
Learning to Rank Graphs for Online Similar Graph Search

Bingjun Sun
Department of Computer
Science and Engineering

Pennsylvania State University
University Park,PA 16802,USA
sunbingjun@hotmail.com

Prasenjit Mitra
College of Information

Sciences and Technology
Pennsylvania State University
University Park,PA 16802,USA

pmitra@ist.psu.edu

C. Lee Giles
College of Information

Sciences and Technology
Pennsylvania State University
University Park,PA 16802,USA

giles@ist.psu.edu

ABSTRACT
Many applications in structure matching require the ability
to search for graphs that are similar to a query graph, i.e.,
similarity graph queries. Prior works, especially in chemoin-
formatics, have used the maximum common edge subgraph
(MCEG) to compute the graph similarity. This approach
is prohibitively slow for real-time queries. In this work, we
propose an algorithm that extracts and indexes subgraph
features from a graph dataset. It computes the similarity of
graphs using a linear graph kernel based on feature weights
learned offline from a training set generated using MCEG.
We show empirically that our proposed algorithm of learn-
ing to rank graphs can achieve higher normalized discounted
cumulative gain compared with existing optimal methods
based on MCEG. The running time of our algorithm is or-
ders of magnitude faster than these existing methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation,Retrieval models

General Terms
Algorithms, Design, Experimentation

Keywords
Learn to rank, graph kernel, similarity graph search

1. INTRODUCTION
Graphs have been used to represent structured data for

a long time. Increasingly, massive complex structured data,
such as chemical molecule structures [6], social networks [1],
and XML structures [12], are identified and studied in many
areas. Efficient and effective access of the desired structure
information is crucial in many areas from generic and verti-
cal research engine [8, 9, 7].
Usually a typical query to search for desired graph infor-

mation is a subgraph query that searches for graphs contain-
ing exactly the query graph, i.e., the support [10]. However,
sufficient knowledge to select subgraphs to characterize the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

desired graphs is required and sometimes no support exists,
so the similarity graph query searching for all graphs sim-
ilar to the query graph is desired to bypass the subgraph
selection. To measure the similarity of two graphs, previous
methods [5, 10] usually use the size of the maximum common
edge subgraph (MCEG) between two graphs, i.e., the num-
ber of edges in MCEG. The crux of similarity graph search
lies in the complexity of the MCEG isomorphism algorithm
for similarity measurement. However, since the MCEG iso-
morphism problem is NP-hard [10], it is prohibitively expen-
sive to scan all graphs in real time to find MCEG. Previous
works [10, 5] use different filters to prune out unsatisfied
graphs given a user specified minimum MCEG size. If users
need more search results, the minimum MCEG size has to
be reduced and more graphs are retrieved. However, previ-
ous methods are still slow because MCEG isomorphism tests
have to be executed on the filtered graph set, which usually
is still large. Rather than executing MCEG isomorphism
tests on the fly, we proposed to index the graphs offline us-
ing subgraph features to enable fast graph search.
The goal of using MCEG sizes to measure the graph sim-

ilarity is to rank search results. Instead of using MCEG,
we propose a novel approach that uses a linear graph kernel
function to rank retrieved graphs using the indexed sub-
graph features and feature weights learned from a training
set. Our method generates a training set offline using MCEG
isomorphism, a training query set, and a graph set. Our
approach avoids MCEG isomorphism online and is more ef-
ficient computationally than previous methods [10, 5]. Ex-
perimental results also show that our method can achieve
a reasonably high normalized discounted cumulative gain
[13] in a significantly shorter time in comparison to existing
methods. Moreover, because our method learns the ranking
function from a training set, it can be applied to other sim-
ilarity metrics, including similarity scores labeled by human
experts or extracted from user logs.

