
Independent Informative Subgraph Mining for Graph
Information Retrieval

Bingjun Sun
Department of Computer
Science and Engineering

Pennsylvania State University
University Park,PA 16802,USA

sunbingjun@hotmail.com

Prasenjit Mitra
College of Information

Sciences and Technology
Pennsylvania State University
University Park,PA 16802,USA

pmitra@ist.psu.edu

C. Lee Giles
College of Information

Sciences and Technology
Pennsylvania State University
University Park,PA 16802,USA

giles@ist.psu.edu

ABSTRACT
In order to enable scalable querying of graph databases, in-
telligent selection of subgraphs to index is essential. An
improved index can reduce response times for graph queries
significantly. For a given subgraph query, graph candidates
that may contain the subgraph are retrieved using the graph
index and subgraph isomorphism tests are performed to
prune out unsatisfied graphs. However, since the space of all
possible subgraphs of the whole set of graphs is prohibitively
large, feature selection is required to identify a good subset
of subgraph features for indexing. Thus, one of the key is-
sues is: given the set of all possible subgraphs of the graph
set, which subset of features is the optimal such that the
algorithm retrieves the smallest set of candidate graphs and
reduces the number of subgraph isomorphism tests? We in-
troduce a graph search method for subgraph queries based
on subgraph frequencies. Then, we propose several novel
feature selection criteria, Max-Precision, Max-Irredundant-
Information, and Max-Information-Min-Redundancy, based
on mutual information. Finally we show theoretically and
empirically that our proposed methods retrieve a smaller
candidate set than previous methods. For example, using
the same number of features, our method improve the pre-
cision for the query candidate set by 4%-13% in comparison
to previous methods [25, 26]. As a result the response time
of subgraph queries also is improved correspondingly.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation,Retrieval models;
I.5.2 [Pattern Recognition]: Design Methodology—Fea-
ture evaluation and selection

General Terms
Algorithms, Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$5.00.

Keywords
Graph mining, feature selection, index pruning, graph search

1. INTRODUCTION
Graphs have been used to represent structured data for a

long time. Recently, more and more structured data, such
as chemical molecule structures [20, 22], DNA and protein
structures [10], social networks [5], social and citation net-
works [14], and XML documents [29], are identified and
studied. Large number of such databases are available on
the Web. Data mining and search methods for structured
data are needed for users to quickly identify a small subset
of relevant data for further analysis and experiments.
End-users pose graph queries to a graph database and seek

to retrieve its support, i.e., all graphs of which the queried
graph is a subgraph (Figure 1). Graph query answering has
been addressed while determining chemical structure simi-
larity [17]. The crux of the problem lies in the complexity
of subgraph isomorphism. However, since subgraph isomor-
phism is NP-complete [26], it is prohibitively expensive to
scan all graphs in real time. When the number of graphs are
large, to enable fast querying, instead of isomorphism tests
on the fly, we need to index the graphs offline to allow for fast
graph retrieval. Indexing all possible subgraphs of graphs is
impossible because of their sheer number. Thus, intelligent
indexing techniques and index pruning techniques for graph
databases are essential to enable scalable querying. Graph
database querying is decomposed into three stages [26]: 1)
graph mining, 2) graph indexing, and 3) graph querying.
First, from the set of graphs in the database certain sub-
graph are extracted and selected. Then each selected sub-
graph is converted into a canonical string, and each graph
is mapped into a linear space of subgraphs. Second, a graph
index is built using the canonical strings of subgraphs. Fi-
nally, for a given subgraph query, all the indexed subgraphs
of the query are determined, and the index is looked up with
these subgraphs to obtain a candidate set of graphs contain-
ing all the indexed subgraphs. Subgraph isomorphism tests
are performed on the candidate set to find all graphs that
contain the query graph. This candidate set must be small
for the graph query if the graph retrieval is in real-time. To
keep the candidate set small as well as keep the index size
reasonable, we need to select subgraphs judiciously for in-
dexing. We address the issue of finding the set of subgraphs
to index such that the candidate set of subgraphs on which
the subgraph isomorphism is computed is the smallest.

563

All previous approaches [13, 11, 15, 25, 26] try to find an
appropriate way to discover a set of subgraphs that contains
as much information as possible to achieve a high precision
of query answers. However, no previous work proposes any
criterion to measure the information contained in the set of
subgraphs. Most of them only assume frequent subgraphs
are more informative than infrequent subgraphs [13, 11, 15,
25], where a frequent subgraph is a subgraph that occurs
more frequently in a graph database than a threshold value.
Some of them find frequent subgraphs independently and
ignore the redundancy between subgraphs [13, 11, 15]. For
example, for a set of graphs D, all subgraphs G′i of a fre-
quent subgraph G′ are also frequent. If G′ occurs every time
when G′i occurs, and does not occur independently very of-
ten, then G′i is redundant. Selecting G′i after having selected
G′ cannot increase the information contained in the feature
set as expected. In other words, two informative features
with high redundancy contain less over-all information than
two informative features with low redundancy. Some pre-
vious works propose heuristics to avoid selecting redundant
features to some extent [25, 6, 26]. However, all these meth-
ods only remove the redundancy partially. We propose novel
methods that remove the redundancy as much as possible
while indexing such that while looking up the index, fewer
false positives are selected as candidates on which the full
graph isomorphism has to be performed.
All previous works select subgraphs independently or se-

quentially, but none of them propose any criteria to mea-
sure the information contained in a set of subgraphs. Meth-
ods that select subgraphs independently ignore the redun-
dancy between subgraph features. Sequential subgraph se-
lection methods find frequent subgraphs from the smallest
to the largest size and avoid selecting a subgraph when its
supergraph has been selected. However, they do not con-
sider highly correlated subgraphs that are not a supergraph-
subgraph pair. Previous efforts [25, 6] focus on two criteria,
i.e., informative subgraph principle and/or irredundant sub-
graph principle, although they have different heuristics to
estimate information and redundancy. However, they are
not shown theoretically to have an optimal or near optimal
performance; we do so for our methods. This is the major
contribution in this paper.
We propose a subgraph selection criterion based onmutual

information called Max-Irredundant-Information (MII), which
is an approximation of Max-Precision, which can measure
the over-all information content of a subgraph set and at-
tempts to maximize the precision of retrieved subgraphs over
which subgraph isomorphism has to be computed. However,
computing the information content of all possible subset of
selected subgraphs is expensive. Thus, we propose a method
Max-Information-Min-Redundancy (MImR), which approx-
imates the MII method, and combined with a greedy feature
selection algorithm is much more computationally efficient.
Our approach is different from previous work in that: 1)
we optimize the evaluation criterion of precision directly, 2)
we use a probabilistic model based on mutual information to
approximately optimize precision, and 3) we combine the in-
formative and irredundant principles naturally using a prob-
abilistic model and find an approximation method to find
the near-optimal subgraph feature set to index. The pro-
posed methods are expected to outperform previous ones,
because we prove theoretically that they can achieve the op-
timal or near-optimal precision. Furthermore, Yan, Yu, and

(a) Query (b) Caffeine (c) Thesal

Figure 1: Subgraph query (a) and its support (b, c)

Han [26] only consider the occurrence of subgraphs in graphs
as binary features for search. We utilize the subgraph fre-
quencies (i.e., the number of times each subgraph occurs) in
each graph to prune out more graphs that do not contain
the query graph.
Our major contributions are as follows:
• We show a framework for graph mining, indexing, and
search for querying graph databases, which can be ap-
plied to data repositories of chemical structures, pro-
tein structures, etc.

