
Scaling SeerSuite in the Cloud

Pradeep Teregowda

Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802, USA

pbt105@psu.edu

C. Lee Giles

Information Sciences and Technology
The Pennsylvania State University
University Park, PA 16802, USA

giles@ist.psu.edu

Abstract—The SeerSuite digital library search engine frame-
work is used to build tools such as CiteSeerx. It includes a
complex metadata extraction system capable of extracting ele-
ments, such as author name, title, citations and citation contexts
that are crucial bibliometric data and for building a citation
graph. The workload faced by the exractor is dynamic in nature
and this variability makes CiteSeerx attractive for hosting in
a cloud computing environment. Given its application binary
dependencies and its reliance on a specialized infrastructure,
the current extractor has several limitations. These limitations
motivated the design and implementation of the metadata
extraction system proposed in this study. A message oriented
middleware architecture is used with a publish/subscribe pat-
tern to build a scalable, flexible system that can be deployed
across a range of cloud infrastructure. To demonstrate the
broad applicability of the proposed system, we evaluate it in
terms of its reference implementation across different scenarios
of deployment and in regard to its scalability.

Keywords-Information Retrieval, Cloud Computing, Message
Oriented Middleware, Information Extraction.

I. INTRODUCTION

A framework for building digital library search engines,

SeerSuite [1] has several features in common with in-

formation retrieval systems such as search engines, digital

libraries, and repositories in the form of index, crawlers and

storage. SeerSuite systems index large quantities of informa-

tion; for example, one such system CiteSeerx 1 indexes over

2 million documents and 40 million bibliographic entities

and has a repository that exceeds 4 TB in size. A study of

SeerSuite in the context of cloud infrastructure and migration

is, therefore, relevant to a wide cross section of information

retrieval systems. Several aspects of existing information

retrieval systems such as design, the lack of support for

scaling, and the complexity of the code present challenges

in regard to scaling SeerSuite and migrating it to the cloud.

In this paper, we address these challenges through designing

and implementing an information extraction system that can

be effectively scaled and hosted using cloud infrastructure.

Information extraction and document processing systems

are popular components hosted in the cloud [2], [3]. The

availability in the cloud of distributed computing frame-

works such as Hadoop [4] have enabled information ex-

1http://citeseerx.ist.psu.edu

traction systems to be scaled in order to process larger

collections and datasets than had previously been possible.

In the present paper, we scale the information extraction

system in SeerSuite by taking advantage of cloud computing

services available across cloud infrastructure providers such

as Windows Azure 2 and Amazon EC2 3.

We identify the limitations of the existing metadata ex-

traction system in SeerSuite and present a design for a new

extraction framework. We use message oriented middleware

to distribute the metadata extractor across local and cloud

infrastructure. Through an examination of the performance

of the system in different deployment scenarios and address-

ing the scalability of the system using message oriented

middleware in the cloud, we demonstrate the feasibility and

scalability of the proposed design.

This paper begins with a discussion of the background

and related work in section II followed by a description

of SeerSuite and its design in section III. In section IV,

we present our proposal in the context of descriptions of

our proposed metadata extraction system and of the present

system in SeerSuite, including a discussion of the limitations

of the latter in section IV. We then discuss a reference

implementation of our proposed framework and evaluate our

implementation in section V. A discussion of distributed

computing and message oriented middleware is provided

in section VI and a discussion of the extractor’s workflow

is presented in section VII. We discuss different scenarios

relating to deploying the metadata extraction system in

section VIII and then describe scaling the system across

instances in section IX. A discussion on securing the system

is provided in section X. Lessons learned are discussed in

section XI, and directions for future work are discussed in

section XII.

II. BACKGROUND AND RELATED WORK

Exploiting cloud infrastructure and cloud models has been

discussed in the context of digital libraries and information

retrieval systems [5], [6]. In particular, researchers have

explored the ways in which the economics and decision

2http://www.windowsazure.com/en-us
3http://aws.amazon.com/ec2

2013 IEEE International Conference on Cloud Engineering

978-0-7695-4945-3/13 $26.00 © 2013 IEEE

DOI 10.1109/IC2E.2013.41

146

making [7], [8], [9] relating to cloud migration are connected

to the availability of cloud infrastructure and they have

also discussed migrating systems and particularly scientific

computing and information retrieval systems as they function

in the cloud. Specifically, [10] focuses on migrating an open

source software framework with an emphasis on the techni-

cal aspects of such a migration and makes recommendations,

accordingly. Whereas [11] provides a discussion of data

hosting. These studies focus on existing applications and

aspects of the application to be migrated to the cloud. In this

regard, the present study breaks new ground by considering

moving a specific component and scaling a framework in

the cloud.