2. PRELIMINARIES
In this work, we consider labeled undirected graphs and

connected labeled undirected subgraph features, where a path
exists for any pair of vertices on the subgraph. Notations
are given as follows:

Definition 1. Labeled Undirected Graph: A labeled
undirected graph is a 5-tuple, G = {V, E, LV , LE , l}, where
V is a set of vertices, each v ∈ V is an unique ID representing
this vertex, E ⊆ V ×V is a set of edges with each e = (u, v) ∈
E, u ∈ V, v ∈ V , LV is a set of vertex labels, LE is a set of
edge labels, and l : V ∪E → LV ∪LE is a function assigning

1871

labels to vertices and edges on the graph. The size of a
graph G, |G|, is defined as the edge count of G.

Definition 2. Subgraph and Frequency: A subgraph
G′ of a graph G is also a graph where VG′ ⊆ VG and EG′ ⊆
EG, i.e. G′ ⊆ G. G is the supergraph of G′. An embedding
of a subgraph G′ in a graph G, i.e., EG′⊆G, is an instance
of G′ ⊆ G. We say that in a graph G, two embeddings
EG′⊆G and EG′′⊆G overlap, i.e. EG′⊆G ∩ EG′′⊆G 6= ∅, iff
∃v, v ∈ G′ ∧ v ∈ G′′. The frequency of a subgraph G′ in a
graph G, i.e., FG′⊆G, is the embedding number of G′ in G.

Definition 3. Graph Isomorphism: An isomorphism
between two graphs G and G′ is a bijective function f :
VG → VG′ mapping each vertex on G to a vertex on G′,
such that ∀v ∈ VG, lG(v) = lG′(f(v)), and ∀e = (u, v) ∈
EG, (f(u), f(v)) ∈ EG′ and lG((u, v)) = lG′((f(u), f(v)).
Since it is a bijective function, a bijective function f ′ : VG′ →
VG exists with the same of reverse one to one mapping of f .

Definition 4. Canonical labeling: A canonical labeling
CL(G) is a string to represent a graph G, where given two
graphsG andG′, G is isomorphic toG′ iff CL(G) = CL(G′).

Definition 5. Maximum Common Edge Subgraph:

A graph G′ is a common edge subgraph of Gi and Gj , if
G′ is isomorphic to subgraphs of Gi and Gj . A common
edge subgraph G′ of Gi and Gj is a maximum common edge

subgraph, i.e.,MCEG(Gi, Gj), iff no common edge subgraph
G′′ of Gi and Gj exists that |E(G

′′)| > |E(G′)|, i.e., the edge
count on G′′ is larger than that on G′. The size of a MCEG,
|MCEG(Gi, Gj)|, is defined as its edge count.

Note that an MCEG is not necessarily a connected graph.
To make the similarity scores comparable between differ-
ent sizes of query graphs in our research, we normalize the
MCEG sizes into the interval [0, 4], where 4 means the query
graph is a subgraph of the retrieved graph, while 0 means no
edge matched. These normalized MCEG sizes are used as
the similarity scores for training and test in our experiments.
Discounted cumulative gain (DCG) is the most widely

used metric to evaluate the performance of ranking func-
tions. Given a query q and n ordered results , it is computed
as follows [3],

DCG =

n∑

i=1

cif(yi), (1)

where yi, i = 1, ..., n are the real relevance scores of the n
ordered results, ci is a non-increasing function of i, typically
ci = 1/log(i + 1), and f(yi) is a non-decreasing function of
yi, typically f(yi) = 2

yi + 1, or sometimes f(yi) = yi. If yi

is higher, the result i is more relevant. If yi ∈ {0, 1}, only
relevance and irrelevance are considered. Normalized dis-
counted cumulative gain (NDCG) is a score that normalize
DCG scores into the interval of [0, 1] using the maximum
DCG that can be achieved. The average NDCG, NDCGQ,
for the whole query set Q is used for evaluation.

3. LEARNING TO RANK GRAPHS
In this section, we describe our search algorithm and the

weighted linear graph kernel to measure the graph similarity.
Then we describe how to learn the weights.

