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ABSTRACT
Web information is often presented in the form of record,
e.g., a product record on a shopping website or a personal
profile on a social utility website. Given a host webpage and
related information needs, how to identify relevant records
as well as their internal semantic structures is critical to
many online information systems. Wrapper induction is one
of the most effective methods for such tasks. However, most
traditional wrapper techniques have issues dealing with web
records since they are designed to extract information from
a page, not a record. We propose a record-level wrapper
system. In our system, we use a novel “broom” structure
to represent both records and generated wrappers. With
such representation, our system is able to effectively extract
records and identify their internal semantics at the same
time. We test our system on 16 real-life websites from four
different domains. Experimental results demonstrate 99%
extraction accuracy in terms of F1-Value.
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1. INTRODUCTION
The amount of Web information has been increasing rapidly,

especially with the emergence of Web 2.0 environments, where
users are encouraged to contribute rich content. Much Web
information is presented in the form of a Web record which
exists in both detail and list pages. For example, in Fig-
ure 1(a), a movie record is presented in a detail page from
www.apple.com; in Figure 1(b), five product records are pre-
sented in a list page from www.newegg.com.

(a) Detail Page (b) List page

Figure 1: Example of Web Records in a Detail Page
and a List Page

Although Web records are normally rendered from a struc-
tured source with semantic definitions, e.g., a back-end rela-
tional database, they are often presented in a semi-structured
HTML format mixed with other context information. Be-
cause of that, such web record information is difficult for
computers to understand without proper pre-processing. Given
a host webpage and related information needs, how to au-
tomatically identify relevant records as well as their inter-
nal semantic structures is critical to many online informa-
tion systems, such as Vertical Search Engines [16] and RSS
feeds. The task of extracting records from web pages is usu-
ally implemented by programs called wrappers. The process
of leaning a wrapper from a group of similar pages is called
wrapper induction [10, 9, 15, 14, 3, 6, 5, 17, 4, 21, 8]. Due to
its high extraction accuracy, wrapper induction is one of the
most popular methods to extract web information and it is
extensively used by many commercial information systems
including major search engines.

However, most traditional wrapper techniques have is-
sues dealing with web records since they are designed to
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extract information from a page, not a record. Specifi-
cally, they usually have difficulty in handling the case of
cross records. For example, Figure 2(a) is a part of a web-
page taken from www.amazon.com and Figure 2(b) is the cor-
responding HTML source. In this example, the pictures
(<IMG>) of three products are presented together in the first
row (<TR>), while their names (<A>) are shown in the sec-
ond row (<TR>). Those three records’ HTML sources are
crossed with each other. Even though record boundaries are
visually clear when such page is rendered for user brows-
ing, as shown in Figure 2(a), there is no clear boundary
for partitioning different records from the HTML source.
As a result, the lack of record boundaries makes extracting
records difficult for most existing wrapper induction meth-
ods, especially for those which learn wrappers by inferring
repeated patterns from the HTML source. This problem oc-
curs frequently in real-life websites. Almost all image search
engines (e.g., Google Image Search) design their search re-
sult pages with such layouts. Many shopping websites (e.g.,
www.amazon.com, www.bestbuy.com, www.diamond.com, www.
costco.com, etc.) also list some of their products in a simi-
lar way as in Figure 2.

(a) Page Layout

<TABLE>
<TR>

<TD>
<IMG SRC="Plates.jpg"/>

</TD>
<TD>

<IMG SRC="Tableware.jpg"/>

</TD>
<TD>

<IMG SRC="Serveware.jpg"/>
</TD>

</TR>

<TR>
<TD>

<A>Plates</A>
</TD>
<TD>

<A>Seasonal Tableware</A>
</TD>

<TD>
<A>Serveware</A>

</TD>

</TR>
</TABLE>

(b) HTML Source

Figure 2: Example of Cross Records

Another issue of many page-level wrapper induction meth-
ods is the expensive cost of performing tree-mapping for
both wrapper induction and data extraction [23]. In these
methods, two complete tag-trees need to be aligned with
each other, even though most parts of the DOM-tree do not
contain user-interested data. Thus, mapping irrelevant in-
formation not only wastes lots of runtime, but also interferes
with the accuracy of data extraction.