The task handled by the extractor at the level of the docu-

ment is embarrassingly parallel. In this regard, a discussion

of the use of distributed computing frameworks available

in the cloud is particularly relevant. We considered the use

of the MapReduce framework Hadoop [12] for distributing

the computing across multiple instances. However, the input

format of the extractor is a PDF document which would

require serialization. In addition the extractor requires model

files, dictionaries and gazetteers which must be accessible to

each instance.

The use of high performance computing, grid or special-

ized architectures [13] and resources would restrict the ways

in which the extractor could be used and require the user to

build instances in order to gain access to similar resources.

Message oriented middleware [14], [15] offers several

attractive features, for distributing the metadata extractor. It

allows components to operate in isolation from each other:

for example the crawler can operate in isolation from the

extraction system, and the extraction system in isolation

from the ingestion. Additionally, message-oriented middle-

ware can be deployed across a number of architectures and

heterogeneous systems.

In particular, we were influenced by the use of grid based

service oriented middleware in WSPeer [16] for message ex-

changes, Meghdoot [17] for content based publish/subscribe

in Peer to Peer environments. In addition, we drew on

the discussion on software engineering and middleware

presented in [18]. Message oriented middleware is already

part of SeerSuite and CiteSeerx deployment in a limited

way, i.e., in the form of a messaging framework between

components of the crawler.

III. SEERSUITE

The SeerSuite information retrieval framework was been

built, using service oriented architecture and the framework’s

design features loose coupling among modules. The frame-

work is available on the web under an open source license 4

in order to encourage users to adopt SeerSuite or its modules

in their work. SeerSuite collections are built by crawling

4http://sourceforge.net/projects/citeseerx

the web for academic and scientific documents. Extensive

metadata are extracted automatically from documents and

citations in documents, indexed, and made available to users

of the collection. The citation metadata are used to build a

citation graph that enables documents to be linked and to be

ranked based on citations. This linking of documents and

citations allows users to navigate the collection using cita-

tions. Features such as disambiguating author records and,

indexing embedded objects such as tables are continually

being developed and made available to users. Many of these

features provided by SeerSuite draw on metadata extracted

from documents.

The components of the framework are designed to be

portable such that they can be deployed across different

systems, reliable such that they can function with and

recover from failures of resources and supporting modules,

and, flexible such that they can be deployed as part of other

systems or infrastructure such as the cloud.

The SeerSuite framework (architecture shown in Figure 1)

consists of components for extracting and, ingesting docu-

ments drawn from crawling web and an interface for inter-

acting with the user. The components are loosely coupled

and interact with each other using service oriented methods

and data access objects.

The acquisition system includes a crawler, which is re-

sponsible for discovering and fetching documents on the

web. An information/metadata extraction system operates on

the documents retrieved from the web. After the metadata

have been extracted, the document and related metadata are

ingested into the system, by adding information extracted

to a database, adding files to a repository, and generating

a citation graph. The metadata and the citation graph are

made available to users through the web interface. Separate

processes are responsible for updating the full text index

and generating statistics such as a citation based ranking of

authors, papers, and citations.

The role of the metadata extraction system in such an

application is crucial. We, therefore, describe in detail the

metadata extractor and extraction workflow in SeerSuite.

IV. METADATA EXTRACTION

The metadata extraction system is part of the document

acquisition process. The series of steps beginning with

crawling the web to find a relevant document and ending

with ingesting a document into the system is broadly la-

beled as metadata extraction. Each document is processed

individually, and each step in the extraction process can be

mapped to a distinct function or module.

The workflow is illustrated as part of the SeerSuite archi-

tecture in Figure 1. The web is crawled to identify relevant

documents (step 1), documents are processed by a document

converter, which covert PDF/PS document into plain text. At

this point the document is split into two sections: the body

and the references (step 2), the body and the references

147

Web Application

Index

Repository

Database

Data
Storage

Ingestion

Assembler

Header
Extractor

Citation
Extractor

Converter

Crawler

12
3

4

5

6

Figure 1. SeerSuite Architecture

are processed by the header extractor (step 3). The body

and the references are processed by the citation extractor

(step 4). The extracted metadata are assembled (step 5).

The extracted metadata are ingested (step 6). The workflow

enables us to identify the flow of data through the process

and to determine the dependencies such as the dependency

of the classifier on the conversion and the dependency of

the assembler on the classifier.

Figure 2. Metadata Extraction Sample

An excerpt of entities extracted as part of the information

extraction procedure is shown in Figure 2.

A. Extractor Workload

We examine the source of documents serving as input to

the extractor. A major source is the crawler. The workload

of the metadata extractor is directly proportional to the

number of the documents fetched by the crawler (Figure 3).