• We propose a new criterion to filter out highly corre-
lated subgraphs by mining independent frequent sub-
graphs.

• We propose several novel criteria for subgraph selec-
tion with corresponding algorithms based on directly
optimizing precision and mutual information. We also
apply a greedy forward subgraph selection method based
on these criteria.

• We introduce a search method for subgraph queries.
Our method reduces candidate graph sets on which full
isomorphism has to be performed by 4%-13% than a
previous approach [26], so that query time is reduced
correspondingly.

The rest of this paper is organized as follows. In Section 2,
we review related works. In Section 3, we describe our graph
search process. In Section 4, we first propose an algorithm
for mining independent frequent subgraphs. Then we pro-
pose three criteria to further reduce the set of selected inde-
pendent, frequent subgraphs. Finally ,we describe a greedy
algorithm for subgraph selection. Section 5 presents exper-
imental results validating our algorithms. Conclusions and
future work are discussed in Section 6.

2. RELATED WORK
Prior work on querying graphs fall into three categories:

graph pattern mining, indexing, and search. Work on graph
mining extract features from graphs to map them into a
linear space for indexing. Three types of features can be
used, paths only [18], trees only [28], and subgraphs [26].
Most previous approaches index subgraphs, because paths
and trees are special subgraphs that lose much structural
information due to their limited representative capabilities.
After the subgraph features are extracted, canonical labeling
or an isomorphism test is used to determine if two graphs
are isomorphic to each other. A canonical label is a unique
string corresponding to a graph, such that there is a one-to-
one mapping function between graphs and canonical labeling
strings. Both canonical labeling and isomorphism tests are
NP-complete [26, 13]. Canonical strings of subgraphs based
on canonical labeling are used for graph indexing and search.
Since there are too many subgraphs to index, feature se-

lection is required. A naive idea is to select frequent sub-
graphs only [8]. There are several algorithms for mining

564

Table 1: Notations used throughout
Term Description Term Description
G graph FG candidate subgraph set
G′ subgraph S selected subgraph set
D graph set n # candidate subgraphs
DG support of G m # selected subgraphs
Gq graph query FG′⊆G frequency of G′ in G

Q query set sq {G′q |G
′
q ∈ S, G′q ⊆ Gq ∈ Q}

Term Description
DG′q,≥FG′q⊆Gq

{G|G ∈ DG′q
, FG′q⊆G ≥ FG′q⊆Gq

}

∀G′q ∀G′q , G′q ⊆ Gq ∧G′q ∈ S, FG′q⊆G ≥ FG′q⊆Gq

frequent subgraphs, AGM [11], FSG [13], gSpan [26], FFSM
[10], Gaston [15], and others [2, 1]. Worlein, et al., [24] pro-
vide a quantitative comparison of the subgraph miners. Fis-
cher and Meinl provide an overview of graph-based molec-
ular data mining [9]. Indexing the full set of frequent sub-
graphs results in very large indices, because many of the
frequent subgraphs are redundant. Previous works usually
use the following approaches to reduce the set of indexed
subgraphs: 1) mining closed frequent subgraphs, where only
each subgraph that is not 100% correlated with any of its
supergraphs are selected [25], 2) mining for each frequent
subgraph that has correlations with all of its supergraphs
lower than a threshold [6], 3) sequentially selecting sub-
graphs from the smallest size to the largest size based on
subgraphs’ frequency and discrimination [26], and 4) using
paths composed of small basic structures, such as cycles,
crosses, and chains, instead of vertices and edges [12].
For chemical structure search, previous methods fall into

four categories: 1) full structure search: search the exactly
matched structure as the query graph, 2) substructure search:
find structures that contain the query graphs [19, 26], 3) full
structure similarity search: retrieve structures that are sim-
ilar to the query graph [17], and 4) substructure similarity
search: find the structures that contain a substructure that
is similar to the query graph [27].
Previous works on index pruning for IR usually prune

postings of irrelevant terms in each document [4, 3, 7]. Cri-
teria in information theory are applied to measure the in-
formation of each term in each document. However, most
previous works focus on selecting informative terms with-
out considering redundancy [4, 3]. Moura, et al., consider
local information of phrases to keep consistent postings of
correlated terms, instead of global information for feature
selection [7]. Peng, et al., propose feature selection focusing
on supervised learning [16]. The generic goal is to find the
optimal subset from the set of feature candidates so that
selected features are 1) correlated to the class distribution,
and 2) uncorrelated to each other. We extend the idea of
feature selection to graph search (see in Section 4.2).

3. PROBLEM FORMALIZATION
In this section, we introduce preliminary notations, and

then give an overview of how a subgraph query is processed.
Table 1 lists the notations used throughout the paper.

3.1 Preliminaries
We consider only connected labeled undirected (sub)graphs.

Relevant notations are given as follows:

Definition 1. Labeled Undirected Graph: A labeled

undirected graph is a 5-tuple, G = {V, E, LV , LE , l}, where
V is a set of vertices. Each v ∈ V is an unique ID rep-
resenting a vertex, E ⊆ V × V is a set of edges where
e = (u, v) ∈ E, u ∈ V, v ∈ V , LV is a set of vertex la-
bels, LE is a set of edge labels, and l : V ∪E → LV ∪LE is a
function assigning labels to vertices and edges on the graph.

Definition 2. Connected Graph: A path p(v1, vn+1) =
(e1, e2, ..., en), e1 = (v1, v2), e2 = (v2, v3), ..., en = (vn, vn+1),
ei ∈ EG, i = 1, 2, ..., n, on a graph G is a sequence of edges
connecting two vertices v1 ∈ VG, vn+1 ∈ VG. A graph G is
connected iff ∀u, v ∈ VG, a path p(u, v) always exists. The
size of a graph Size(G) is the number of edges in G.

Definition 3. Subgraph and Connected Subgraph:
A subgraph G′ of a graph G is a graph, i.e., G′ ⊆ G, where
VG′ ⊆ VG, and EG′ ⊆ EG where ∀e = (v1, v2) ∈ EG′ , the
two vertices v1, v2 ∈ VG′ . G is the supergraph of G′, or
we say G contains G′. A subgraph G′ of a graph G is a
connected subgraph if and only if it is a connected graph.