To address the above issues, in this paper, we investigate
the wrapper induction technique in record level. We imple-

ment a record-level wrapper system and use a novel “broom”
structure to represent both records and generated wrappers.
With such representations, our system is able to effectively
extract records and identify their internal semantics at the
same time. In particular, our record-level wrapper technique
makes the following contributions:

1. We propose a novel “broom” structure to represent a
record, thus our system provides a uniform approach
for extracting records from both detail pages and list
pages. The record-level wrapper induction approach
performs better than the page-level approach and can
effectively handle the case of cross records.

2. The record-level approach achieves better efficiency
than the page-level approach. The cost of tree-alignment
is reduced dramatically by restricting the alignment in
the relevant-region of DOM-trees and constructing a
wrapper library to avoid duplicated matching.

3. We propose using context words to disambiguate dif-
ferent attributes that are embedded in similar HTML
tag trees. Detecting ambiguous attributes and learn-
ing context words are fully automatic.

The remainder of this paper is organized as follows. Sec. 2
introduces the fundamental data representation and the flowchart
of our wrapper system. Three key technologies of our pro-
posed record-level approach are described in Sec. 3, Sec. 4,
and Sec. 5 respectively. Experimental results are presented
in Sec. 6. Sec. 7 reviews related work on information extrac-
tion. We conclude the paper and discuss our future work in
Sec. 8.

2. FUNDAMENTALS
In this section, we first describe the new data structure

used to present records and wrappers in our system. Then
we present an overview of our record-level wrapper system.

2.1 Data Representation
In our system, a record consists of multiple attributes. For

example, a product record can have attributes like “title”,
“price”, “picture”, etc. When a page has more than one
record, we assign unique IDs (“record id”) to them.

Like many other Web information extraction methods, we
use the Document Object Model (DOM) [1] to represent an
HTML page. In particular, an HTML page is first parsed
into a DOM-tree before it can be processed by our system.
Nevertheless, our system does not use a full DOM-tree for
wrapper induction and data extraction. Instead, we propose
a novel data structure, broom, to represent a record on a
DOM-tree and use such representations for all operations in
our system.

As the name implies, a broom has two parts: the “head”
and the“stick”. The broom head is a record region consisting
of sub-trees of a DOM-tree; the broom stick is a tag-path
starting from the root tag HTML to the top of the record
region.

In our system, generated wrappers are also represented in
such broom structures. The difference is that special wild-
cards are introduced in their broom-heads in order to give
them more powerful matching ability. (Figure 3)

The reason to include a tag-path in the representation of
records and wrappers is two-fold:

48



 

 

SPAN

BODY

DIV

HTML

Broom Stick

Broom Head

SPAN

BODY

DIV

HTML

+

?

 

 

Figure 3: Broom Representation

1. For a specific website, different types of records may
have the same sub-tree structure. However, they rarely
have the same tag-path at the same time. Normally,
a wrapper which is generated for one type of records
should not be used to extract other types. Including
records’ tag-paths makes it much easier to distinguish
different types of records by comparing their tag-paths.

2. Records in a website can be grouped by their tag-
paths. Then we pose two restrictions to our wrap-
per system. 1) A wrapper should be learnt only from
records which share a same tag-path. 2) A wrapper
should be used to only extract records which have the
same tag-paths as itself. These two restrictions greatly
reduce the computational complexity of our system.

2.2 System Overview
Figure 4 shows the flowchart of our system.
The upper part of this flowchart is the offline training pro-

cess. First, a set of training pages are converted to DOM-
trees by an HTML parser. Then, semantic labels of a specific
extraction schema1 are manually assigned to certain DOM
nodes to indicate their semantic functions. Based on these
labels, a broom-extraction algorithm can be applied on each
DOM-tree to extract records represented by broom struc-
tures. Then extracted records are fed to a module to jointly
optimize record clustering and wrapper generation [23]. The
main output of this process is a set of wrappers.