The number of documents fetched by the crawler vary by

day reaching peaks of several thousand documents per day

to zero on some days. The average number of documents

fetched per day is 164 documents with a high degree of

variance in the number of documents fetched. The lack

of predictability makes it challenging to adopt workload

prediction techniques such as those proposed in [19]. It

is also worth noting that changes (e.g., the addition of

features, or objects) to the extractor may require entire sets

of documents both those identified through crawling and

those ingested to be reprocessed.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Documents Crawled

Day

Nu
mb

er
of

Do
cu

me
nts

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Figure 3. Documents Identified by Crawling the Web per Day

Other sources of documents added to the collection are

user submissions and acquisitions from public repositories.

User submissions vary daily, such that they do not generate a

predictable number of documents. Public repositories might

share parts of their collections or allow crawling of their

entire collection. Repositories contribute to the depth of the

collection, as many are focused on specific topics.

Constraining the crawler or user submissions by either

restricting or scheduling crawls could undermine the fresh-

ness of the collection, and so draw adverse user feedback.

Acquisitions from other repositories can be constrained, but

this too could undermine the depth of the collection available

to user.

These workload constraints and characteristics point to

the fact that a deployment to the cloud and scaling would

improve the freshness of a collection. Benefits of the pay as

you go model would save both on cost and maintenance.

B. Present Implementation

The present metadata extraction system makes use of

multiple open source applications and modules to process

documents. The PDF document is converted into text using

148

a PDF to text converter such as PDFLib TET or PDFBox.

The text thus converted, is filtered and identify documents

of interest using regular expressions. This filtered document

text is then divided into the body and reference sections.

A header parser uses support vector machines [20], [21] to

identify the title, author and abstract entities from the body.

The body and the reference sections are then analyzed by a

conditional random field based citation parser [22] in order

to extract the citations and to establish the context of these

citations. Finally the extracted entities are aggregated and

assembled to generate a XML document, which includes

the header metadata and the citation metadata.

The individual converters, filters and parsers are imple-

mented as standalone modules, enabling the user to generate

different workflows and extraction pipelines according to his

needs. To process large collections, the system is scaled

by being distributed across systems and data manually

partitioned.

1) Limitations: The present metadata extraction system

is subject to several limiting factors. Its complex code base

is an obstacle to any refactoring; setting up the system,

requires intimate knowledge of the machine learning meth-

ods and convertors, and adding new features and making

improvements each require significant effort. The system’s

application dependencies prevent the extractor from being

deployed across infrastructure such as across different file

systems and operating systems.

In terms of the system’s infrastructure requirements, the

extractor requires shared storage in order to interact with

other components of the SeerSuite framework. These inter-

actions include accessing files fetched by the crawler and

creating and modifying the files to be consumed by the

ingestion system. And in order to scale the system, it is

necessary to coordinate manually between instances. Due

to the I/O bound nature of the extraction process, scaling

up resources available to the system, does not result in a

corresponding improvement in the system’s throughput.

C. Proposed Framework

In order to improve the metadata extraction system, we de-

signed and developed a framework for metadata extraction.

Our design improves on the existing metadata extraction

system. Specifically, the design uses a portable programming

language and programming constructs to render the extrac-

tors implemented in this framework portable and extensible.

Figure 4 shows the workflow of an extractor implemented

using the framework. This includes the PDF to text converter

(label 1), the classifier(s) (label 2) with the associated model

and gazetteer, and an assembler (label 4). A defined set of

interfaces allows, modules to be developed independently

of each other. The number of stages and the information

available to each stage can be controlled by the class imple-

menting the relevant interface. For example, the classifier

PDF to Text
(Converter)

Classifier
(First Stage)

Content/Features

Dictionary

Model File

Labels

Assembler

PDF

XML

1 2

3

Figure 4. Proposed Metadata Extraction Framework

could ignore features such as font and layout information

provided by the converter and emulate the existing extractor.

The proposed extractor include modules which provide

services for document conversion, parsing and assembly of

parsed metadata.

V. REFERENCE IMPLEMENTATION

We developed a reference implementation as a guideline

for developing extractors with the proposed framework.

The reference implementation uses the PDFBox document

conversion library, and extends the extraction capabilities to

include features such as layout and font information along

with the text of the PDF document.

We used a supervised machine learning method, a Ran-

dom Forest [23] classifier trained on 4000 labeled lines

across categories. The training set was generated and labeled

manually. The set was labeled across categories such as

authors, titles and citations. Open source libraries such as

Weka [24] were used to build the classifier. Generated from

training with labeled samples stored in a serialized format,

the model was used by the classifier to label unlabeled lines.

The assembler organized the labeled lines into objects

such as complete titles, and author names and order and

linked related objects such as citations with their context.

This process result in the generation of an an XML file

containing metadata.