Note that if we change the IDs of vertices on a graph,
the graph still keeps the same structure. Thus, a graph
isomorphism test is required to identify whether two graphs
are isomorphic (i.e., the same) to each other [26]. Another
method to achieve the function of graph isomorphism tests
is to use canonical labels of graphs [26]. Usually if there is
a method to sequentialize all isomorphic graphs of the same
graph into different strings, then the minimum or maximum
string is the canonical labeling. Two graphs are isomorphic
to each other, if and only if their strings of canonical labeling
are the same. Thus, strings of canonical labeling of subgraph
features can be used to index graphs for fast search. We
provide two definitions below:

Definition 4. Graph Isomorphism and Subgraph Iso-
morphism: A graph isomorphism between two graphs G
and G′, is a bijective function f : VG → VG′ that maps
each vertex v ∈ VG to a vertex v′ ∈ VG′ , i.e., v′ = f(v),
such that ∀v ∈ VG, lG(v) = lG′(f(v)), and ∀e = (u, v) ∈
EG, (f(u), f(v)) ∈ EG′ and lG(u, v)) = lG′((f(u), f(v)). Since
f is a bijective function, a bijective function f ′ : VG′ → VG

also exists. A subgraph isomorphism between two graphs
G′ and G is the graph isomorphism between two graphs G′

and G′′, where G′′ is a subgraph of G.

Definition 5. Canonical labeling: A canonical labeling
CL(G) is a unique string to represent a graphG, where given
two graphs G and G′, G is isomorphic to G′ iff CL(G) =
CL(G′).

As mentioned before, both isomorphism tests and canon-
ical labeling can be used to determine if two graphs are
isomorphic. The canonical labelings of selected subgraph
features are indexed for graph search.

3.2 Answering Subgraph Queries
In this section, we first provide some definitions, and then

introduce an algorithm to answer subgraph queries.

Definition 6. Support, Support Graph, and Sub-
graph Query: Given a data set D of graphs G, the support
of subgraph G′, DG′ , is the set of all graphs G in D that
contain G′, i.e., DG′ = {G|G ∈ D, G′ ⊆ G}. Each graph in
DG′ is a support graph of G′. |DG| is the number of sup-
port graphs in DG. A subgraph query Gq seeks to find the
support of Gq, DGq .

565

Algorithm 1 Graph Search of Subgraph Query

Algorithm: GSSQ(Gq,S,IndexD):
Input: Query Subgraph Gq, indexed subgraph set S, and
index of the graph set D, IndexD.
Output: Support of Gq, DGq .
1. if Gq is indexed, find DGq using IndexD; return DGq ;
2. DGq = {∅};
find all subgraphs of Gq, G

′
q ∈ S with FG′⊆Gq

;

3. if no G′q is found, DGq = D;
4. else for all G′q do
5. Find DG′q,≥FG′q⊆Gq

using IndexD,

then DGq = DGq ∩DG′q
;

6. for all G ∈ DGq do
7. if subgraphIsomorphism(Gq, G)==false, remove G;
8. return DGq ;

Like words are indexed to support document search, sub-
graphs are indexed to support graph search. Note that sub-
graphs may overlap with each other. We define subgraph
frequency as follows:

Definition 7. Embedding and Subgraph Frequency:
An embedding of a subgraph G′ in a graph G, i.e., EmbG′⊆G,
is an instance of G′ ⊆ G. The frequency of a subgraph G′

in a graph G, i.e., FG′⊆G, is the number of embeddings of
G′ in G. Embeddings may overlap.

Algorithm 1 shows how a subgraph query can be an-
swered. First, if the query graphGq is indexed, its support is
returned directly. Otherwise, the algorithm identifies all G′q,
i.e., all indexed subgraphs of Gq, with their corresponding
frequency FG′q⊆Gq

, then finds all graphs G from the index

where G satisfies FG′q⊆G ≥ FG′q⊆Gq
, and finally performs

subgraph isomorphism tests on each G to identify whether
it contains Gq. For each selected subgraph G′q ⊆ Gq, each
support graph G of Gq must also be a support graph of each
graph query G′q.
Note that besides using subgraph frequencies, we also can

use binary features to represent if a subgraph occurs in a
graph or not. Many previous works use binary features [25,
26]. In this case, FG′q⊆G = {0, 1}. Thus, FG′q⊆G ≥ FG′q⊆Gq

means that if for each subgraph G′q occurring in Gq, G
′
q also

occurs in G, then G is a candidate of the support of the
query Gq. This is because each occurrence of G′q in Gq also
occurs in each support graph of Gq, G. Thus, the intersec-
tion of the support of each G′q with FG′q⊆G ≥ FG′q⊆Gq

must

contain all support graphs of Gq. As mentioned before, how
to extract and select subgraphs for indexing and querying
is the key issue. A subgraph G′ is frequent if the size of its
support |DG′ | ≥ Fmin, the minimum threshold of subgraph
frequency.

4. SUBGRAPH MINING
In this section, we describe the algorithm to discover in-

dependent frequent subgraphs from a set of graphs. Then
we introduce three feature selection criteria, MP, MII, and
MImR, and finally, we propose a greedy algorithm to se-
lect irredundant and informative subgraph features sequen-
tially from the discovered independent frequent subgraphs
for graph indexing and search.

Algorithm 2 Independent Frequent Subgraph Mining

Algorithm: IFGM(D,Fmin,Fmax,Corrmax):
Input: Set of graphs D,
minimal and maximal threshold of frequency Fmin and
Fmax,
maximal threshold of correlation Corrmax.
Output: Set of Independent Frequent Subgraphs FG, each
subgraph has a list of support graphs with corresponding
frequencies.
1. Initialization: FG = {∅}, and
find frequent vertex set FV = {v|Fmin ≤ Fv ≤ Fmax}.

2. for all v ∈ FV do
3. Find the set of all one-edge extensions of v, L;
4. searchSubgraph(v,path,L);
5. return FG;

Subprocedure: searchSubgraph(G,T ,L):
Input: A graph G, its type T ∈ {path, tree, cyclic}, and its
extension set L.
Output: FG.
1. DepG = false;
2. for all l ∈ L do
3. G′ = G+ l and find T ′;
4. Find the frequency of G′ in D, FG′ ;
5. if Corr(G, G′) ≥ Corrmax, then DepG = true;
6. if DepG == false, then put G into FG;
7. for all l ∈ L′ do
8. if Fmin ≤ FG′ ≤ Fmax

9. Find the set of all one-edge extensions of G′, L′;
10. searchSubgraph(G′,T ′,L′);

4.1 Independent Frequent Subgraph Mining
Different from previous works [15, 25, 26] using binary fea-

tures of subgraphs, our proposed independent frequent sub-
graph mining algorithm also discovers subgraph frequencies
and uses them to measure the correlation of subgraphs. Very
frequent subgraphs are like stop words. They are not very
informative because a large number of graphs will contain
them and they do not reduce the candidate set of subgraphs
on which subgraph isomorphism has to be performed signifi-
cantly. We also consider very infrequent to be not very useful
because we assume that queries containing these infrequent
subgraphs will be infrequent. If we have a real query log
and these infrequent subgraphs appear in frequent queries,
this assumption can be easily relaxed without much bear-
ing on the rest of the treatise. So, we define a lower bound
and an upper bound of frequencies for frequent subgraph
mining, and we remove subgraphs that have any highly cor-
related supergraphs. Thus, rather than only identifying the
support graphs of each subgraph, we also find the subgraph
frequencies on each support graph to compute correlation of
two subgraphs G′i, G