The lower part of this flowchart is the online extraction
process. When a new page enters our system, it is first
converted to a DOM-tree. Then, from the wrapper set gen-
erated in the training process, one or more wrappers will
be automatically selected to align with the DOM-tree. La-
bels on selected wrappers will be accordingly assigned to the
nodes on the DOM-tree. At last, data contained in those
mapped nodes will be extracted and saved in an XML file.

Although most of the previous work [2, 19, 13, 21] at-
tempts to conduct fully automatic wrapper induction with-
out labels, labels do matter when wrapper induction plays
an important role in a practical system and high extraction
accuracy is required. We choose to include an affordable
manually labeling process for three reasons: 1) Labels pro-
vide more information to distinguish nodes with the same

1Extraction Schema refers to the semantic structure of ex-
tracted records. It specifies the type of extracted records
(e..g, Product) and the attributes in each record.

tags. 2) A wrapper with labels explicitly organizes the ex-
tracted data into a certain schema. 3) Labeled training data
could improve training efficiency by allowing wrapper induc-
tion algorithms to focus on the labeled records on a page and
ignore the irrelevant parts.

In our system, we use a user-friendly and easy-to-use la-
beling tool [22] which greatly reduces the effort made in the
labeling process. As illustrated in Figure 5, labeling a record
can be easily done by several mouse clicks. Those candidate
labels shown in the context-menu are loaded from user spec-
ified extraction schema. To inform the system that a group
of attributes belongs to a same record, users also need to
specify a record ID for each attribute they would label. As
shown in Figure 5, the record ID selected by the user will
appear as prefix in each context-menu item. This helps the
user to clearly know which record they are assigning labels
to. Once a DOM-tree is labeled, attribute labels and record
IDs are all attached to the corresponding DOM-nodes.

Figure 5: Labeling Tool Interface

3. RECORD WRAPPER INDUCTION
In this section, we describe how to conduct record-level

wrapper induction based on broom structures. First, we
formally define two important concepts frequently used in
our system. Then, we discuss two scenarios encountered
in broom extraction process. At last, we walk through the
algorithm with an example.

3.1 Minimal Covering Forest & Record
Region

Definition 1. (Boundary Node) Given a labeled DOM-
tree and a record ID i, then the boundary node of record i is
the root node of a minimal sub-tree which can fully cover all
nodes of record i.

Definition 2. (Record Region) Given a labeled DOM-
tree and a record ID i, then the record region of record i is the
smallest set of sub-trees (a forest) which satisfies the follow-
ing conditions: (1) They can fully cover all nodes of record
i (2) They are consecutive siblings rooted at the boundary
node of record i.
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Figure 4: System Overview

In Figure 6, 7, and 8, the gray nodes are boundary nodes
and the dotted boxes are record regions for the correspond-
ing labeled records.

Based on the above definitions, the main task of the broom-
extraction process is to find the record region (broom head)
of each record ID. Once the region is fixed, the correspond-
ing tag-path (broom stick) is also fixed.

3.2 Two Scenarios
Our broom-extraction algorithm is designed to handle two

possible scenarios.
Figure 6 illustrates the first scenarios, which is the most

common and simple scenario we encountered in real-world
data. In this scenario, different records are rooted at differ-
ent inner nodes (boundary nodes) without overlapping. Af-
ter locating a boundary node, extracting the record simply
equals to copying consecutive child-sub-trees of the bound-
ary node which all contain nodes of the corresponding record
ID. As shown in Figure 6, the boundary node is also the last
node of the tag-path in an extracted broom.

1

1 22

Record Region

1

1 22

Boundary Node

Figure 6: Scenario 1 of Broom Extraction

A special case is shown in Figure 7 where multiple records
are rooted at a same boundary node. This case explains why

we use a forest instead of a tree to define a record region. In
this case, we are unable to find a sub-tree which can fully
and only cover one record.