3.1 Similarity Graph Search
A naive approach to similarity graph search is to scan all

the graphs to find MCEGs of the query and each graph,
which is prohibitively expensive to be executed in real time.
Usually previous methods first filter out graphs with lower

MCEG sizes than a given threshold. Then they determine
the size of the MCEG between the query graph hand each
candidate graph. This size is used as the similarity score [10,
5] for ranking the result graphs. Detecting MCEG iso-
morphism is NP-hard [10], and all existing algorithms for
MCEG isomorphism are extremely expensive. This makes
online similarity graph search prohibitively slow for large
graph databases. We propose a new efficient similarity graph
search algorithm shown in Algorithm 1. It first returns all
the graphs in the support of the query that have the max-
imum MCEG size, and then use a fast graph ranking func-
tion to compute a heuristic similarity score. To return the
support of the query, subgraph isomorphism tests are re-
quired. Algorithms for subgraph isomorphism are signifi-
cantly faster than those for MCEG isomorphism [10]. Our
proposed fast graph ranking function uses a weighted kernel
between vectors constructed from subgraph features. Thus,
our proposed method is significantly faster for online queries
in comparison with methods using MCEG.
First, we assume we have built an index of graphs using

their subgraph features. Subgraph features can be discov-
ered from those graphs using any previous methods [10, 4].
Then, as illustrated in Algorithm 1, given a query graph
Gq, the algorithm finds the support of Gq, DGq (Line 1-11).
Thus, all the graphs in the support should be returned as
the top-most candidates in the result list. If Gq is indexed,
it is simple to find DGq using the index. Otherwise, candi-
dates containing all the indexed subgraph features of Gq is
returned and subgraph isomorphism is performed to remove
graphs that do not contain Gq. Second, if more results are
required, similar graphs with lower similarity scores are re-
turned (Line 12-19). Our proposed method uses a weighted
kernel as the similarity function. All the graphs containing
at least one indexed subgraph feature of Gq is returned as
candidates except support graphs found at the first stage.
For each candidate and the query Gq, a similarity score is
computed using a weighted linear graph kernel based on the
indexed subgraph features and corresponding weights. This
similarity score computation is fast and can be computed
during search. Finally, graphs are sorted based on the simi-
larity scores and the top results are returned.

3.2 Graph Kernels
A graph kernel is defined as follows,

Definition 6. Graph Kernel: Let X be a set of graphs,
R denotes the real numbers, × denotes set product, the func-
tion K : X×X →R is a kernel on X×X if K is symmetric,
i.e. ∀Gi and Gj ∈ X, K(Gi, Gj) = K(Gj , Gi), and K is
positive semi-definite, i.e. ∀N ≥ 1 and ∀G1, G2, ..., GN ∈ X,
the N by N matrix K defined by Kij = K(Gi, Gj) is pos-
itive semi-definite, i.e.

∑
ij

cicjKij ≥ 0, ∀c1, c2, ..., cN ∈ R.
Equivalently, a symmetric matrix is positive semi-definite if
all its eigenvalues are nonnegative [2].

The MCEG sizes of two graphs is also a graph kernel, but
expensive to compute. We define a time-efficient and learn-
able weighted linear graph kernel based on indexed subgraph
features and corresponding frequencies as follows,

K(Gi, Gj) =
∑

G′∈S

W (G′)min(FG′⊆Gi
, FG′⊆Gj

). (2)

W (G′) are the learnable parameters in this kernel. Thus,
our goal is to learn the kernel function to approximate a
target function for ranking, but not necessarily the same as
the function of MCEG sizes.

1872

Algorithm 1 Similarity Graph Search

Algorithm: SGS(Gq ,S,IndexD,n):
Input: Query Subgraph Gq , indexed subgraph set S, index of
the graph set D, IndexD, and the number of returned results, n.
Output: A sorted list of n graphs similar to Gq , ListGq

.
1. if Gq is indexed,
2. find all G ⊇ Gq using IndexD, i.e., the support of Gq , DGq

;
3. else
4. DGq

= {∅};

5. find all subgraphs of Gq , G′q ∈ S with FG′⊆Gq
;

