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ABSTRACT
Strict partial order is a mathematical structure commonly
seen in relational data. One obstacle to extracting such type
of relations at scale is the lack of large scale labels for build-
ing effective data-driven solutions. We develop an active
learning framework for mining such relations subject to a
strict order. Our approach incorporates relational reason-
ing not only in finding new unlabeled pairs whose labels can
be deduced from an existing label set, but also in devising
new query strategies that consider the relational structure
of labels. Our experiments on concept prerequisite relations
show our proposed framework can substantially improve the
classification performance with the same query budget com-
pared to other baseline approaches.

1. INTRODUCTION
Pool-based active learning is a learning framework where the
learning algorithm is allowed to access a set of unlabeled ex-
amples and ask for the labels of any of these examples [3].
Its goal is to learn a good classifier with significantly fewer
labels by actively directing the queries to the most “valu-
able” examples. In a typical setup of active learning, the la-
bel dependency among labeled or unlabeled examples is not
considered. But data and knowledge in the real world are
often embodied with prior relational structures. Taking into
consideration those structures in building machine learning
solutions can be necessary and crucial. The goal of this pa-
per is to investigate the query strategies in active learning of
a strict partial order, namely, when the ground-truth labels
of examples constitute an irreflexive and transitive relation.
In this paper, we develop efficient and effective algorithms
extending popular query strategies used in active learning
to work with such relational data. We study the following
problem in the active learning context:

Problem. Given a finite set V , a strict order on V is a
type of irreflexive and transitive (pairwise) relation. Such a
strict order is represented by a subset G ⊆ V ×V . Given an
unknown strict order G, an oracle W that returns W (u, v) =

−1 + 2 · 1[(u, v) ∈ G] ∈ {−1, 1}, and a feature extractor
F : V × V 7→ Rd, find h : Rd 7→ {−1, 1} from a hypothesis
class H that predicts whether or not (u, v) ∈ G for each pair
(u, v) ∈ V × V and u 6= v (using h(F(u, v))) by querying W
a finite number of (u, v) pairs from V × V .

Our main focus is to develop reasonable query strategies in
active learning of a strict order exploiting both the knowl-
edge from (non-consistent) classifiers trained on a limited
number of labeled examples and the deductive structures
among pairwise relations. Our work also has a particular
focus on partial orders. If the strict order is total, a large
school called “learning to rank” has studied this topic [10],
some of which are under the active learning setting [4]. Learn-
ing to rank relies on binary classifiers or probabilistic models
that are consistent with the rule of a total order. Such ap-
proaches are however limited in a sense to principally mod-
eling a partial order: a classifier consistent with a total order
will always have a non-zero lower bound of error rate, if the
ground-truth is a partial order but not a total order.

In our active learning problem, incorporating the deductive
relations of a strict order in soliciting examples to be la-
beled is non-trivial and important. The challenges moti-
vating us to pursue this direction can be explained in three
folds: First, any example whose label can be deterministi-
cally reasoned from a labeled set by using the properties of
strict orders does not need further manual labeling or sta-
tistical prediction. Second, probabilistic inference of labels
based on the independence hypothesis, as is done in the con-
ventional classifier training, is not proper any more because
the deductive relations make the labels of examples depen-
dent on each other. Third, in order to quantify how valuable
an example is for querying, one has to combine uncertainty
and logic to build proper representations. Sound and effi-
cient heuristics with empirical success are to be explored.

One related active learning work that deals with a simi-
lar setting to ours is [13], whereas equivalence relations are
considered instead. Particularly, they made several crude
approximations in order to expedite the expected error cal-
culation to a computational tractable level. We approach
the design of query strategies from a different perspective
while keeping efficiency as one of our central concerns.