′ where G′i ⊆ G′, by using the correla-
tion of two random variables G′i and G

′, i.e.,

Corr(G′i, G
′) =

Cov(G′i,G
′)

SD(G′
i
)SD(G′)

, (1)

where Cov(G′i, G
′) is the covariance of G′i and G′, SD(G′)

is the standard deviation of G′. The random variable G′

(similar to the random variable G′i) is a variable represent-
ing which graph G the subgraph G′ occurs in. Its proba-
bility distribution p(G′ = G) represents the likelihood of
G′ occurring in G. It is estimated using p(G′ = G) =

566

FG′⊆G/
∑

Gi∈D FG′⊆Gi
. Note that unlike in previous work

[25, 6], which only uses the number of support graphs, we
use the correlation utilizing subgraph frequencies on sup-
port graphs. For example, if two subgraphs G′i ⊆ G′ always
appear on the same graphs G, previous methods only select
G′. However, if FG′

i
⊆G À FG′

i
⊆G′×FG′⊆G, i.e., G

′
i has more

embeddings on G than the embeddings of G′i in G via the
embeddings of G′, G′i is still useful to index in addition with
G′ and thus, our algorithm indexes G′i.

4.2 Irredundant Informative
Subgraph Selection

The independent frequent subgraphs discovered by algo-
rithm 2 can be used for graph indexing. However, the cor-
relation in Equation (1) is used only to pre-filter highly cor-
related subgraphs. Partial redundancies between subgraphs
still exist. Thus, we propose a feature selection approach
for pruning the index further . Consider a matrix of sub-
graph frequencies in all graphs. Each subgraph feature G′

has a list of support graphs G with a frequency FG′⊆G, and
correspondingly a graph has a list of subgraphs G′ with
FG′⊆G. Then we can have the joint probability distribu-
tion P (G,F), where G is a random variable with outcomes
of all the graphs G ∈ D, F is a random variable with out-
comes of all the subgraph features G′ ∈ FG. This joint
distribution is computed using p(G, G′) = FG′⊆G/Z, where
Z is a constant to normalize all subgraph frequencies into
probabilities.

Max-Precision
Our goal is to select a set of features using which the

algorithm can optimize the precision of the candidate graphs
among all the retrieved candidates for all queries. Thus,
given the possible user generated graph query set Q, we can
find the support graphs of each query Gq ∈ Q, where each
support graph is considered as relevant to Gq. Since the
possible user generated graph query set is hard to obtain
without user logs, we use a pseudo graph query set Q for
feature selection that is generated randomly from the set of
all the discovered subgraphs FG. Thus, the Max-Precision
(MP) problem to select the optimal subgraph set Sopt is
defined as follows:

Sopt = argmax
S

Prec(S), where Prec(S)

=
1

|Q|

∑

Gq∈Q

|DGq |

|
⋂

G′q⊆Gq∧G′q∈S DG′q,≥FG′q⊆Gq
|

=
1

|Q|

∑

Gq∈Q

p(Gq ⊆ G|∀G′q) =
1

|Q|

∑

Gq∈Q

p(Gq ⊆ G, ∀G′q)

p(∀G′q)

≈ [
∏

Gq∈Q

p(Gq ⊆ G)

p(∀G′q)
]1/|Q|, (2)

where S = {G′1, G
′
2, ..., G

′
m}, DG′q,≥FG′q⊆Gq

is the set of sup-

port graphs of G′q where ∀G, FG′q⊆G ≥ FG′q⊆Gq
(note that

D∅,≥F∅⊆Gq
=D), and in this paper, we let

∀G′q = ∀G
′
q, G

′
q ⊆ Gq ∧G′q ∈ S, FG′q⊆G ≥ FG′q⊆Gq

.

Then p(Gq ⊆ G|∀G′q) is the conditional probability that a
graph G contains Gq given FG′q⊆G ≥ FG′q⊆Gq

for all G′q such

that G′q ∈ Gq, G′q ∈ S. The last term in Equation (2) uses
the geometric mean to approximate the arithmetic mean.

However, even when we have the possible user generated
graph query set Q with a probability distribution of each
query, finding the optimal subgraph set S that maximizes
Prec(S) is computationally expensive, since for each possi-
ble subset of subgraphs we have to compute Prec(S). Even
greedy algorithms are expensive (shown in Section 4.3 and
5.3). We desire a more time-efficient algorithm. We show
below how to use an approximation method to select the set
of subgraphs to index.

Max-Irredundant-Information
As mentioned in the introduction, we need to combine the

informative and irredundant principles together. In order to
do so, we propose a mutual-information-based strategy as
follows. The mutual information (MI) MI(X;Y) is a quan-
tity to measure the dependency among two or more random
variables [21, 23]. For the case of two random variables, we
have

MI(X;Y) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

Obviously, when random variables X and Y are indepen-
dent, I(X;Y) = 0. In our case, the pair of outcomes are
two different subgraphs G and G′, where G′ ⊂ G. Mathe-
matically,

PMI(x; y) = log
p(x, y)

p(x)p(y)
.

We use PMI to measure the dependence of a subgraph fea-
ture G′q and a query graph Gq in the set of retrieved graphs
G, or dependence of a pair of subgraphs, G′i and G′j . We
call this scheme the Max-Irredudant-Information (MII) that
has the following form,

Sopt = argmax
S
(IrreduInfo(S)), where IrreduInfo(S)

=
∑

Gq∈Q

log
p(Gq ⊆ G, ∀G′q)

p(Gq ⊆ G)p(∀G′q)
= −

∑

Gq∈Q

log p(∀G′q). (3)

Theorem 1. MII is equivalent to MP with geometric mean.

Proof. For MP using the geometric mean,

Sopt = argmax
S
(Prec(S)) = argmax

S
(log(Prec(S)))

= argmax
S

∑

Gq∈Q

[log p(Gq ⊆ G)− log p(∀G′q)].

= argmax
S
[−

∑

Gq∈Q

log p(∀G′q)],

which is the same as MII. Thus, they are equivalent.

Both MP and MII are computationally expensive, because
for each possible subset of features we have to compute
IrreduInfo(S). MP and MII both combine the informative
and irredundant principles naturally, where selected sub-
graphs should be informative (have a high pruning power,
i.e., |D|/|DG′q ,≥FG′q⊆Gq

|), but also each pair of subgraphs

should be irredundant of each other. Thus, we decompose
this problem into two subproblems: Max-Information and
Min-Redundancy, in order to reduce the time complexity.