A. Evaluation

The performance of the reference implementation was

evaluated by comparing it to the performance of the existing

extractor.

1) Quality of Extraction: The quality of the extraction

in terms of identifying various entities such as the title,

author, and citations in the document was examined. To

evaluate the quality, we manually examined metadata from

149

Extractor Titles Authors (Recovered) Citations (Recovered)
Reference 84% 88% (86.05%) 98% (87.90%)
Existing 80% 90% (93.70%) 98% (79.99%)

Table I
QUALITY OF EXTRACTION

50 documents. From the metadata extracted by the refer-

ence and the existing extractor. we accurately identified

the number of documents for which a particular entity

was extracted and we did the same for entities such as

authors and citations (where multiple authors and citations

existed within a single document), On this basis, we found

the percentage of entities extracted accurately (recovered).

Results are shown in Table I

From the results, it is clear that the proposed reference

metadata extractor improves on the existing method in regard

to extraction of titles and citations; however, in regard to au-

thors, the performance of the proposed extractor marginally

worse than the existing extractor. An examination of the

errors of the reference implementation shows that there were

issues with identifying author names containing hyphens

and Unicode characters, In addition certain entities such

as university name and department were labeled as author

names.

2) Throughput: We examine the throughput of the ex-

isting extractor and the reference extractor implementations

with a set of 2498 documents drawn from CiteSeerx. The

average file size of the documents being processed was 700

KB of which 97% were below 2 MB.

In this case the existing extractor took an average of

3.32 seconds(s) to process a single document compared

to the average 3.2(s) taken by the reference extractor. The

experiments were performed on a dual core, 3 GB RAM sys-

tem. Therefore, in regard to processing a single document,

the proposed reference extractor performed better than the

existing extractor.

The performance of the reference extractor is similar to

that of the existing extractor in regard to throughput, where

as there is room for improvement in extracting authors.

3) Performance in the Cloud: To prepare for deploying

the metadata extraction system in the cloud, we evaluated the

performance of the extractor over a small set of documents

in both IaaS (Infrastructure as a Service) and PaaS (Platform

as a Service) cloud environments.

The extractor processed 120 documents all of which were

located in the local storage/file system for this evaluation.

The output of the extractor (XML) was also stored in the

local file system. Other than changes made for packaging

for specific cloud infrastructure no changes were made to

the application code. In the case of Amazon EC2, the

extractor was packaged as a jar file and a copy of the virtual

machine, the model files and gazetteers were shipped to the

instance. In the case of Azure, existing tools for packaging

Infrastructure Average Time (sec/doc)
Local 1.55
Amazon EC2 2.25
Azure 3.6

Table II
PERFORMANCE IN THE CLOUD

applications along with environmental parameter settings

were used for packaging. Data in the form of PDF files

were shipped along with the packages.

We used the Large Instance with a worker role in Azure

and Extra Large Instance in Amazon EC2 and a similar

system locally 5. Results are shown in Table II.

The Amazon EC2 instance provides the closest perfor-

mance to the local deployment, where as the performance

on Azure indicates that there is scope to improve the

performance of the system. The performance has improved

by a factor over that of the existing extraction system;

however, we can take advantage of, several aspects of the

process to further improve on the throughput performance

of the extractor.

Based on the discussion for the need to distribute the

processing of documents and of the constraints faced, we

decided to consider message oriented middleware. In the

next section, we discuss message oriented middleware, its

features in the context of distributing metadata extraction.

VI. MESSAGE ORIENTED MIDDLEWARE

We choose message oriented middleware as a mechanism

for distributing the metadata extraction system. The use of

the publish/subscribe pattern provides flexibility, loose cou-

pling and scalability in the acquisition pipeline. Further new

metadata extractors such as those for extracting algorithms

[25] as subscribers can be added without refactoring. It

is possible also to group extractors with topic exchanges

without affecting existing components in the pipeline.

A. Wrapper/Adapter

The metadata extraction system does not by itself provide

interfaces to interact with other components. For example,

the system does not provide the ability to interact with

storage systems such as Amazon S3 6, WebHDFS, or a

simple REST based system [7], as well as queue operations

such as poll and queue methods.

Building methods to interact with various infrastructure

in the metadata extraction itself would result in multiple

multiple methods and greater complexity for a researcher

interested in extracting metadata. Any modification to the

infrastructure would entail refactoring the entire metadata

extraction system. This is particularly limiting as we planned

51 CPU, 4 Cores, 16 GB RAM
6https://aws.amazon.com/s3

150

ID
URL (input)
Destination
Destination End Point (output)
Destination Type

Table III
MESSAGE TEMPLATE AT THE EXTRACTOR QUEUE

to deploy the extractor not just on the local physical infras-

tructure, but also across different infrastructure, abstractions.