To empirically study the proposed active learning algorithm,
we apply it to concept prerequisite learning problem [15, 8],
where the goal is to predict whether a concept A is a pre-

Chen Liang, Jianbo Ye, Han Zhao, Bart Pursel and C. Lee Giles
"Active Learning of Strict Partial Orders: A Case Study on
Concept Prerequisite Relations" In: The 12th International
Conference on Educational Data Mining, Michel Desmarais,
Collin F. Lynch, Agathe Merceron, & Roger Nkambou (eds.)
2019, pp. 348 - 353

The 12th International Conference on Educational Data Mining 348



requisite of a concept B given the pair (A,B). Although
there have been some research efforts towards learning pre-
requisites [16, 15, 8, 17], the mathematical nature of the
prerequisite relation as strict partial orders has not been
investigated. In addition, one obstacle for effective learning-
based solutions to this problem is the lack of large scale
prerequisite labels. Liang et al. [9] applied standard active
learning to this problem without utilizing relation proper-
ties of prerequisites. Active learning methods tailored for
strict partial orders provide a good opportunity to tackle
the current challenges of concept prerequisite learning.

Our main contributions are summarized as follows: Fist, we
propose a new efficient reasoning module for monotonically
calculating the deductive closure under the assumption of
a strict order. This computational module can be useful
for general AI solutions that need fast reasoning in regard
to strict orders. Second, we apply our reasoning module
to extend two popular active learning approaches to handle
relational data and empirically achieve substantial improve-
ments. This is the first attempt to design active learning
query strategies tailored for strict partial orders. Third, un-
der the proposed framework, we solve the problem of con-
cept prerequisite learning and our approach appears to be
successful on data from four educational domains, whereas
previous work have not exploited the relational structure of
prerequisites as strict partial orders in a principled way.

2. REASONING OF A STRICT ORDER
2.1 Preliminary

Definition 1 (Strict Order). Given a finite set V ,
a subset G of V × V is called a strict order if and only if it
satisfies the two conditions: (i) if (a, b) ∈ G and (b, c) ∈ G,
then (a, c) ∈ G; (ii) if (a, b) ∈ G, then (b, a) 6∈ G.

Definition 2 (G-Oracle). For two subsets G,H ⊆
V × V , a function denoted as WH(·, ·) : H 7→ {−1, 1} is
called a G-oracle on H iff for any (u, v) ∈ H, WH(u, v) =
−1 + 2 · 1[(u, v) ∈ G].

The G-oracle returns a label denoting whether a pair belongs
to G.

Definition 3 (Completeness of an Oracle). A G-
oracle of strict order WH is called complete if and only if
H satisfies: for any a, b, c ∈ V , (i) if (a, b) ∈ H ∩ G,
(b, c) ∈ H ∩ G, then (a, c) ∈ H ∩ G; (ii) if (a, b) ∈ H ∩ G,
(a, c) ∈ H ∩Gc, then (b, c) ∈ H ∩Gc; (iii) if (b, c) ∈ H ∩G,
(a, c) ∈ H ∩Gc, then (a, b) ∈ H ∩Gc; (iv) if (a, b) ∈ H ∩G,
then (b, a) ∈ H ∩Gc, where Gc is the complement of G.
WH is called complete if it is consistent under transitivity
when restricted on pairs from H.

Definition 4 (Closure). Given a strict order G, for
any H ⊆ V × V , its closure is defined to be the smallest set
H such that H ⊆ H and the G-oracle WH is complete.

Definition 5 (Descendant and Ancestor). Given a
strict order G of V and a ∈ V , its ancestor subject to G is
AG

a := {b | (b, a) ∈ G} and its descendant is DG
a := {b |

(a, b) ∈ G}.

2.2 Reasoning Module for Closure Calculation
With the definitions in the previous section, this section pro-
poses a reasoning module that is designed to monotonically
calculate the deductive closure for strict orders. Remark

that a key difference between the traditional transitive clo-
sure and our definition of closure (Definition 3&4) is that
the former only focuses on G but the latter requires calcula-
tion for both G and Gc. In the context of machine learning,
relations in G and Gc correspond to positive examples and
negative examples, respectively. Since both of these exam-
ples are crucial for training classifiers, existing algorithms
for calculating transitive closure such as the Warshall algo-
rithm are not applicable. Thus we propose the following
theorem for monotonically computing the closure. Please
refer to supplemental material for the proofs.

Theorem 1. Let G be a strict order of V and WH a com-
plete G-oracle on H ⊆ V × V . For any pair (a, b) ∈ V × V ,
define the notation C(a,b) by

(i) If (a, b) ∈ H, C(a,b) := H.