6. for all G′q do
7. Find DG′

q
, where ∀G ∈ DG′

q
, FG′

q⊆G ≥ FG′

q⊆Gq
,

8. Then DGq
= DGq

∩DG′

q
;

9. for all G ∈ DGq
do

10. if subgraphIsomorphism(Gq, G)==false, remove G;
11. if |DGq

| ≥ n return ListGq
= top n graphs G ∈ DGq

;

12. SGq
= {∅};

13. find all subgraphs of Gq , G′q ∈ S;

14. for all G′q do
15. Find DG′

q
, where ∀G ∈ DG′

q
, FG′

q⊆G ≥ 0,

16. Then DGq
= DGq

∪DG′

q
;

17. SGq
= SGq

−DGq

18. for all G ∈ SGq
compute similarity(Gq , G);

19. sort SGq
in terms of similarity(Gq , G);

20. return ListGq
= DGq

+ top (n− |DGq
|) graphs G ∈ SGq

;

Our learning task also suffers from the data sparsity prob-
lem [11], i.e., many features appearing in the test set may
not have appeared in the training set. With the goal to
make the space dense, we use a feature extraction method
to generate features from subgraphs, and cluster subgraphs
with the same feature vector together into a single dimen-
sion. Let us denote the many-to-one mapping function from
a subgraph G′ to a subgraph cluster using the proposed fea-
ture exaction method as Clu(G′). Then, we can rewrite the
linear graph kernel as follows,

K(Gi, Gj) =
∑

G′∈S

W (Clu(G′))min(FG′⊆Gi
, FG′⊆Gj

). (3)

We extract the following features of a subgraph: the number
of edges, the number of vertices with a specific label, the
number of branches, and the number of cycles.

3.3 Kernel Learning using Regression
Suppose we have a training set with N instances, T =

{G(q,n), Gn, yn}
N
n=1, where each instance is a pair of a query

graph G(q,n) and a retrieved graph Gn, and yn is the similar-
ity score between them. As mentioned before, if yn ∈ {1, 0},
it represents only relevance or irrelevance betweenG(q,n) and
Gn; Otherwise, it represents the similarity between G(q,n)

and Gn. This training set can be generated by arbitrary
similarity functions that take in two graphs G(q,n) and Gn

as inputs and output a similarity score yn. In our work, we
use the normalized MCEG sizes as the similarity scores, yn.
Our eventual goal is to find the optimal linear weighted

graph kernel that maximizes the NDCG function that is the
metric to evaluate the ranked retrieved results. However,
the objective function of NDCG cannot be represented by
the parameters of the graph kernel in a closed form, so we
cannot optimize the NDCG function directly and find the
optimal graph kernel. Instead, we optimize a specific loss
function f(yn), the non-increasing function in Equation 1,
using regression. Previous work [3] showed that regression
on f(yn) can achieve a better NDCG of the ranked search

results than regression on yn. Thus, one of the key issue is
to choose the loss function. We choose a weighted L2 loss
function,

Lw =

N∑

n=1

wn(f(yn)− f(ŷn))
2, (4)

where f(yn)− f(ŷn) is the error of the instance n, wn is the
weight of Instance n, and ŷn is the predicted value of yn.
Instances with higher relevance scores are considered more
important, so that they have higher weights. However, no
previous work determined that what the value of the in-
stance weights should be. Empirically we define the weights
as the normalized MCEG sizes. In our work, we use an un-
weighted loss function but a weighted sampling method to
generate a training set rather than using the weighted loss
function. Using this method, we can have a smaller training
set than using uniform sampling but weighted loss function.