Max-Information
If all G′ ∈ S are independent of each other, then we have

IrreduInfo(S) = −
∑

Gq∈Q

∑

∀G′q

log p(G′q).

567

IrreduInfo(S) is the sum of each subgraph’s pointwise con-
tribution. We propose a pointwise-pruning-power-based cri-
terion to measure the information contained by each sub-
graph as follows:

Info(G′q) =
∑

Gq∈Q∧G′q⊆Gq

log
p(Gq ⊆ G, G′q)

p(Gq ⊆ G)p(G′q)

= −
∑

Gq∈Q∧G′q⊆Gq

log p(G′q)

=
∑

Gq∈Q∧G′q⊆Gq

log
|D|

|DG′q ,≥FG′q⊆Gq
|
, (4)

where we use p(G′q) to represent p(G′q, FG′q⊆G ≥ FG′q⊆Gq
),

and DG′q ,≥FG′q⊆Gq
is the support graph set where each sup-

port graph G has at least FG′q⊆Gq
embeddings of G′q, i.e.,

FG′q⊆G ≥ FG′q⊆Gq
. Thus, the first goal of subgraph selection

is to find a subset of subgraphs S with m subgraphs G′i that
maximizes the sum of information scores of each G′i, called
Max-Information (MI), is defined as follows:

max
S

Info(S), where Info(S) =
1

m

∑

G′
i
∈S

Info(G′i).

Min-Redundancy
Using PMI, we can define the dependence of a pair of

subgraphs G′i and G′j . Two subgraphs G′i and G′j are posi-
tively dependent if p(G′i|G

′
j) > p(G′j), negatively dependent

if p(G′i|G
′
j) < p(G′j), and independent otherwise. They are

irrelevant if they are negatively dependent or independent.
Thus, we define redundance of two subgraphs as follows:

Redu(G′i;G
′
j) =

∑

Gq∈Q∧G′
i
⊆Gq∧G′

j
⊆Gq

log
p(G′i, G

′
j)

p(G′i)p(G
′
j)

.

If two subgraphs are irredundant, i.e., have a low redun-
dancy score, together they are more informative than two
redundant subgraphs. Thus, another goal of subgraph selec-
tion is to find a subset of subgraphs S with m subgraphs G′i
that minimizes the redundancy of the selected subgraphs,
i.e., the sum of mutual information of each pair G′i and G′j ,
called Min-Redundance, defined as follows:

min
S

Redu(S),

where Redu(S) =

2
∑

G′
i
,G′

j
∈S,i 6=j

Redu(G′i, G
′
j)

m(m− 1)
. (5)

Max-Information-Min-Redundancy
We need to obtain Max-Information and Min-Redundancy

in the selected subgraph set, but considering all the selected
subgraphs together as in MP or MII is computationally ex-
pensive. Thus, we propose a global criterion that combines
the two constraints, Max-Information and Min-Redundancy,
and is significantly more efficient computationally, called
Max-Information-Min-Redundancy (MImR), as follows:

Sopt = argmax
S
(Info(S)−Redu(S)). (6)

In practice, usually normal feature selection algorithms us-
ing first-order incremental search can be used to find the

near-optimal subgraph set. Suppose we have selected k − 1
subgraphs and want to select the next subgraph. Then the
local optimal feature G′k is selected to maximize the follow-
ing function:

MP : max
G′
(Prec(Sk)), or

MII : max
G′
(IrreduInfo(Sk)), or

MImR : max
G′
(Info(Sk|Sk−1)−Redu(Sk|Sk−1))

= max
G′
(Info(G′)−

1

k − 1

∑

G′
i
∈Sk−1

Redu(G′, G′i)). (7)

Now we show that for the first-order incremental search,
MImR is an approximation to MII. First we define pointwise
entropy as PH(x) = − log p(x) and joint pointwise entropy
as PH(x, y) = − log p(x, y). It is easy to verify that

IrreduInfo(S) =
∑

Gq∈Q

[PH(Gq ⊆ G) + PH(∀G′q)

−PH(Gq ⊆ G, ∀G′q)] (8)

We define pointwise total correlation PC(S) as follows:

PC(S) =
∑

Gq∈Q

log
p(∀G′q)∏
G′q

p(G′q)

=
∑

Gq∈Q

[
∑

G′q

PH(G′q)− PH(∀G′q)] (9)

and PC(S, Q) as follows:

PC(S, Q) =
∑

Gq∈Q

log
p(Gq ⊆ G, ∀G′q)

p(Gq ⊆ G)
∏

G′q
p(G′q)

=
∑

Gq∈Q

[PH(Gq ⊆ G)

+
∑

G′q

PH(G′q)− PH(Gq ⊆ G, ∀G′q)] (10)

Then by subtracting (9) from (10) and substituting the dif-
ference into (8) we have

IrreduInfo(S) = PC(S, Q)− PC(S). (11)

Thus, MII is equivalent to simultaneously maximizing the
first term and minimizing the second term at the left hand
side of Equation (11).
It is easy to show that the first term,

PC(S, Q) =
∑

Gq∈Q

[
∑

G′q

PH(G′q)− PH(∀G′q|Gq ⊆ G)]

≤
∑

Gq∈Q

∑

G′q

PH(G′q),

is maximized only if all the variables in {S, Q} are the most
dependent. Thus, if all m − 1 subgraphs in S have been
selected, the mth subgraph that is the most dependent on Q
should be selected for MII, because it can maximize PC(S, Q).
Note that this is the same as the Max-Info strategy. The sec-
ond term PC(S) > 0 if subgraphs are positively dependent,
< 0 if negatively dependent, and = 0 if all the subgraphs are
independent. Thus, if all m − 1 subgraphs in S have been
selected, the mth subgraph that is the most pairwise nega-
tively dependent on each selected subgraph in S should be
selected for MII, which can minimize PC(S). This is same
as the Min-Redu strategy. Thus, MImR is a combination of
Max-Info and Min-Redu and an approximation to MII.

568

Algorithm 3 Irredundant Informative Subgraph Selection

Algorithm: IIGS(FG, m):
Input:
Candidate set of subgraphs FG, and
Number of features to select m.
Output:
Set of Irredundant Informative Subgraphs S.
1. Initialization: S = {∅}, k = 1.
2. while k ≥ m, do
3. scan all G′ ∈ FG and

find Gopt = argmaxG′(Equation(7));
4. move Gopt from FG to S;
5. k ++;
7.return IIFG;

4.3 Subgraph Selection Algorithm
It is easy to shown that finding the optimal solution for

the MP or MII problem is as expensive as:

O(
n!

m!(n−m)!
|Q| · avg|sq| · (|D|+ avg|DG′q∈sq ,≥FG′q⊆Gq

|)),

where sq = {G
′
q|G

′
q ∈ S, G′q ⊆ Gq ∈ Q} is the set of possible

subgraphs in Gq and avg|sq| is the average size of sq.
We use forward selection in this work (Algorithm 3). For-

ward selection is a greedy algorithm using first-order incre-
mental search, i.e., every time only the best subgraph from
the rest of the candidate subgraph set is added to the se-
lected subgraph set. Initially, the algorithm finds the most
informative subgraph. Then, every time when a new sub-
graph is added, the rest of the subgraphs in the candidate
set are evaluated. The one that maximizes Equation (7) is
selected. The algorithm repeats this until m subgraphs are
selected.
For MP and MII, computational complexity of the first-

order incremental selection is

O(n2|Q| · avg|sq| · (|D|+ avg|DG′q∈sq,≥FG′q⊆Gq
|)).