(ii) If (a, b) ∈ Gc ∩Hc, C(a,b) := H ∪N ′(a,b) where

N ′(a,b) := {(d, c)|c ∈ AG∩H
b ∪ {b}, d ∈ DG∩H

a ∪ {a}},

and particularly N ′(a,b) ⊆ Gc.

(iii) If (a, b) ∈ G∩Hc, C(a,b) := H∪N(a,b)∪R(a,b)∪S(a,b)∪
T(a,b) ∪O(a,b), where

N(a,b) := {(c, d) | c ∈ AG∩H
a ∪ {a}, d ∈ DG∩H

b ∪ {b}},
R(a,b) := {(d, c) | (c, d) ∈ N(a,b)},
S(a,b) := {(d, e) | c ∈ AG∩H

a ∪ {a}, d ∈ DG∩H
b ∪ {b},

(c, e) ∈ Gc ∩H},
T(a,b) := {(e, c) | c ∈ AG∩H

a ∪ {a}, d ∈ DG∩H
b ∪ {b},

(e, d) ∈ Gc ∩H},

O(a,b) :=
⋃

(c,d)∈S(a,b)∪T(a,b)

N ′′(c,d),

N ′′(c,d) := {(f, e) | e ∈ AG∩(H∪N(a,b))

d ∪ {d},

f ∈ DG∩(H∪N(a,b))
c ∪ {c}}.

In particular, N(a,b) ⊆ G and R(a,b) ∪ S(a,b) ∪ T(a,b) ∪
O(a,b) ⊆ Gc.

For any pair (x, y) ∈ V ×V , the closure of H ′ = H∪{(x, y)}
is C(x,y).

Figure 1 provides an informal explanation of each necessary
condition (except for R(a,b)) mentioned in the theorem. If
(a, b) is a positive example, i.e. (a, b) ∈ G, then (i) N(a,b) is
a set of inferred positive examples by transitivity; (ii) R(a,b)

is a set of inferred negative examples by irreflexivity; (iii)
S(a,b) and T(a,b) are sets of inferred negative examples by
transitivity; (iv) O(a,b) is a set of negative examples inferred
from S(a,b) and T(a,b). If (a, b) is a negative example, i.e.
(a, b) ∈ Gc, then N ′(a,b) is a set of negative examples inferred
by transitivity.

3. POOL-BASED ACTIVE LEARNING
The pool-based sampling [7] is a typical active learning sce-
nario in which one maintains a labeled set Dl and an unla-
beled set Du. In particular, we let Du∪Dl = D = {1, . . . , n}
and Du ∩ Dl = ∅. For i ∈ {1, . . . , n}, we use xi ∈ Rd to
denote a feature vector representing the i-th instance, and
yi ∈ {−1,+1} to denote its groundtruth class label. At each
round, one or more instances are selected from Du whose la-
bel(s) are then requested, and the labeled instance(s) are
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Figure 1: Following the notations in Theorem 1: (a) Black lines are pairs in H, solid lines are pairs in G, and
dashed lines are pairs in Gc. The pair (a, b) in the cyan color is the pair to be labeled or deduced. (b) If (a, b) ∈ G,
{(a, b), (e, f), (a, f), (e, b)} ⊆ N(a,b). (c) If (a, b) ∈ G, {(h, e), (h, a)} ⊆ T(a,b) and {(b, g), (f, g)} ⊆ S(a,b). (d) If (a, b) ∈ Gc,
{(a, b), (a, d), (c, b), (c, d)} ⊆ N ′(a,b). Likewise, if ∃(x, y) ∈ G, s.t.(a, b) ∈ S(x,y) ∪ T(x,y), {(a, b), (a, d), (c, b)} ⊆ O(x,y).

then moved to Dl. Typically instances are queried in a pri-
oritized way such that one can obtain good classifiers trained
with a substantially smaller set Dl. We focus on the pool-
based sampling setting where queries are selected in serial,
i.e., one at a time.

3.1 Query Strategies
The key component of active learning is the design of an
effective criterion for selecting the most “valuable” instance
to query, which is often referred to as query strategy. We
use s∗ to refer to the selected instance by the strategy. In
general, different strategies follow a greedy framework:

s∗ = argmax
s∈Du

min
y∈{−1,1}

f(s; y,Dl), (1)

where f(s; y,Dl) ∈ R is a scoring function to measure the
risks of choosing y as the label for xs ∈ Du given an existing
labeled set Dl.