We used a wrapper or adapter pattern to provide methods to

interact with storage systems, the queue and other SeerSuite

components. By discarding the wrapper, the metadata extrac-

tor can function in the same way as the existing extractor.

The interface to the storage system makes it possible to

make GET/POST requests to storage, and to use, queue and

poll methods to interact with the middleware. Modifications

to the wrapper or adapter can be made without any special-

ized knowledge of the metadata extraction system. In the

same way, modifications to the metadata extractor can be

made without specialized knowledge of the infrastructure

being used.

The workflow of the extractor now begins with the wrap-

per enabled metadata extractor consuming messages from

the exchange. The extractor can now fetch PDF documents

stored in the virtual store and post XML files to the

virtual storage produced during extraction through wrapper

methods. Finally a completion message, a message for the

ingestion system is placed in the relevant exchange through

the wrapper.

B. Message Format

Generated by the crawler and consumed by the metadata

extractor, the message is the primary means of communi-

cation between the various components. To communicate

between the extraction and the ingestion processes, the

metadata extractor generates messages for the ingestion

system. The message format for communications from the

crawler to the extractor includes a description of the resource

to be processed in the form of a URL or a location in

the physical storage. The destination, could represent either

a local file location or a virtual/cloud storage location. A

combination of the destination and the destination type (type

of service such as REST/WS) allows us to decide where the

output of the metadata extraction system should be located.

As the end point is embedded in the message, the placement

of the input and output can be changed without requiring a

change in the deployment. The format for the message is

shown in Table III.

VII. INGESTION WORKFLOW WITH WRAPPER

The use of the wrapper enables the metadata extraction

system to interact with message oriented middleware A

typical deployment is shown in Figure 5.

Figure 5. Deployment Architecture

The workflow of the process proceeds as follows. The

crawler on a successful identification and fetching of a

document from the web (steps 1 and 2), posts a message to

the extractor queue (step 3). This message either points to

the URL of the document or the URL in the virtual storage.

The extractor then consumes messages (step 4) from the

queue and processes the document (step 5), generating an

ingestible document. A message of completion (step 6) is

posted to the ingestion queue, which is then handled by the

ingestion system (steps 7 and 8).

The use of middleware allows us to isolate individual

modules from each other. A failure of the crawler or of the

extractor will not affect the ingestion system. Though this

is possible with the present implementation, the middleware

provides coordination among many similar and or special

purpose extractors. Asynchronous operation of the extraction

module is now possible and allows greater flexibility in

terms of scheduling the extraction process. These factors

improve both the reliability and the efficiency of the system.

A. Input Output Costs

One hundred and twenty documents were hosted in a vir-

tual storage system and processed both in physical systems

and cloud instances, with the generated metadata stored in

the virtual storage. A breakdown of the costs associated with

accessing the queue, fetching documents from the storage,

processing storing the output in the storage are provided in

Table IV.

Component Queue Access (s) Fetch (s)&
Processing
(s)

Storage (s)

Physical 0.02 4.49 4.56
Amazon EC2 5.08 57.43 19.07

Table IV
TIME CONSUMED FOR I/O OPERATIONS

The costs of data access and storage of a document dom-

inate the cost breakdown. These results indicate that the I/O

151

costs are particularly high and methods that use threading

can improve the throughput of the system enormously. We

therefore, adopted threaded workers for all further evaluation

and processing metadata. To reduce startup times for each

thread, We load the classifier before any threads are initial-

ized and sharing the pre loaded classifier across threads.

VIII. DEPLOYMENT SCENARIOS

With the ability to function in both cloud and local

infrastructure, the extraction service allows a great deal of

flexibility in deployment. We demonstrate some of these

deployment possibilities and to examine the performance

of the metadata extraction system in these scenarios. We

deployed the extractor in a completely local environment,

completely in the cloud and finally a hybrid combination of

instances in cloud and local infrastructure.

A. Local Deployment

When a suitable number of extractors are available in

the local infrastructure, the coordination provided by the

middleware and storage abstraction by the virtual storage

address concerns associated with distributing the extractor

workload and the need to use specialized shared storage

for operation (Figure 6). This approach, allows the user

to automate the distribution of extraction workload among

instances, to avoid manual partitioning, and scheduling of

the extractor. Other scenarios in which such an approach

would be relevant are in testing and where there are policy

restrictions related to data exist.

B. Cloud Deployment

The use of cloud computing resources can greatly re-

duce the need to invest in physical resources, as dynamic

provisioning allows us to scale to order, to meet workload

demands. A cloud infrastructure based deployment can make

use of the local messaging middleware and virtual storage.

It can also be scaled by including multiple instances based

on need. This deployment can also be used when the cost

of operating in the cloud makes the use of cloud resources

more attractive than operating on physical infrastructure.