For MImR, the computational complexity of the first-order
incremental selection involves three parts,

1) O(|Q| · avg|sq| · |D|)

for pre-computing information scores of all features,

2) O(|Q|·(avg|sq|·|D|+avg|sq|
2 ·avg|DG′q∈sq,≥FG′q⊆Gq

|))

for pre-computing pairwise dependence scores of all feature
pairs, and

3) O(n2)

for subgraph selection, which is much faster than that of
MP or MII. Because avg(|sq|) can be viewed as a constant
compared with other numbers, forward subgraph selection
based on MImR is quadratic, while for MP or MII it is
quartic. Another advantage of the first-order incremental
search is that we only need to run the algorithm once to
select m subgraphs, and we know what are the best k ≤
m subgraphs without re-running the algorithm every time
when the number of selected subgraphs is changed.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate our proposed approaches and

compare the experimental results with two previous meth-
ods. Our results show that:
• Our proposed subgraph selection and graph search method
can improve the precision of return candidates (num-
ber of graphs containing the query subgraph/number

of graphs on which on which subgraph isomorphism
has to be computed) by about 4%-13% when compared
to existing methods. Correspondingly, the overall re-
sponse time for online subgraph queries is improved.

• The algorithm based on MImR has a much lower com-
putational cost than those based on MP and MII, and
MImR can achieve a reasonably high precision that is
only slightly lower than that of MP or MII.

5.1 Experimental Data Set
We use the same real data set and testing query set as

those used by Yan, et al., [26]. It is a NCI/NIH HIV/AIDS
antiviral screen data set that contains 43,905 chemical struc-
tures. The experimental subset contains 10,000 chemical
structures randomly selected from the whole set and the
query set contains 6000 randomly generated queries, i.e.,
1000 queries per Size(Gq) = {4, 8, 12, 16, 20, 24}. Although
we only use chemical structures for experiments, our ap-
proach is applicable to any structures that can be repre-
sented by graphs, such as DNA sequences or XML files.

5.2 Evaluated Subgraph Selection Methods
We evaluate average precisions of returned graphs for all

queries using different subgraph selection methods. When
we compute the average precision of returned structures,
we only count queries with non-empty supports in the data
set. In our experiment, we evaluate six methods. First, we
evaluate three methods without considering subgraph fre-
quencies, including two previous methods, CloseG [25] and
GIndex [26], and our proposed method, MImR. They use
binary features that only consider the occurrence of sub-
graphs in graphs. Each subgraph feature takes a binary
value of 1 or 0 to represent the occurrence of a subgraph in a
graph or not, respectively. Then we evaluate three methods
considering subgraph frequencies. We extend the CloseG
method to CloseG.F, the GIndex method to GIndex.F, and
propose a MImR.F, which is an extension of our MImR
method, respectively. They use numerical features of sub-
graph frequencies in graphs, i.e., frequency features. CloseG
and CloseG.F [25] just select frequent closed subgraphs in-
dependently that have DG ≥ Fmin = {1000, 500, 200, 100}
(m = {460, 1795, 9846, 50625} respectively) without consid-
ering redundancy. GIndex and GIndex.F [26] select sub-
graphs from the candidate subgraph set where DG ≥ 100.
It scans subgraphs from the smallest to the largest avoiding
to select redundant supergraphs of selected subgraphs. A
discriminative score is defined and computed for each sub-
graph candidate to measure the redundancy. If its score
is larger than a threshold Dmin = {7.0, 3.1, 1.09, 1} (m =
{667, 1779, 9855, 50625} respectively) then the subgraph is
selected. MImR.F is our proposed method in Section 4.2
and MImR is similar but uses binary features. Five vari-
ations on the number of selected subgraphs are evaluated,
m = {460, 667, 1779, 9855, 50625}. MP and MII are only
evaluated using the data set with 100 structures because
they are forbiddingly expensive in practice. We randomly
sample 30,000 subgraphs as the training query set with the
same distributions as that of the testing query set, and then
use it for subgraph selection in MImR and MImR.F.

5.3 Precision of Returned Results
We show precision of returned results for the testing query

set in Figure 2. Because each subgraph selection method

569

4 8 16 32 64 128 256 512 1000
0.4

0.5

0.6

0.7

0.8

0.9

Number of selected features (x102)

P
re

ci
si

on

CloseG
CloseG.F
GIndex
GIndex.F
MImR
MImR.F

(a) Prec vs. # selected feature

1 2 4 8 16 32
0.4

0.5

0.6

0.7

0.8

0.9

Index size (MB)

P
re

ci
si

on

CloseG
CloseG.F
GIndex
GIndex.F
MImR
MImR.F

(b) Prec vs. index size

4 8 12 16 20 24
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Query size

P
re

ci
si

on

CloseG
CloseG.F
GIndex
GIndex.F
MImR
MImR.F

(c) Prec vs. query size for cases in
Table 2

Figure 2: Average precision of graph search for subgraph queries

M4 MF4 G4 GF4 C4 CF4 M8 MF8 G8 GF8 C8 CF8 M12MF12G12GF12 C12 CF12
0

20

40

60

80

100

120

140

Combination of Methods, Features, and Query Sizes

A
ve

ra
ge

 R
es

po
ns

e
T

im
e,

 M
ill

is
ec

Verify time
Search time
Enumeration time

(a) Small query sizes (4, 8, 12)

M16MF16G16GF16C16 CF16M20MF20G20GF20C20 CF20M24MF24G24GF24C24 CF24
0

20

40

60

80

100

120

140

Combination of Methods, Features, and Query Sizes

A
ve

ra
ge

 R
es

po
ns

e
T

im
e,

 M
ill

is
ec

Verify time
Search time
Enumeration time

(b) Large query sizes (16, 20, 24)

Note: For combination of Methods, Features, and Query Sizes, M=MImR, G=GIndex, C=CloseG, MF=MImR.F,
GF=GIndex.F, CF=CloseG.F, 4=Query size of 4. For example, M4 is MImR using binary features for queries with size of 4,
and CF12 is CloseG.F using frequency features for queries with size of 12.