We investigate two commonly used query strategies: uncer-
tainty sampling [6] and query-by-committee [14]. We show
that under the binary classification setting, they can all be
reformulated as Eq. (1).

Uncertainty Sampling selects the instance which it is
least certain how to label. We choose to study one pop-
ular uncertainty-based sampling variant, the least confident.
Subject to Eq. (1), the resulting approach is to let

f(s; y,Dl) = 1− P∆(Dl)(ys = y|xs), (2)

where P∆(Dl)(ys = y|xs) is a conditional probability which is
estimated from a probabilistic classification model ∆ trained
on {(xi, yi) | ∀i ∈ Dl}.

Query-By-Committee maintains a committee of mod-
els trained on labeled data, C(Dl) = {g(1), ..., g(C)}. It
aims to reduce the size of version space. Specifically, it se-
lects the unlabeled instance about which committee mem-
bers disagree the most based on their predictions. Subject
to Eq. (1), the resulting approach is to let

f(s; y,Dl) =
∑C

k=1
1[y 6= g(k)(xs)], (3)

where g(k)(xs) ∈ {−1, 1} is the predicted label of xs using

the classifier g(k).

Our paper will start from generalizing Eq. (1) and show that
it is possible to extend the two popular query strategies for
considering relational data as a strict order.

4. ACTIVE LEARNING OF A STRICT OR-
DER

GivenG a strict order of V , consider a set of dataD ⊆ V ×V ,
where (a, a) 6∈ D,∀a ∈ V . Similar to the pool-based active
learning, one needs to maintain a labeled set Dl and an
unlabeled set Du. We require that D ⊆ Dl ∪ Duand Dl ∩
Du = ∅. Given a feature extractor F : V ×V 7→ Rd, we can
build a vector dataset {x(a,b) = F(a, b) ∈ Rd | (a, b) ∈ D}.
Let y(a,b) = −1 + 2 · 1[(a, b) ∈ G] ∈ {−1, 1} be the ground-
truth label for each (a, b) ∈ V × V . Active learning aims to
query Q a subset from D under limited budget and construct
a label set Dl from Q, in order to train a good classifier h
on Dl∩D such that it predicts accurately whether or not an
unlabeled pair (a, b) ∈ G by h(F(a, b)) ∈ {−1, 1}.

Active learning of strict orders differs from the traditional
active learning in two unique aspects: (i) By querying the
label of a single unlabeled instance, one may obtain a set
of labeled examples, with the help of strict orders’ prop-
erties; (ii) The relational information of strict orders could
also be utilized by query strategies. We will present our ef-
forts towards incorporating the above two aspects into active
learning of a strict order.

4.1 Basic Relational Reasoning in Active Learn-
ing

A basic extension from standard active learning to one under
the strict order setting is to apply relational reasoning when
both updating Dl and predicting labels. Algorithm 1 shows
the pseudocode for the pool-based active learning of a strict
order. When updating Dl with a new instance (a, b) ∈ Du

whose label y(a,b) is acquired from querying, one first cal-

culates D′l, i.e., the closure of Dl ∪ {(a, b)}, using Theo-

rem 1, and then sets Dl := D′l and Du := D\D′l respectively.
Therefore, it is possible to augment the labeled set Dl with
more than one pair at each stage even though only a sin-
gle instance is queried. Furthermore, the following corollary
shows that given a fixed set of samples to be queried, their
querying order does not affect the final labeled set Dl con-
structed.

Corollary 1.1. Given a list of pairs Q of size m whose
elements are from V ×V , let i1, . . . , im and j1, . . . , jm be two
different permutations of 1, . . . ,m. Let I0 = ∅ and J0 = ∅,
and Ik = Ik−1 ∪ {qik}, Jk = Jk−1 ∪ {qjk} for k = 1, . . . ,m,
where · is defined as the closure set under G. We have Im =
Jm, which is the closure of {qi ∈ V × V | i = 1, . . . ,m}.

Corollary 1.1 is a straightforward result from the uniqueness
of closure, which is also verified by our experiments. The la-
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Algorithm 1 Pseudocode for pool-based active learning of
a strict order.