4. EXPERIMENTS
In this section, we evaluate our proposed approach by

comparing with two heuristics and the method using MCEG
isomorphism in terms of NDCG and response time of queries.
We use the real data set and test query set used by Yan, et
al., [10]. It is a NIH HIV antiviral screen data set that con-
tains 43905 chemical structures. The experimental subset
contains 10000 chemical structures selected randomly from
the whole data set and the query set for evaluation contains
6000 randomly generated queries, i.e., 1000 queries per query
size, where Size(Gq) = {4, 8, 12, 16, 20, 24}. Although we
only use chemical structures for experiments, our approach
is applicable to any structures that can be represented by
graphs, such as DNA sequences and XML files.
In our experiment, rather than using a weighted loss func-

tion, we use a weighted sampling method to generate a train-
ing set off-line based on the MCEG isomorphism algorithm.
We first generate 6000 queries with the same distribution
of the test query set described above. Then for each query
graph, we randomly select graphs from the 10000 chemical
structures with corresponding conditional sampling proba-
bility given the normalized MCEG sizes (as mentioned be-
fore, they are normalized between [0,4]) between the query
and the graph. Finally we use the normalized MCEG sizes
as the target similarity scores yn for the nth query-graph
pair. Since we only care top 20 search results, we remove
all the query-graph pairs with low normalized MCEG sizes.
We also remove query-graph pairs where the query is a sub-
graph of the graph. Since finding the MCEG between the
query and the selected graph is time-consuming, to speed
up the training instance generation, we do as follows: 1)
given a query, to search all graphs using the Algorithm 1,
and the similarity function is to use the linear graph kernel
with uniform feature weights, 2) to pick only the top 1000
returned graphs and remove graphs among them that are
supergraphs of the query, and 3) to compute the normalized
MCEG sizes yn between each survived graph and the query
and sample the pair using the probability of (yn/4)/10.
The final training set contains instances of query and

graph pairs with a similarity score yn, and each instance
has a subgraph feature vector where each entry is the min-
imum one of the subgraph frequency on the query and on
the graph (shown in Equation 2). Finally, in our experiment,
we generate a training set with a total of 459,047 pairs of
queries and graphs. Any previous subgraph feature selection
methods can be applied to select a dense subset of frequent

1873

Table 1: Average NDCGs
Method NDCG 1 NDCG 3 NDCG 10 NDCG 20
learn 94.224% 94.842% 95.648% 96.308%
size 93.259% 93.896% 94.716% 95.336%
uniform 93.403% 94.043% 94.898% 95.570%
sizeL 93.140% 93.793% 94.687% 95.318%
uniformL 93.208% 93.872% 94.807% 95.470%

subgraphs [10, 4]. Then we cluster subgraphs using feature
extraction to get 300 features finally.
Besides comparing different feature weights, we also use

two different sizes (|S| = 9855 subgraph features v.s. |S| =
50475 subgraph features) of indexed subgraph sets to show
the effect of the number of the indexed subgraph set, S.
In the experiments, we compare the following methods: 1)
linear graph kernel with subgraph feature weights learned
using regression on f(yn) with the L2 loss function and
weighted sampling (learn in Table 1), 2) linear graph kernel
using subgraph sizes as feature weights (size in Table 1), 3)
linear graph kernel with uniform subgraph feature weights
(uniform in Table 1), 4) linear graph kernel using subgraph
sizes as feature weights with a larger subgraph feature set
(sizeL in Table 1), and 5) linear graph kernel with uniform
subgraph feature weights with a larger subgraph feature set
(uniformL in Table 1). Note that the method using MCEG
always has the perfect NDCG, because it is assumed to be
the gold standard. For the query response time in Figure 1,
since the proposed method has similar online response time
no matter what kind of subgraph feature weights it uses, we
only evaluate the learned weights and called it graph kernel.
We applied the techniques in [5] to optimize the algorithms
of the MCEG isomorphism.
In the experiments, we evaluate all queries for different

query sizes together. Average experimental NDCG results
of top 1, 3, 10, and 20 search results are shown in Ta-
ble 1. We can see all the methods achieve NDCGs above
93%, which are significantly higher than the NDCGs for web
search [3]. the average NDCGs are improved by about 1%
for all queries. Especially the 1% improvement is based on
such high NDCGs above 93%. From the previous work [3],
for the case of a standard deviation = 24 and a sample size
= 10000, roughly speaking, the difference of two NDCGs is
considered as “significant” if it is larger than 0.47%. Hence,
the improvements of NDCGs after learning are roughly sta-
tistically significant for all NDCGs.
Finally we compare the average online response time for