Figure 3: Response time of subgraph queries for cases in Table 2

can select different numbers of subgraphs for indexing by
adjusting parameters, we show the curves of precision versus
different values of the selected subgraph number m and the
index size in Figure 2. We also present the precision curve
versus the query graph size |Gq| to illustrate the effect of
different query sizes in Figure 2. To evaluate the precision
versus the index size, we first index the canonical string
of each selected subgraph. If a subgraph has a frequency
larger than one, we then index the frequency. Thus, using
numerical features has a larger index size than using binary
features given the same number of selected subgraphs.
In Figure 2 (a), we can observe that given the same num-

ber of selected subgraphs, GIndex improves the average pre-
cision compared with CloseG. Our proposed approachMImR
can improve the precision by about 4%-13%. This illus-
trates that our probabilistic model for subgraph selection
works better than the previous method proposed by Yan,
et al., [26]. We also can see that CloseG.F, GIndex.F, and
MImR.F can improve the average precision compared with
CloseG, GIndex, and MImR by using subgraph frequencies
as features (Figure 2 (a)). This demonstrates that using
subgraph frequencies for subgraph queries can improve the
precision by about 4%-12%. In Figure 2 (b), we can see that
using subgraph frequencies as features will increase the index
size by about 6%-30%, since more information of frequen-

cies are indexed. We can see that given the same index size,
CloseG.F, GIndex.F, and MImR.F also have higher preci-
sion than CloseG, GIndex, and MImR, even though not as
much as that in the cases in Figure 2 (a). In Figure 2 (c),
the curves are of the precisions vs. query sizes for the cases
in Table 2. We can observe that CloseG and CloseG.F have
higher precision for small queries, while GIndex and GIn-
dex.F have higher precision for large queries. MImR and
MImR.F are more balanced than either and always have
precisions above their precisions. The p-values in Table 2
of 1-sided T-tests show that the improvement is significant
with a confidence level of at least 99.9%.

5.4 Response Time of Subgraph Queries
In this section, we show the overall response time for sub-

graph queries using different subgraph selection methods.
The search process to answer subgraph queries works as fol-
lows. Every time when a subgraph query is entered, the
algorithm first generated the canonical string of the query
graph and check if this query graph is indexed. If the query
is indexed, the support of the query is retrieved without
verification using subgraph isomorphism. If the query is not
indexed, its subgraphs are enumerated, and among those
subgraphs, indexed ones are use to scan the index and find
candidate sets for each subgraph and compute the intersec-
tion for all candidate sets. Finally, subgraph isomorphism

570

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12
x 10

4

Number of selected features

R
un

ni
ng

 ti
m

e
(S

ec
)

MImR.F
MII.F
MP.F

(a) Time vs. # selected feature

0 500 1000 1500 2000 2500 3000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of selected features

P
re

ci
si

on

MImR.F
MII.F
MP.F

(b) Prec vs. # selected feature

Figure 5: Comparison of MP, MII, and MImR

Method #Feature Index size Precision
CloseG 1795 3.44MB 61.10%
CloseG.F 1795 4.14MB 69.15%
GIndex 1779 2.07MB 66.32%
GIndex.F 1779 2.18MB 71.47%
MImR 1779 2.50MB 74.11%
MImR.F 1779 2.73MB 80.03%

Methods P-value
GIndex vs CloseG 0.000
MImR vs GIndex 0.000

GIndex.F vs CloseG.F 0.001
MImR.F vs GIndex.F 0.000
CloseG.F vs CloseG 0.000
GIndex.F vs GIndex 0.000
MImR.F vs MImR 0.000

Table 2: Average precision and 1-sided
T-test for feature selection methods

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Max Subgraph Size

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e,

 M
ill

is
ec

Verify time
Search time
Enumeration time

Figure 4: Effect of max enumerated subgraph size
on response time for query size of 20 & MImR.F

tests are performed on all retrieved candidates to prune out
unsatisfied graphs.
Thus, response time of a subgraph query involves 1) enu-

meration time to identify if the query graph is indexed or
not, and enumerate the subgraphs of the query if the query is
not indexed (note that enumeration time also includes the
time of finding canonical strings of subgraphs), 2) search
time to retrieve candidates from the graph index, and 3)
verification time to prune out unsatisfied graphs that are
not super-graphs of the query from the candidates using
subgraph isomorphism tests. Enumeration time first de-
pends on how many queries are indexed and then depends
on query sizes. Usually large queries have long enumeration
time. Search time includes time to retrieve candidate sets,
and time to compute the set intersection. If the query is
indexed, then no set intersection is computed. Moreover, if
the query is indexed, verification time is zero. Otherwise, it
depends on the number of returned candidates. Thus, if the
precision of returned candidates is higher, then verification
time is shorter.
We illustrate average response times for the cases in Ta-

ble 2, in Figure 3. We set the max enumerated subgraph
size of queries as 8. From Figure 3, we can observe that
the average over-all response time of subgraph queries using
MImR is always the best in comparison with the other two
methods, GIndex and CloseG, for different query sizes, irre-
spective of whether binary features or frequency features are
used in the index and the search process. However, the im-
provement of response time is significant for small queries,
while for large queries, it is not significant, because the enu-
meration time dominates the over-all response time. We
also can observe that the search time is always a small part

of the over-all response time, while enumeration time and
verification time change much for different cases and affect
the over-all response time significantly. Usually for small
queries, the major part of response time is the verification
time, while for large queries, the major part is enumeration
time. This is because small queries usually have large sup-
ports containing more supergraphs so that as a result the
candidate set is also very large to verify, although each sub-
graph isomorphism test for small queries is not expensive.
In comparison, large queries usually have small candidates
to verify, but the enumeration time is expensive for large
queries, because it increases exponentially when the query
size increases.
Similar to precision curves in Figure 2 (c), we can ob-

serve that 1) for GIndex and GIndex.F, the verification time
is long for small queries but short for large queries, 2) for
CloseG and CloseG.F, the verification time is short for small
queries but long for large queries, 3) for MImR and MImR.F,
the verification time is short for all queries. Moreover, using
frequency features can achieve a shorter verification time
than using binary features for all the cases. This is con-
sistent with the precision curves in Figure 2 (c). Although
using frequency features can achieve a shorter verification
time than using binary features, it requires a longer enu-
meration time because the exact occurrence number of each
subgraph is needed to be identified for frequency features.
Thus, the over-all response time is shorter using binary fea-
tures than using frequency features for large queries, because
the enumeration time dominates the response time for large
queries. However, the over-all response time is shorter us-
ing frequency features than binary features for small queries,
because the verification time contributes more than the enu-
meration time to the response time.
Because the subgraph enumeration process uses Algorithm

3, we can set the maximum subgraph size to enumerate. If
we set a smaller maximum subgraph size, we can expect a
shorter enumeration time but a longer verification time, be-
cause fewer subgraphs are used to retrieve candidates. We
adjust the maximum subgraph size and evaluate MImR.F
with the query size of 20, and show the results in Figure
4. We can observe that for queries with graph size of 20,
if we use MImR.F, the optimal maximum subgraph size for
subgraph enumeration is 5. Below that, verification time
increases significantly, while above that, enumeration time
increases much. Thus, we can achieve better response times
than those in Figure 3, if we tune and find the best maxi-
mum subgraph size for subgraph enumeration.