Input:
D ⊆ V × V % a data set

Initialize:
Dl ← {(as1 , bs1), (as2 , bs2), ..., (ask , bsk )} % initial la-

beled set with k seeds
Dl ← Dl % initial closure
Du ← D\Dl % initial unlabeled set

while Du 6= ∅ do
Select (a∗, b∗) from Du % according to a query strat-

egy
Query the label y(a∗,b∗) for the selected instance

(a∗, b∗)

Dl ← Dl ∪ {(a∗, b∗)}
Du ← D\Dl

end while

beled set Dl contains two kinds of pairs based on where their
labels come from: The first kind of labels comes directly
from queries, and the second kind comes from the relational
reasoning as explained by Theorem 1. Such an approach has
a clear advantage over standard active learning at the same
budget of queries, because labels of part of the test pairs
can be inferred deterministically and as a result there will
be more labeled data for supervised training. In our setup of
active learning, we train classifiers on D ∩ Dl and use them
for predicting the labels of remaining pairs that are not in
Dl.

4.2 Query Strategies with Relational Reason-
ing

The relational active learning framework as explained in the
previous section however does not consider incorporating re-
lational reasoning in its query strategy. We further develop
a systematic approach on how to achieve this.

We start from the following formulation: at each stage, one
chooses a pair (a∗, b∗) to query based on

(a∗, b∗) = argmax
(a,b)∈Du

min
y∈{−1,1}

F (S(y(a,b) = y),Dl), (4)

S(y(a,b) = y) = (Dl ∪ {(a, b)}\Dl) ∩ D. (5)

Again, F is the scoring function. S(y(a,b) = y) is the set
of pairs in D whose labels, originally unknown (6∈ Dl), can
now be inferred by assuming y(a,b) = y using Theorem 1.
For each (u, v) ∈ S(y(a,b) = y), its inferred label is denoted
as ŷ(u,v) in the sequel. One can see that this formulation
is a generalization of Eq. (1). We now proceed to develop
extensions for the two query strategies to model the depen-
dencies between pairs imposed by the rule of a strict order.
Following the same notations as previously described with
the only difference that the numbering index is replaced by
the pairwise index, we propose two query strategies tailored
to strict orders.

Uncertainty Sampling with Reasoning. With relational rea-
soning, one not only can reduce the uncertainty of the queried
pair (a, b) but also may reduce that of other pairs deduced

Table 1: Dataset statistics.
Domain # Concepts # Pairs # Prerequisites

Data Mining 120 826 292
Geometry 89 1681 524
Physics 153 1962 487
Precalculus 224 2060 699

by assuming y(a,b)=y. The modified scoring function reads:

F (S(y(a,b) = y),Dl) =∑
(u,v)∈S(y(a,b)=y)

1− P∆(Dl∩D)(y(u,v) = ŷ(u,v)|x(u,v)). (6)

Query-by-Committee with Reasoning. Likewise, one also has
the extension for QBC, where {g(k)}Ck=1 is a committee of
classifiers trained on bagging samples of Dl ∩ D,

F (S(y(a,b) = y),Dl) =∑
(u,v)∈S(y(a,b)=y)

∑C

k=1
1(ŷ(u,v) 6= g(k)(x(u,v))). (7)

5. EXPERIMENTS
For evaluation, we apply the proposed active learning algo-
rithms to concept prerequisite learning problem [8]. Given a
pair of concepts (A, B), we predict whether or not A is a
prerequisite of B, which is a binary classification problem.
Here, cases where B is a prerequisite of A and where no
prerequisite relation exists are both considered negative.

5.1 Dataset
We use the Wiki concept map dataset from [17] which is
collected from textbooks on different educational domains.
Each concept corresponds to an English Wiki article. For
each domain, the dataset consists of prerequisite pairs in the
concept map. Table 1 summarizes the statistics of the our
final processed dataset.

5.2 Features
For each concept pair (A,B), we calculate two types of fea-
tures following the popular practice of information retrieval
and natural language processing: graph-based features and
text-based features. Please refer to Table 2 for detailed de-
scription. Note we trained a topic model [1] on the Wiki
corpus. We also trained a Word2Vec [12] model on the same
corpus with each concept treated as an individual token.