using the proposed linear graph kernel and MCEG isomor-
phism. As in the proposed Algorithm 1, to return top n
similar graphs using MCEG isomorphism, two cases exist:
1) If the top n similar graphs all contain the query, only sub-
graph isomorphism tests are executed rather than running
MCEG isomorphism tests. In this case, the response time of
a query is the same as our proposed method. 2) If only part
of or none of the top n similar graphs contain the query, the
MCEG isomorphism algorithm has to be executed to find
more similar graphs. However, applying the MCEG isomor-
phism test to scan all the graphs is prohibitively expensive.
As mentioned above, previous methods [10, 5] use filters
to remove part of graphs containing smaller MCEGs than
the MCEG size threshold before preforming the MCEG iso-
morphism algorithm. However, no previous work proposed
methods to find top n similar graphs containing the largest

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

Qsize

Se
c

Graph kernel
MCEG

Figure 1: Response time of graph search

MCEG sizes. To simplify the situation for time complexity
comparison, we assume that we have a filter to return only
100 graph candidates to execute the MCEG isomorphism
test. That is, the curve in Figure 1 is the response time that
at most 100 MCEG isomorphism tests are performed. Ac-
tually for most cases, more than 100 graph candidates are
returned to perform MCEG isomorphism tests [10], which
means in practice, using the MCEG isomorphism algorithm
requires even a longer average response time than the cases
shown in our experiments. Figure 1 shows the curves of
average response time of similarity graph queries using two
ranking methods: graph kernel using weighted linear graph
kernel, and MCEG using the MCEG isomorphism test to
rank graphs. It shows that our proposed method graph ker-

nel is significantly more time efficient than MCEG, and can
achieve high NDCGs above 94%.

5. ACKNOWLEDGMENTS
We acknowledge the partial support of NSF Grant 0535656

and 0845487.

6. REFERENCES
[1] B. Chen, Q. Zhao, B. Sun, and P. Mitra. Temporal and social

network based blogging behavior prediction in blogspace. In
Proc. ICDM, 2007.

[2] D. Haussler. Convolution kernels on discrete structures.
Technical Report UCS-CRL-99-10, 1999.

[3] P. Li, C. J. Burges, and Q. Wu. Learning to rank using
classification and gradient boosting. In Proc. NIPS, 2007.

[4] S. Nijssen and J. N. Kok. A quickstart in frequent structure
mining can make a difference. In Proc. SIGKDD, 2004.

[5] J. W. Raymond, E. J. Gardiner, and P. Willet. Rascal:
Calculation of graph similarity using maximum common edge
subgraphs. The Computer Journal, 45(6):631–644, 2002.

[6] B. Sun, P. Mitra, and C. L. Giles. Mining, indexing, and
searching for textual chemical molecule information on the web.
In Proc. WWW, 2008.

[7] B. Sun, P. Mitra, H. Zha, C. L. Giles, and J. Yen. Topic
segmentation with shared topic detection and alignment of
multiple documents. In Proc. SIGIR, 2007.

[8] B. Sun, Q. Tan, P. Mitra, and C. L. Giles. Extraction and
search of chemical formulae in text documents on the web. In
Proc. WWW, 2007.

[9] B. Sun, D. Zhou, H. Zha, and J. Yen. Multi-task text
segmentation and alignment based on weighted mutual
information. In Proc. CIKM, 2006.

[10] X. Yan, F. Zhu, P. S. Yu, and J. Han. Feature-based
substructure similarity search. ACM Transactions on Database
Systems, 2006.

[11] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
Proc. SIGIR, 2001.

[12] Q. Zhao, L. Chen, S. S. Bhowmick, and S. Madria. Xml
structural delta mining: issues and challenges. Data and
Knowledge Engineering, 2006.

[13] Z. Zheng, H. Zha, K. Chen, and G. Sun. A regression
framework for learning ranking functions using relative
relevance judgments. In Proc. SIGIR, 2007.

1874