C. Hybrid Deployment

In cases in which the local infrastructure handles a fixed

set of documents, cloud infrastructure can be used to meet

large workloads. This allows the application to be scaled

without the need for additional physical infrastructure to

handle peak load conditions, or to take advantage of features

such as spot instances. The compute instances are hosted in

the cloud with the input or output stored in a virtual storage

or S3. The deployment is shown in Figure 7.

Web

Crawler

Extractor

Extraction Queue

Virtual Storage
Extractor

Physical Servers/Cloud Instances

REST REST

Message

Message

Figure 6. Physical or Cloud Deployment

Web

Crawler

Extractor

Extraction Queue

Virtual Storage Extractor

Physical Server

REST

REST

Message

Message Cloud Instance

Figure 7. Hybrid Deployment

D. Evaluation

In order to study the performance of the metadata ex-

tractor in the deployment scenarios such as local physical

infrastructure, cloud infrastructure and hybrid operations, we

evaluated the performance of the extractor in these scenarios

with Amazon EC2 and local infrastructure instances. We

based our evaluation of the system on 2498 documents

(discussed in section V) with two instances. In this case, the

documents to be processed were stored in a virtual storage

system and processed with local metadata extractor instances

and or cloud based instances.

We used rabbitmq 7 which supports AMQP 8 with a

publish subscribe topic exchange for local operations, For

cloud based systems, the Amazon SQS system was used. The

queue servers were hosted independently of the extractor. In

case of AMQP, messages were published to the queue by

the crawlers and consumed through the wrapper through the

extractors.

Figure 8 shows the performance and range for each

scenario. The relative performance of the cloud instance is

worse than those of other deployments. This could be ex-

7http://www.rabbitmq.com
8http://www.amqp.org

152

plained by network latency issues between the local storage

and the cloud instance. Both instance and local systems were

sized to be similar 9. The physical instances performed best,

but there was significant variation in the results.

Figure 8. Performance in different scenarios

IX. SCALABILITY

We studied the performance of the system across cloud

instances to identify whether such a system could be scaled

beyond a few instances and to determine whether there

were any improvements to the throughput of the system.

For this study 2498 documents (discussed in section V)

were stored in a virtual storage system and processed by

metadata extractor instances in the cloud. The output of these

extractors were assigned to be stored to a virtual storage

system. The extractor was packaged and deployed into the

instances 10, and a pool of 10 threads was available at each

instance for extraction.

Figure 9. Scalability

The graph shown in Figure 9 illustrates the performance

of the metadata extraction system using message oriented

94 Cores (8 ECU), 15 GB and 8 GB
104 Cores (8 ECU), 15 GB and 8 GB

middleware and virtual storage across an increasing number

of instances. From the graph it is clear that the metadata

extraction system is scalable and the throughput of the

extraction system has increased significantly.

An advantage of distributing the system across instances

along with threading is that it makes the system more

reliable. The failure of one instance does not result in the

failure of the entire extraction system.

Compared to the existing extractor, the distributed, meta-

data extraction system can process documents several factors

faster. The scalability of the extractor allows us to process

peak loads and large collections in less time, ensuring the

freshness of the collection.

X. SECURITY

Locating resources on physical infrastructure or in the

cloud presents several issues related to information security.

The proposed deployment does not include any features

explicitly designed to secure the extraction system. However

aspects of the system have been designed to allow for secure

communications (with SSL between the storage, queue and

clients) by taking advantage of the features already available

features in the system and modules. To maintain the integrity

of a message or transfer, a checksum would be included in

the message. Confidentiality has a low priority given the

public nature of the data being transferred, i.e., (documents

crawled from public web sites).

Authentication mechanisms at the virtual storage, and the

mechanisms that interact with them can be implemented as

part of the wrapper used by the metadata extractor. This

allows considerable flexibility in regard to how requests are

handled.

A. Availability

Metadata extraction services can be substantially im-

proved through the use of distributed systems, a pub-

lish/subscribe pattern and hardware redundancy across sites

together with the use of hybrid deployment, persistent

queues replication at the queue server and storage availabil-

ity.

XI. LESSONS LEARNED

In this section, we identify and explore some of the

lessons learned from our experience building and scaling

the metadata extraction system.

A. Scaling

In this study we used both threading and distribution

across instances to scale the metadata extraction system.

Though the I/O operations performed by the extractor sug-

gest threading, the approach to threading needs to be studied

carefully, as discussed earlier the size of the model files,

dictionaries required us to share these across threads. A

different choice of classifier(s) could very well remove this

153

constraint. In our case, in addition to the application profile,

the limits placed by legacy infrastructure limited the size

of thread pools available, the use of messaging middleware,

allowed us to distribute the extractor across many systems

and scale up to meet demands. The combination of threads

and instances is an aspect of the system which can be tuned

to meet infrastructure constraints and required throughput.