5.3 Experiment Settings
We follow the typical evaluation protocol of pool-based ac-
tive learning. We first randomly split a dataset into a train-
ing set D and a test set Dtest with a ratio of 2:1. Then
we randomly select 20 samples from the training set as the
initial query set Q and compute its closure Dl. Meanwhile,
we set Du = D\Dl. In each iteration, we pick an unlabeled
instance from Du to query for its label, update the label
set Dl, and re-train a classification model on the updated
Dl ∩ D. The re-trained classification model is then evalu-
ated on Dtest. In all experiments, we use a random forests
classifier [2] with 200 trees as the classification model. We
use Area under the ROC curve (AUC) as the evaluation
metric. Taking into account the effects of randomness sub-
ject to different initializations, we continue the above exper-
imental process for each method repeatedly with 300 pre-
selected distinct random seeds. Their average scores and
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Table 2: Feature description. Top: graph-based fea-
tures. Bottom: text-based features.

Feature Description

In/Out Degree The in/out degree of A/B.
Common Neighbors # common neighbors of A and B.
# Links # times A/B links to B/A.
Link Proportion The proportion of pages that link to A/B also link to

B/A.
NGD The Normalized Google Distance between A and

B [18].
PMI The Pointwise Mutual Information relatedness be-

tween the incoming links of A and B.
RefD A metric to measure how differently A and B’s related

concepts refer to each other [8].
HITS The difference between A and B’s hub/authority

scores. [5]

1st Sent Whether A/B is in the first sentence of B/A.
In Title Whether A appears in B’s title.
Title Jaccard The Jaccard similarity between A and B’s titles.
Length # words of A/B’s content.
Mention # times A/B are mentioned in the content of B/A.
NP # noun phrases in A/B’s content; # common noun

phrases.
Tf-idf Sim The cosine similarity between Tf-idf vectors for A and

B’s first paragraphs.
Word2Vec Sim The cosine similarity between vectors of A and B

trained by Word2Vec.
LDA Entropy The Shannon entropy of the LDA vector of A/B.
LDA Cross Entropy The cross entropy between the LDA vector of A/B

and B/A.

Table 3: Summary of compared query strategies.
Method Use reason-

ing when
updating Dl

Use reason-
ing to select
the instance
to query

Use learn-
ing to select
the instance
to query

Random 7 7 7
LC, QBC 7 7 3
Random-R 3 7 7
LC-R, QBC-R 3 7 3
CNT 3 3 7
LC-R+, QBC-R+ 3 3 3

confidence intervals (α = 0.05) are reported. We compare
four query strategies: (i) Random: randomly select an in-
stance to query; (ii) LC: least confident sampling, a widely
used uncertainty sampling variant. We use logistic regres-
sion to estimate posterior probabilities; (iii) QBC: query-
by-committee algorithm. We apply query-by-bagging [11]
and use a committee of three decision trees; (iv) CNT: a
simple baseline query strategy designed to greedily select an
instance whose label can potentially infer the most num-
ber of unlabeled instances. Following the previous nota-
tions, the scoring function for CNT is F (S(y(a,b) = y),Dl) =
|S(y(a,b) = y)| , which is solely based on logical reasoning.

For experiments, we test each query strategy under three
settings: (i) Traditional active learning where no relational
information is considered. Query strategies under this set-
ting are denoted as Random, LC, and QBC. (ii) Relational
active learning where relation reasoning is applied to updat-
ing Dl and predicting labels of Dtest. Query strategies under
this setting are denoted as Random-R, LC-R, and QBC-R.
(iii) Besides being applied to updating Dl, relational rea-
soning is also incorporated in the query strategies. Query
strategies under this setting are the baseline method CNT
and our proposed extensions of LC and QBC for strict par-
tial orders, denoted as LC-R+ and QBC-R+, respectively.
Table 3 summarizes the query strategies studied in the ex-
periments.