1

1

1 2

2

2 1

1

1 2

2

2

Figure 7: A Special Case of Scenario 1

The second scenario is about crossed records. In such
scenario, as shown in Figure 8, multiple records can over-
lap with each other on a DOM-tree. Consequently, their
record regions also overlap. When extracting brooms for
such records, some inner nodes will be copied to multiple
brooms. We call these inner nodes Non-Exclusive Nodes
(Black node in Figure 8) and the rest DOM-nodes Exclusive
Nodes. DOM-nodes in the previous scenario are all exclusive
nodes.

The property of being exclusive or not will be transferred
from extracted brooms to generated wrappers. Exclusive
nodes and non-exclusive nodes in a generated wrapper have
different matching rules when the wrapper is used in data
extraction. See Section 4 for more details.

3.3 Algorithms
The detailed broom-extraction algorithm is listed in Al-

gorithm 1.
Given a labeled DOM-tree d, the extraction routine in

Algorithm 1 should be repeated for all record IDs in d and
output one broom per record ID. We use the example in
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Figure 8: Scenario 2 of Broom Extraction

Algorithm 1 Broom Extraction

Input: Labeled DOM-Tree d, Record ID i

Output: Extracted broom b of ID i

1: Locate boundary node nB of ID i in d

2: Get Tag-Path P starting from root node of d to nB

3: Output P to b

4: In all sub-trees rooted at nB , find the first sub-tree tF

and the last sub-tree tL that contains record ID i

5: Construct a forest F starting from tF to tL

6: foreach sub-tree t in F
7: SelectivelyCopyOneSubtree(t, i, b)
8: end foreach

Method: SelectivelyCopyOneSubtree(t, i, b)
Input: Sub-Tree t, Record ID i, Extracted broom b of ID i

1: if t only contains one record ID i or no record ID then
2: copy the whole sub-tree t to b

3: set all copied nodes as exclusive node
4: elseif t contains record ID i and other record IDs then
5: copy root node nR of t to b

6: set copied nR as non-exclusive node
7: foreach child-sub-tree tc of t

8: SelectivelyCopyOneSubtree(tc, i, b)
9: end foreach

10: else
// t only contains record IDs other than i

// do nothing
11: end if

Figure 8 to demonstrate how Algorithm 1 works. Just for
the ease of explanation, different inner nodes in Figure 8
are labeled with different letters. Here we only show how
to extract a broom b1 for record 1. Broom extraction for
record 2 can be done similarly. First, we need to find a
minimal sub-tree which can fully cover nodes of record 1
and the root node B of the minimal sub-tree is the boundary
node. Then, the tag path A - B can be fixed and output
to the extracted broom. There are two sub-trees rooted at
boundary node B. We call SelectivelyCopyOneSubtree for
each of them. For the sub-tree rooted at D, since it also
contains nodes of record 2, we cannot copy the whole sub-
tree to b1. Instead, we only copy node D and recursively call
SelectivelyCopyOneSubtree for sub-trees rooted at E and
F. The sub-tree rooted at E only contains nodes of record 1
and can be copied to b1 as a whole. The sub-tree rooted at F
does not contain any node of record 1 and should be ignored.

SelectivelyCopyOneSubtree for the sub-tree rooted at C is
similarly processed. Then, we get the broom as shown in
Figure 8.

After all brooms/records are extracted from the labeled
DOM-trees, they will then be fed to a joint optimization
process of record clustering and wrapper generating. This
process is adapted from our previous work in page level [23].
The work takes mixed DOM-trees for training as input and
then combines clustering similar DOM-trees with the same
template and generating a wrapper for each cluster in one
step. As both template detection and wrapper generation
are based on a well-defined pair-wise similarity metrics, that
approach can achieve a joint optimization by the criterion
of extraction accuracy. To deal with records, we made two
main changes:

1. Instead of clustering full DOM-trees, we cluster ex-
tracted records represented with broom structures. Con-
sequently, the generated wrappers are also record-level
wrappers.

2. In [23], all DOM-trees belonging to a same website will
be fed to a single clustering process, whereas, in our
system, only records with exact same tag-path will be
fed to a common clustering process.