571

5.5 Time Complexity of
Subgraph Selection Methods

To compare the time complexity for our proposed meth-
ods, MP.F, MII.F, and MImR.F, we select a data set with
100 chemical structures. We use a testing set of 100 queries
with 20 queries per Size(Gq) = {4, 8, 12, 16, 20}, and a train-
ing set of 500 queries with the same distribution. We use the
forward feature selection for the three methods. We show
the time complexity and the average precision of query an-
swers in Figure 5. The results demonstrate that MImR.F is
significantly more computationally efficient than MP.F and
MII.F. MImR.F achieves only a slightly worse precision in
comparison to MP.F or MII.F. Note that MP.F and MII.F
may not achieve the optimal performance since we use for-
ward feature selection. To find the better solution using a
global method of feature selection, we expect more signif-
icant computational costs. We can observe from Figure 5
(b) that the precision increases while more subgraphs are
selected. After a certain number of subgraphs have been
selected, the precision reaches the highest value, i.e., adding
more subgraphs cannot increase the information contained
in the subgraph set for the testing query set. Thus, if the
user query set is known, we can find this point and stop
adding useless subgraphs to the index after this point. A
better subgraph selection method can achieve the highest
precision with a smaller number of subgraphs. Note that
there is no overfitting problem for the task of subgraph
queries. This is because in the subgraph query problem,
given that a query graph is a subgraph of a graph, all the
subgraph features of this query graph are always subgraphs
of the same graph. Adding more features can always prune
out more (at least zero) unsatisfied candidates and improve
(at least maintain) the precision of subgraph queries.

6. CONCLUSIONS AND FUTURE WORK
We proposed a novel probabilistic model to determine a

near-optimal set of subgraphs to index in order to answer
a given set of queries given a constraint on the maximum
number of subgraphs that can be indexed (typically due to
space and performance limitations). We consider subgraph
frequencies in graphs to improve the precision of our method
further. We introduce several criteria for subgraph selec-
tion, including Max-Precision (MP), a method that directly
optimizes the precision of query answers, Max-Irredundant-
Information (MII) and Max-Information-Min-Redundancy
(MImR) that are based on a probabilistic model using mu-
tual information. We show theoretically that MImR and
MII are approximations of MP. We also propose a greedy
feature selection algorithm using MImR that works well in
practice. Experiments show that our proposed approaches
perform significantly better than previous methods. Future
work will use real queries from user logs to select features
and evaluate precision.

7. ACKNOWLEDGMENTS
We acknowledge the partial support of NSF Grant 0535656

and 0845487.

8. REFERENCES
[1] B. Berendt. Using and learning semantics in frequent subgraph
mining. In Proc. WEBKDD, 2005.

[2] C. Borgelt and M. R. Berthold. Mining molecular fragments:
Finding relevant substructures of molecules. In Proc. ICDM,
2002.

[3] S. Buttcher and C. L. A. Clarke. A document-centric approach
to static index pruning in text retrieval systems. In Proc.
CIKM, 2006.

[4] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici,
Y. Maarek, and A. Soffer. Static index pruning for information
retrieval systems. In Proc. SIGIR, 2001.

[5] B. Chen, Q. Zhao, B. Sun, and P. Mitra. Temporal and social
network based blogging behavior prediction in blogspace. In
Proc. ICDM, 2007.

[6] I. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: Towards
verification-free query processing on graph databases. In Proc.
SIGMOD, 2007.

[7] E. S. de Moura, C. F. dos Santos, D. R. Fernandes, A. S. Silva,
P. Calado, and M. A. Nascimento. Improving web search
efficiency via a locality based static pruning method. In Proc.
WWW, 2005.

[8] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent
substructures in chemical compounds. In Proc. SIGKDD, 1998.

[9] I. Fischer and T. Meinl. Graph based molecular data mining -
an overview. In Proc. IEEE International Conference on
Systems, Man and Cybernetics, 2004.

[10] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent
subgraph in the presence of isomophism. In Proc. ICDM, 2003.

[11] A. Inokuchi. Mining generalized substructures from a set of
labeled graphs. In Proc. ICDM, 2004.

[12] H. Jiang, H. Wang, P. S. Yu, and S. Zhou. Gstring: A novel
approach for efficient search in graph databases. In Proc.
ICDE, 2007.

[13] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In
Proc. ICDM, 2001.

[14] S. Lawrence, C. L. Giles, and K. Bollacker. Digital libraries and
autonomous citation indexing. IEEE Computer, 32(6):67–71,
1999.

[15] S. Nijssen and J. N. Kok. A quickstart in frequent structure
mining can make a difference. In Proc. SIGKDD, 2004.

[16] H. Peng, F. Long, and C. Ding. Feature selection based on
mutual information: criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Transactions on
PAMI, 27(8):1226–1238, 2005.

[17] J. W. Raymond, E. J. Gardiner, and P. Willet. Rascal:
Calculation of graph similarity using maximum common edge
subgraphs. The Computer Journal, 45(6), 2002.

[18] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and
applications of tree and graph searching. In Proc. PODS, 2002.

[19] S. Srinivasa and S. Kumar. A platform based on the
multi-dimensional data model for analysis of bio-molecular
structures. In Proc. VLDB, pages 975–986, 2003.

[20] B. Sun, P. Mitra, and C. L. Giles. Mining, indexing, and
searching for textual chemical molecule information on the web.
In Proc. WWW, 2008.

[21] B. Sun, P. Mitra, H. Zha, C. L. Giles, and J. Yen. Topic
segmentation with shared topic detection and alignment of
multiple documents. In Proc. SIGIR, 2007.

[22] B. Sun, Q. Tan, P. Mitra, and C. L. Giles. Extraction and
search of chemical formulae in text documents on the web. In
Proc. WWW, 2007.

[23] B. Sun, D. Zhou, H. Zha, and J. Yen. Multi-task text
segmentation and alignment based on weighted mutual
information. In Proc. CIKM, 2006.

[24] M. Worlein, T. Meinl, I. Fischer, and M. Philippsen. A
quantitative comparison of the subgraph miners mofa, gspan,
ffsm, and gaston. In Proc. PKDD, 2005.

[25] X. Yan and J. Han. Closegraph: Mining closed frequent graph
patterns. In Proc. SIGKDD, 2003.

[26] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. In Proc. SIGMOD, 2004.

[27] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in
graph databases. In Proc. SIGMOD, 2005.

[28] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: Tree + delata
>= graph. In Proc. VLDB, 2007.

[29] Q. Zhao, L. Chen, S. S. Bhowmick, and S. Madria. Xml
structural delta mining: issues and challenges. Data and
Knowledge Engineering, 2006.

572

