete breadth of cloud based
infrastructure offerings was not explored, i.e., open source
cloud systems such as Eucalyptus [20]. Also not discussed
were software as a service platforms for deploying SeerSuite.
In future we propose to examine such systems, the deployment
and optimization of SeerSuite for cloud operations.

Several features still in development for SeerSuite par-
ticularly services now provided with federation, could also
take advantage of, and be built using cloud infrastructure.
By breaking down components of the web application and
designing for stateless instances, we can further improve the
scalability and possibility that more components can be placed
in the cloud.

In addition the ad-hoc system offers opportunities for re-
search and fine tuning in SeerSuite instances. For example, an
accurate estimation of the size of the repository to be based
in the cloud could be determined. Placement of documents
in multiple locations, use of file and server caches to take
advantage of any existing temporal locality, and more so-
phisticated master nodes and schedulers need to be studied.
While the system proposed has worked well in a research
environment, translating such an effort into a full fledged
system on production systems has yet to be realized.

IX. CONCLUSION

We discussed CiteSeerx and an approach for establishing an
information retrieval and digital library system in the cloud.
We analyze the problem of placing services in the cloud and
were able to identify from the internal data flows an optimal
placement of services for optimizing costs. Analysis of logs
allows us to understand the complexity of placing parts of the
repository in the cloud.

We discussed the repository system of SeerSuite in detail
with regards to its function, usage and characteristics. We

proposed an ad-hoc system to provide the same services
provided by the repository by virtualizing the storage system.
We discussed the impact of such virtualization on SeerSuite.
Stress tests enabled us to understand which components of
virtualization are susceptible to failure.

We believe we have made a strong case for adopting
virtualization and cloud infrastructure services to serve the
needs of information retrieval and digital library systems. We
intend to explore and adopt such systems as part of building
a more scalable, extensible and robust CiteSeerx.

ACKNOWLEDGMENT

The authors acknowledge partial support from NSF CISE.
Urgaonkar’s research was funded in part by NSF grants CCF-
0811670 and CNS-0720456.

REFERENCES

[1] Amazon Elastic Block Storage Projecting Costs, http://aws.amazon.com/
ebs.

[2] Apache Solr, http://lucene.apache.org/solr.
[3] E. A. Fox, M. A. Robert, R. K. Furuta, J. J. Leggett, Digital libraries,

Commun. ACM, 38-4, 1995.
[4] M. Armbrust, A. Fox , R. Griffith, A. D. Joseph, R. H. Katz, A.

Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, M. Zaharia,
Above the Clouds: A Berkeley View of Cloud Computing, Technical Report
No. UCB/EECS-2009-28, University of California at Berkley, 2009.

[5] W.Y. Arms, C. Blanchi, E.A. Overly, V. Reston,An Architecture for
Information in Digital Libraries, D-Lib Magazine, 1997.

[6] D. Borthakur, The hadoop distributed file system: Architecture and design,
Hadoop Project Website, 2007.

[7] S. Chakrabarti, M. Van den Berg, B. Dom, Focused crawling: a new
approach to topic-specific web resource discovery, Computer Networks,
Vol. 31 Number 11-16, 1999.

[8] I. G. Councill, C. L. Giles, E. Di Iorio, M. Gori, M. Maggini, A. Pucci,
Towards Next Generation CiteSeer: A Flexible Architecture for Digital
Library Deployment, ECDL, 2006.

[9] I. G. Councill, C. L. Giles, M-Yen. Kan, Parscit: An open-source CRF
reference string parsing package, In Proceedings of LERC, 2008.

[10] S. Ghemawat, H. Gobioff, S.T. Leung, The Google File System, ACM
SIGOPS Operating Systems Review, Vol. 37, Num. 5, 2003.

[11] C. L. Giles, K. Bollacker, S. Lawrence, CiteSeer: An automatic citation
indexing system, ACM Conference on Digital Libraries, 1998.

[12] C. L. Giles, I. Councill, P. Teregowda, J. Fernandez, S. Zheng, http:
//citeseerx.ist.psu.edu, 2008.

[13] Google App Engine Billing and Budgeting, http://code.google.com/
appengine/docs/billing.html.

[14] J. Gray, Distributed Computing Economics, Microsoft Research Tech
Report, 2003.

[15] R. L. Grossman, Yunhong Gu, Data Mining Using High Performance
Data Clouds: Experimental Studies Using Sector and Sphere, CoRR,
2008.

[16] E. H. Halili, Apache JMeter, Packt Publishing, 2008.
[17] H. Han, C. L. Giles, E. Manavoglu, H. Zha, Z. Zhang, E. A. Fox, Au-

tomatic document metadata extraction using support vector machines,In
Proceedings of the 3rd ACM/IEEE-CS JCDL, 2003.

[18] C. D. Manning, P. Raghavan, H. Schütze, Introduction to information
retrieval, Cambridge University Press, 2008.

[19] P. Mika, G. Tummarello, Web Semantics in the Clouds, IEEE Intelligent
Systems, 2008.

[20] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff and D. Zagorodnov, Eucalyptus : A technical report on an elastic
utility computing architecture linking your programs to useful systems,
Technical Report, University of California at Santa Barbara, 1998.

[21] H.S. Pinto, S. Staab, C. Tempich, C. Y. Sure, Semantic Web and Peer-
to-Peer, Semantic Web and Peer to Peer: Decentralized Management and
Exchange of Knowledge and Information, Springer, 2006.

[22] SeerSuite Source, http://sourceforge.net/projects/citeseerx.
[23] Using the Datastore with JDO, http://code.google.com/appengine/docs/

java/gettingstarted/usingdatastore.html.