4. RECORD EXTRACTION
In this subsection, we describe how to assemble generated

small record wrappers into a wrapper library so that dupli-
cated matching of tag-paths can be collapsed.

4.1 Constructing Wrapper Libraries
To improve efficiency, wrappers generated from a certain

website should only be applied to new pages from the same
site. Within this website, each wrapper only attempts to
extract records with the same tag-path. Normally, for a
potential record which needs to be extracted, only wrappers
generated for the same tag-path from the same website can
extract it correctly. Therefore, it is wise to impose the above
restriction to make the data extraction process more efficient
and effective.

In our system, generated wrappers are hierarchically orga-
nized according to their original host websites and tag-paths.
In particular, we construct a wrapper library for each web-
site. The main task of this construction process is to merge
different tag-paths into a tree structure, called wrapper di-
rectory, where individual wrappers are linked to the nodes
constructed from original boundary nodes (last node of a
tag-path). This is a top-down process of merging same pre-
fixes of multiple tag-paths. A simple example is show in
Figure 9 to illustrate this process.

Two facts should be stressed for the output wrapper li-
brary. (1) Sibling nodes will always have different tags.
Otherwise, they should be merged to form a longer com-
mon prefix for their tag-paths. (2) Given a tag-path of a
wrapper, its location on the library tree is determined. This
means wrappers with same tag-path will also be linked at
the same boundary node on the library tree.

4.2 Extracting Records with a Wrapper
Library

When a new page of a certain website comes to our system,
it is first converted to a DOM-tree by an HTML parser; then
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Figure 9: A Simple Example of Constructing a
Wrapper Library

the wrapper library generated for this website will be used to
perform data extraction from the DOM-tree. If the DOM-
tree contains multiple records, they will be assembled as a
metadata of the given page. Detailed extraction algorithm
is listed in Algorithm 2.

Algorithm 2 Data Extraction with Wrapper Library

Input: DOM-Tree d, Wrapper Library L
Output: Extracted Record Set R

1: rootd: Root node of d

2: rootL: Root node of L
3: R = ExtractFromSubDomTree(rootd, rootL)
4: Return R

Method: ExtractFromSubDomTree(rootd, rootL)

1: W: Wrapper set linked at rootL

2: R: Extracted record set
3: F : forest consisting of all sub-trees rooted at rootd

4: if rootL is boundary node then
5: while (true)
6: search wrapper w in W with a best match with F
7: if w is found then
8: Extract a record r from F with w

9: N : nodes of F mapped with w’s exclusive nodes
10: Set all nodes in N as matched
11: Add r to R
12: else
13: break
14: end if
15: end while
16: end if
17: foreach child wrapper library node childL of rootL

18: foreach child DOM-node childd of rootd

19: if childd’s tag = childL’s tag then

20: R
′

= ExtractFromSubDomTree(childd, childL)

21: Add all records in R
′

to R
22: end if
23: end foreach
24: end foreach

Note that nodes that have already been matched with
non-exclusive nodes of a wrapper will not attempt to match

another wrapper. This is to make sure the same record will
not be repeatedly extracted.

The algorithm consists of two major steps: tag-path map-
ping and record extraction. By comparing the tag-path of
the target DOM tree with that of the wrapper library, in
a top-down manner, only wrappers whose tag-paths can be
identified on the target DOM tree will be considered as can-
didates for record extraction. Once a tag-path of the DOM
tree is identified, which means a DOM node rootd is mapped
with a boundary node rootd on the wrapper library tree
(step 4), then the sub-tree rooted at rootd is considered as
the extraction region. All wrappers linked at the rootd will
try to match this extraction region. The matching process
is basically a top-down tree alignment. The wrapper with a
best match will be used to perform the extraction.

Given a DOM tree and a wrapper library, suppose there
are t different tag-paths on the DOM tree which can be
identified by the wrapper library. The average number of
wrappers for each tag-path is k. The average runtime of
aligning two trees are A. The runtime of tag-path mapping
can be ignored compared to A. Then a rough estimation of
the extraction runtime for a given DOM tree is t(k + 1)A.
According to our experiments on various datasets, t = 1
for most cases and k is mostly less than five. By applying
various programming techniques, we can also control the tree
alignment cost A to be 10 - 100 milliseconds. Therefore, the
average runtime for extracting records from a page is usually
much less than one second.