B. Packaging

The use of wrappers and portable programming language

and methods greatly simplifies the deployment of the extrac-

tor in various cloud infrastructures. However, considerable

amount of effort is still required to package the system for

these deployments. The use of configuration files resolves

many of these issues. In the case of PaaS systems, the place-

ment of files, the availability of space in the application and

data storage spaces might not be explicit and may require

the application to explore the instance and the environment

in which it is deployed to enable effective deployment.

C. Message Oriented Middleware

Substantial differences exist between different kinds of

middleware such as those based on AMQP and those based

on Amazon SQS. The need for a publish/subscribe pattern

in our context, can be emulated by using a zero visibility

timeout SQS queue. The issues with the order of messages,

delays in message availability while not limiting, can be

relevant to user experience. In our experiments we did not

encounter these issues, however, monitoring the queue and

the metadata extraction process allow tracking of message

ordering and delays to be tracked. The immediate availability

of client and support libraries reduced the time required

to develop the wrapper and its methods for each of these

middleware.

XII. FUTURE WORK

Avenues for further work include exploring the reference

implementation as a guideline for improving the perfor-

mance of the extraction system. This includes both the

quality of the metadata extraction and the throughput of the

system. With improvements to SeerSuite and the addition of

new features such as a function to index objects embedded

in documents e.g., figures algorithms and tables, the range

and amount of metadata extracted could undergo significant

changes.

Workload prediction would allow extraction services to be

scheduled, however the variety of documents fetched by the

crawler at any time, presents challenges. Simplifying and

developing of the metadata extraction framework presents

a definite step toward the goal of building an automatic

ingestion system for SeerSuite, in which the document

acquisition processes of crawling, extraction and ingestion

are automated. However a more in depth study is required

in order to establish how best to scale and schedule services.

Beyond the framework and its workload, the ingestion

system could be further improved in its ability to handle

larger volume of documents.

Message oriented middleware is used in our study to

provide scalability and coordination, but several features

of such middleware need be explored further. Monitoring

the queue and identifying documents that have not been

successfully processed are accomplished by use of timeouts

and manual examination of the output. Several approaches

are available to resolve these issues, including the use of an

approach similar to RPC by including acknowledgments and

by introducing a monitoring agent system for the queue.

Though the security of the system has been discussed

briefly, a more elaborate authentication mechanism along

with access control would extend the capabilities of Seer-

Suite far beyond the existing set of features in regard to

hosting and ensuring access to documents in the collection.

Several issues, including those of user access, administra-

tion, and maintenance need to be addressed in this regard.

There are several cloud infrastructure, and resources that

we have not discussed as part of this work. These include

compute engines 11, storage and context aware cloud infras-

tructure [26]. A more exhaustive study would be helpful in

identifying and exploiting a varied set of cloud infrastruc-

ture. Though we have considered a hybrid implementation

with a combination of cloud and physical based instances,

combination of instances in different cloud infrastructure

also needs to be studied. We would also like to examine

in more depth, distributed computing frameworks such as

MapReduce. We hope to fully explore resources in the

context of SeerSuite and information retrieval in more depth

in the future.

XIII. CONCLUSION

We discussed scaling the SeerSuite framework and pro-

posed a metadata extraction framework. We presented the

workload of the metadata extraction system to, which sup-

port cloud hosting of the metadata extraction system. We

implemented an extraction system for reference using the

framework and examined its performance for quality and

throughput. To further improve the performance of the

extraction system, we discussed approaches to parallelizing

the extraction process and the constraints of using each

approach. We decided to use message oriented middleware

to distribute the extraction process. We examined the per-

formance of the extractor using middleware in different

scenarios. and we also examined the scalability of the

system with cloud infrastructure. Lessons learned from our

experience were discussed and directions for future work

were identified.

Various approaches to improving the metadata extractor,

use of message oriented middleware, and the security of the

11http://www.openstack.org/software/openstack-compute

154

system were been discussed and should serve as motivation

for research. The source code for this framework and the

reference implementation will be made available as part

of SeerSuite. With the metadata extraction framework and

evaluation of the reference implementation we have demon-

strated that the metadata extraction system can be built and

scaled under the constraints imposed by the overall goals of

the SeerSuite framework. There is also a need to improve the

performance of each component of the SeerSuite framework.

ACKNOWLEDGMENT

We gratefully acknowledge funding received from from

Amazon and NSF, which helped support this study. We also

thank Bhuvan Urgaonkar for the insights and suggestions he

provided.