5.4 Experiment Results
Figure 2 shows the AUC results of different query strate-
gies. For each case, we present the average values and 95%
C.I. of repeated 300 trials with different train/test splits. In
addition, Figure 3 compares the relations between the num-
ber of queries and the number of labeled instances across
different query strategies. Note that in the relational ac-
tive learning setting querying a single unlabeled instance
will result in one or more labeled instances. According to
Figure 2 and Figure 3, we have the following observations:
First, by comparing query strategies under the settings (ii)
and (iii) with setting (i), we observe that incorporating rela-
tional reasoning into active learning substantially improves
the AUC performance of each query strategy. In addition,
we find the query order, which is supposed to be different for
each strategy, does not affect Dl at the end when D ⊆ Dl.
Thus, it partly verifies Corollary 1.1. Second, our proposed
LC-R+ and QBC-R+ significantly outperform other com-
pared query strategies. Specifically, when comparing them
with LC-R and QBC-R, we see that incorporating relational
reasoning into directing the queries helps to train a better
classifier. Figure 3 shows that LC-R+ and QBC-R+ lead
to more labeled instances when using the same amount of
queries than that of LC-R and QBC-R. This partly con-
tributes to the performance gain. Third, LC-R+ and QBC-
R+ are more effective at both collecting a larger labeled
set and training better classifiers than the CNT baseline.
In addition, by comparing CNT with LC-R, QBC-R, and
Random-R, we observe that a larger size of the labeled set
does not always lead to a better performance. Such observa-
tions demonstrate the necessity of combining deterministic
relational reasoning and probabilistic machine learning in
designing query strategies.

In addition to effectiveness, we also conduct empirical stud-
ies on the runtime of the reasoning module and include the
results in the supplemental material.

6. CONCLUSION
We propose an active learning framework tailored to rela-
tional data in the form of strict partial orders. An effi-
cient reasoning module is proposed to extend two commonly
used query strategies – uncertainty sampling and query by
committee. Experiments on concept prerequisite learning
show that incorporating relational reasoning in both select-
ing valuable examples to label and expanding the train-
ing set significantly improves standard active learning ap-
proaches. Future work could be to explore the following: (i)
apply the reasoning module to extend other query strate-
gies; (ii) active learning of strict partial orders from a noisy
oracle.
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Figure 2: Comparison of different query strategies’ AUC scores for concept prerequisite learning.

0 100 200 300 400 500 600
# queries

0

100

200

300

400

500

600

#
 l

a
b

e
le

d
 i

n
st

a
n

ce
s

Random-R

LC-R

CNT

LC-R+

(a) Data Mining - LC

0 200 400 600 800 1000 1200
# queries

0

200

400

600

800

1000

1200

#
 l

a
b

e
le

d
 i

n
st

a
n

ce
s

Random-R

LC-R

CNT

LC-R+

(b) Geometry - LC

0 200 400 600 800 1000 1200 1400
# queries

0

200

400

600

800

1000

1200

1400

#
 l

a
b

e
le

d
 i

n
st

a
n

ce
s

Random-R

LC-R

CNT

LC-R+

(c) Physics - LC

0 200 400 600 800 1000 1200 1400
# queries

0

200

400

600

800

1000

1200

1400

#
 l

a
b

e
le

d
 i

n
st

a
n

ce
s

Random-R

LC-R

CNT

LC-R+

(d) Precalculus - LC

0 100 200 300 400 500 600
# queries

0

100

200

300

400

500

600

#
 l

a
b

e
le

d
 i

n
st

a
n

ce
s

Random-R

QBC-R

CNT

QBC-R+

(e) Data Mining - QBC

0 200 400 600 800 1000 1200
# queries

0

200

400

600

800

1000

1200

#
 l

a
b

e
le

d
 i

n
st

a
n

ce
s

Random-R

QBC-R

CNT

QBC-R+

(f) Geometry - QBC

0 200 400 600 800 1000 1200 1400
# queries

0

200

400

600

800

1000

1200

1400

#
 l

a
b

e
le

d
 i

n
st

a
n

ce
s

Random-R

QBC-R

CNT

QBC-R+

(g) Physics - QBC

0 200 400 600 800 1000 1200 1400
# queries

0

200

400

600

800

1000

1200

1400

#
 l

a
b

e
le

d
 i

n
st

a
n

ce
s

Random-R

QBC-R

CNT

QBC-R+

(h) Precalculus - QBC

Figure 3: Comparison of relations between the number of queries and the number of labeled instances when
using different query strategies.
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