5. RECORD DISAMBIGUATION
In this section, we describe how to use content text to dis-

ambiguate attributes which are embedded in similar HTML
tag trees.

By default, we do not consider content text during wrap-
per induction and data extraction. In wrapper induction
process, two wrappers are aligned with each other in order
to generate a more general wrapper. During such wrapper
aligning, only nodes with same tag and same label can be
mapped. Similarly, in data extraction, when a wrapper is
aligned with a potential record region of a DOM-tree, only
nodes with same tag can be mapped.

Ignoring content does not result in accuracy loss for most
cases. The tag-tree structures of records and generated
wrappers are already very informative to avoid ambiguity.
However, there are still cases where tags are not enough to
distinguish different nodes in the aligning process we men-
tioned above. It can lead to mismatch of different attributes
when aligning two tag-trees and thus decrease the extraction
accuracy of generated wrappers.

To show this problem, we use an example of two records
taken from portal.acm.org (Figure 10). The attributes we
want to extract for each record are “Authors”, “Sponsor”,
and “Publisher”. In this example, the tag-tree structure of
the sponsor row and that of the publisher row are identical.
Therefore, if we align these two records to infer a wrapper,
the publisher row of the second record will be aligned with
the sponsor row of the first record because the sponsor row
is absent in the second record. Apparently, such mismatch
would bring error to the generated wrapper.

To resolve the attribute ambiguity caused by similar tag
trees, we propose to utilize content text. In above example,
by comparing the content text in the first column, the pub-
lisher row of the second record will tend to align with the
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(a)

(b)

Figure 10: Examples from portal.acm.org

publisher row of the first record since they both have the
same text “Publisher” in the beginning.

Obviously, considering content text will increase the run-
time complexity for both wrapper generation and data ex-
traction. We need to compare content text every time we
attempt to align two DOM nodes. To limit such complexity
increase as well as improve the extraction accuracy, we im-
plement an approach which only considers content text when
necessary. First, our approach considers surrounding text in
wrapper induction selectively. Only when two consecutive
identical tags happen to have different labels, we use text to
differentiate them. It is not necessary to waste time on other
cases because they are distinguishable by tags. Second, our
approach is able to automatically infer template text. When
two wrappers are aligned to generate a new wrapper, only
overlapped text will be transferred to the new wrapper. In
above example, only text in the first column of both records
will be transferred to generated wrappers. Third, when a
wrapper is aligned with a DOM-tree in data extraction, if
there are multiple possible alignments with the same small-
est aligning cost, our system will make a decision based on
how well the inferred template text is aligned with the text
on the DOM-tree. The one with less text mismatch will be
chosen as the final solution.

6. EXPERIMENTS
Experimental results are presented in this section to show

the performance of our record-level wrapper system. For
comparison purpose, we also implement a page-level wrap-
per induction approach using techniques proposed in [23].
However, we do not compare our system with other wrap-
per induction systems for the following reasons. First, our
system treats DOM nodes as the extraction unit while oth-
ers treat strings as one. Second, their labeling methods are
quite different from ours as well. Therefore, directly utilizing
their datasets is impractical.

All experiments were run on a PC, with a 3.06 GHz Pen-
tium 4 processor and 2.0 GB RAM.

6.1 Experiment Settings

6.1.1 Dataset
We collected our experimental data from 16 real-life large-

scale websites belonging to four different domains (i.e., on-
line shops, user reviews, digital libraries, search results).
Four different extraction schemas are defined for these do-
mains.

There are seven detail page datasets (Table 2) and 11 list
page datasets (Table 3). Two websites, i.e. amazon.com
and circuitcity.com, provide both list page datasets and de-

Table 1: Extraction Schemas
Record Attributes
Product title, price, picture, description
Review author, title, rating, date, comment
Article title, author, affiliation, year, pages, ...
Search Result title, snippet, url

tail page datasets. That is why 18 datasets come from 16
websites. Each dataset contains more than 1000 pages. All
these pages are manually labeled for the purpose of evalua-
tion.