REFERENCES

[1] P. B. Teregowda, I. G. Councill, R. Fernández, M. Khabsa,
S. Zheng, and C. L. Giles, “Seersuite: Developing a scal-
able and reliable application framework for building digital
libraries by crawling the web,” in Proceedings of USENIX
WebApps, 2010.

[2] R. Baumgartner, G. Gottlob, and M. Herzog, “Scalable web
data extraction for online market intelligence,” VLDB Endow-
ment, vol. 2, no. 2, pp. 1512–1523, 2009.

[3] S. Blohm, Large-Scale Pattern-Based Information Extraction
from the World Wide Web. KIT Scientific Publishing, 2010.

[4] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi,
and C. Krintz, “See spot run: using spot instances for mapre-
duce workflows,” in Proceedings of USENIX HotCloud, 2010.

[5] R. Fox, “Library in the clouds,” OCLC Systems and Services,
vol. 25, no. 3, p. 156, 2009.

[6] F. Xiaona and B. Lingyun, “Application of cloud computing
in university library user service model,” in Proceedings of
ICACTE, vol. 3, 2010, pp. V3–144.

[7] P. Teregowda, B. Urgaonkar, and C. Giles, “Cloud computing:
A digital libraries perspective,” in Proceedings of Interna-
tional Conference on Cloud Computing, 2010, pp. 115–122.

[8] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and P. Tere-
gowda, “Decision support tools for cloud migration in the
enterprise,” in Proceedings of International IEEE Cloud Com-
puting, 2011, pp. 541 –548.

[9] P. Teregowda, B. Urgaonkar, and C. Giles, “Citeseerx: a cloud
perspective,” in USENIX HotCloud, 2010.

[10] M. Chauhan and M. Babar, “Migrating service-oriented sys-
tem to cloud computing: An experience report,” in Proceed-
ings of IEEE International Conference on Cloud Computing,
july 2011, pp. 404 –411.

[11] A. Thakar and A. Szalay, “Migrating a (large) science
database to the cloud,” in Proceedings of International Sym-
posium on High Performance Distributed Computing, 2010,
pp. 430–434.

[12] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[13] M. Atkinson, J. van Hemert, L. Han, A. Hume, and C. Liew,
“A distributed architecture for data mining and integration,”
in International workshop on Data-aware distributed comput-
ing. ACM, 2009, pp. 11–20.

[14] G. Banavar, T. Chandra, R. Strom, and D. Sturman, “A case
for message oriented middleware,” Distributed Computing,
pp. 846–846, 1999.

[15] E. Curry, “Message-oriented middleware,” Middleware for
communications, pp. 1–28, 2004.

[16] A. Harrison and I. Taylor, “Service-oriented middleware for
hybrid environments,” in Proceedings of ADPUC, 2006, pp.
2–.

[17] A. Gupta, O. Sahin, D. Agrawal, and A. Abbadi, “Meghdoot:
content-based publish/subscribe over p2p networks,” in Pro-
ceedings of ACM/IFIP/USENIX International conference on
Middleware, 2004, pp. 254–273.

[18] W. Emmerich, “Software engineering and middleware: a
roadmap,” in Proceedings of ACM Conference on The future
of Software engineering, 2000, pp. 117–129.

[19] H. Li, W. Lee, A. Sivasubramaniam, and C. Giles, “Workload
analysis for scientific literature digital libraries,” International
Journal on Digital Libraries, vol. 9, no. 2, pp. 139–149, 2008.

[20] H. Han, E. Manavoglu, H. Zha, K. Tsioutsiouliklis, C. L.
Giles, and X. Zhang, “Rule-based word clustering for doc-
ument metadata extraction,” in Proceedings of ACM Sympo-
sium on Applied Computing, 2005, pp. 1049–1053.

[21] H. Han, C. Giles, E. Manavoglu, H. Zha, Z. Zhang, and
E. Fox, “Automatic document metadata extraction using sup-
port vector machines,” in Proceedings of JCDL, 2003, pp.
37–48.

[22] I. Councill, C. Giles, and M. Kan, “Parscit: An open-source
crf reference string parsing package,” in LREC, vol. 2008,
2008.

[23] A. Liaw and M. Wiener, “Classification and regression by
randomforest,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. Witten, “The weka data mining software: an update,”
ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp.
10–18, 2009.

[25] S. Bhatia, S. Tuarob, P. Mitra, and C. Giles, “An algorithm
search engine for software developers,” in Proceedings of
International workshop on Search-driven development: users,
infrastructure, tools, and evaluation. ACM, 2011, pp. 13–16.

[26] J. Weissman, P. Sundarrajan, A. Gupta, M. Ryden, R. Nair,
and A. Chandra, “Early experience with the distributed
nebula cloud,” in International workshop on Data-intensive
distributed computing. ACM, 2011, pp. 17–26.

155