6.1.2 Evaluation Metrics
In all experiments, records are equally weighted despite of

whether or not they are extracted from a same page. Given
a page p for evaluation, we have the extracted metadata Me

and the manually labeled ground-truth metadata Mg. Both
Me and Mg consist of records which belong to page p. The
goal of the evaluation is to calculate the precision, recall,
and F1-value for Me by comparing it with Mg.

First, records in both Me and Mg are sorted according to
the order they appear on the DOM-tree of p. Then, we need
to align records in Me with those in Mg because a ground-
truth record might be falsely extracted as two records. A
dynamic-programming based algorithm is executed to find
an optimal alignment which maximizes the overall F1-Value
of p.

For each candidate alignment, suppose record re in Me is
aligned with record rg in Mg, the attribute-level precision
(Pattr) and recall (Rattr) for record re can be calculated with
the following equations:

Pattr =
|correctly extracted attributes|

|attributes in re|
(1)

Rattr =
|correctly extracted attributes|

|attributes in rg|
(2)

Then, we can calculate the average attribute-level precision
(Pattr) and recall (Rattr) for all aligned records in Me. Be-
sides, precision (Prec) and recall (Rrec) can also be calcu-
lated to show the accuracy in record level:

Prec =
|aligned records|

|records in Me|
(3)

Rrec =
|aligned recordss|

|records in Mg|
(4)

Finally, overall accuracy of Me is computed based on aver-
aged attribute-level PR value and record-level PR value:

precision = Pattr · Prec (5)

recall = Rattr · Rrec (6)

F1-Vallue =
2 · precision · recall

precision + recall
(7)

6.2 Effectiveness Test
We compare our proposed record-level wrappers with the

page-level wrappers proposed in [23] upon all 18 datasets.
Results are shown in Table 2 and 3.

The extremely high accuracy indicates that our approach
is effective to extract structured data. For list pages, the
record-level wrappers improve the page-level wrappers by
7%. For example, Dataset L1 (www.amazon.com) contains
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300 pages with crossed records and the results proves that
record-level wrappers can deal with such scenarios much
better than page-level wrappers. For detail pages, the page-
level wrappers and the record-level wrappers perform equally
well in terms of F1-Value, but the record-level wrappers use
less time for all these websites.

Table 2: Results on List Pages (F1-Value)
Website ID P-Wrapper R-Wrapper
www.amazon.com L1 0.8105 0.9572
www.circuitcity.com L2 1 1
www.diamond.com L3 0.9262 0.9926
www.ebags.com L4 0.9361 0.9962
www.epinions.com L5 0.9639 0.9701
www.google.com L6 0.9232 0.9916
scholar.google.com L7 0.87 1

Average 0.918557143 0.986814286

Table 3: Results on Detail Pages (F1-Value)
Website ID F1-Value
www.amazon.com D1 0.9601
www.buy.com D2 0.9952
www.circuitcity.com D3 1
www.compusa.com D4 1
www.costco.com D5 1
www.jr.com D6 1
www.newegg.com D7 1
www.overstock.com D8 1
www.target.com D9 0.9856
www.walmart.com D10 1
portal.acm.org D11 0.9292

Average 0.988190909

6.3 Effect of Content Text
Results in Table 2 and 3 are obtained without using the

strategy proposed in Section 5. If we also consider the con-
text text, the F1-Value of dataset D11 (portal.acm.org)
can be increased to 1. As a byproduct, this strategy also
results in about 20% increase in extraction time. This is the
only website in our dataset which requires content text for
disambiguation purpose.

6.4 Efficiency Test
This experiment is designed to compare the average run-

time used for extracting a record by page-level wrappers
and record-level wrappers. The time for training is limited
because it runs upon a small number of pages, while the
extraction time is critical for wrapper systems because a
huge number of pages will be processed. The 11 detail-page
datasets are used for this experiment. Figure 11 shows the
results.

Obviously, the runtime difference is significant. On aver-
age, record-level wrappers are four times faster than page-
level wrappers. It is explainable because aligning two broom
structures in record-level wrapper system is much easier
than aligning two full DOM-trees in the page-level wrapper
system. Also note that, for page-level wrappers, the extrac-
tion time notably varies across different websites because the
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Figure 11: Comparison on Efficiency

amount of irrelevant information differs in the websites. On
the contrary, the extraction time for record-level wrappers
has less variation for most websites since the record size is
relatively stable.

In addition, we compare our system with page-level wrap-
per method regarding labeling effort. We do not directly
account the labeling time because it varies a lot with regard
to different labelers. Instead, we implement the comparison
by counting how many records are used in different methods
to train a wrapper set which can achieve a specified accu-
racy. This somehow shows how much labeling effort can be
saved in our system. According to the results, the average
record number required by training page-level wrapper is
about 129, whereas the number required by training record-
level wrapper is about 16. Therefore, our system roughly
saves 87% labeling cost compared to the page-level wrapper
induction method in [23].

7. RELATED WORK
Our work is in the area of Web Information Extraction.

It is closely related to previous work on wrapper induc-
tion. Several automatic or semi-automatic wrapper learn-
ing methods have been proposed. For example, WIEN [10]
is the earliest method that we know of on automatic wrap-
per induction. Other representative work are SoftMeley [9],
Stalker [15], RoadRunner [6], EXALG [2], TTAG [4], work
in [17], ViNTs [21] and work in [23]. Here, we only discuss
TTAG and works in [17] [23] because these three wrapper
induction systems also use tree structures to represent web-
pages and wrappers as in our system.

We refer the reader to two surveys [11, 7] and two tutorials
[18, 12] for more work related to information extraction and
wrapper induction.

In [17], the tree edit distance is used to measure the dis-
tance between two pages. They use traditional hierarchical
clustering techniques [20] in which the distance measure is
the output of a restricted top-down tree mapping algorithm
(RTDM). The RTDM algorithm does not distinguish the
node tag and it is designed only for finding the main con-
tent in news pages. This restricts that method from being
applied to the general information extraction problem. Sim-
ilar to our system, [17] can also derive a similarity measure
between a wrapper (called extraction patterns) and a page
when selecting a proper wrapper for extracting data from a
new page.

We mention TTAG because wrappers in TTAG are also
presented as tree structures with wildcards. They also em-
ploy a top-down layer-by-layer alignment, but the alignment
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in any layer is isolated from that in other layers. As a result,
child nodes can still be aligned even when their parent nodes
do not match. That is a different strategy from ours.

In [23], a novel wrapper induction system is proposed that
expresses a different opinion regarding the relation between
template detection and wrapper generation. It takes a mis-
cellaneous training set as input and conducts template de-
tection and wrapper generation in a single step. By the
criterion of generated wrappers’ extraction accuracy, their
approach can achieve a joint optimization of template detec-
tion and wrapper generation. A comparison demonstrates
that the joint approach significantly outperforms the sep-
arated template detection strategy. The idea of joint op-
timization of wrapper induction and template detection is
also considered by our system. The difference is that we did
it in record level instead of page level.

Different from all the above wrapper systems are designed
to generate wrappers in page level, our systems solves the
wrapper induction problem in record level.

8. CONCLUSIONS & FUTURE WORK
This paper describes a record-level wrapper induction sys-

tem which is able to effectively extract records and identify
their internal semantics at the same time. Compared to tra-
ditional page-level wrapper methods, the proposed approach
not only saves a lot of effort made in manually labeling but
also performs data extraction more efficiently. Experimental
results on 16 real-life websites from four different domains
demonstrate 99% extraction accuracy in terms of F1-Value.

For future work, we would propose to handle the limita-
tion involving tag-paths. In our current version, wrappers
can only be applied to extract records with the same tag-
paths. In the future, we will see if it is possible to introduce
wildcards in tag-paths to enhance the matching power of
generated wrappers.
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