
Graph-based Seed Selection for Web-scale Crawlers

Shuyi Zheng1 Pavel Dmitriev2 C. Lee Giles3

1,3Department of Computer Science and Engineering
3College of Information Sciences and Technology

Pennsylvania State University, University Park, PA 16802

2Yahoo! Labs, Santa Clara, CA 95054

shzheng@cse.psu.edu dmitriev@yahoo-inc.com giles@ist.psu.edu

ABSTRACT
One of the most important steps in web crawling is deter-
mining the starting points, or seed selection. This paper
identifies and explores the problem of seed selection in web-
scale incremental crawlers. We argue that seed selection is
not a trivial but very important problem. Selecting proper
seeds can increase the number of pages a crawler will dis-
cover, and can result in a repository with more “good” and
less “bad” pages. We propose a graph-based framework for
crawler seed selection, and present several algorithms within
this framework. Evaluation on real web data showed signifi-
cant improvements over heuristic seed selection approaches.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Crawler, Seed Selection, PageRank, Graph Analysis

1. INTRODUCTION
Crawling is not only one of the most important tasks of

a search engine, but also an indispensable part of many
other web applications. The breadth, depth, and freshness
of the search results depend crucially on the quality of crawl-
ing. As the number of pages and sites on the web increases
rapidly, deploying an effective and efficient crawling strategy
becomes critical for a search engine.

A typical crawler [3] maintains a list of unvisited URLs
called frontier, which is initialized with seed URLs. In each
crawling loop, the crawler picks a URL from the frontier,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

fetches the corresponding page, parses the retrieved page
to extract URLs, and adds unvisited URLs to the frontier.
Typically, the crawler needs to keep revisiting some or all
the URLs to check if they are updated since the last crawl.
Due to the infinite nature of the web and the competition
between getting new URLs and refreshing the old ones, even
web-scale crawlers can never crawl “all” the URLs from the
web.

Different crawling strategies resulting from different ways
of ordering the URLs in the frontier can explore the web
in different ways. However, all of them start from the seed
pages and proceed by exploring the neighborhoods of the
seed pages in one way or another. Thus, to a large extent,
selecting good quality seed determines the quality of the
crawl.

One may think that simply starting from root pages of
several well known sites and crawling very deep will allow the
crawler to reach all useful pages on the web. Unfortunately,
this is not so. As Broder et. al [1] showed, even 9 years ago,
close to half of all web pages could not be reached from the
“central” strongly connected portion of the web. Moreover,
the situation is likely to be even worse nowadays. Recently,
many websites that contain millions of pages have emerged.
Our study shows that many large websites are not strongly
connected.

In this paper, we study the problem of crawler seed se-
lection and propose a seed selection framework based on
the analysis of the link structure of the web. We assume
the incremental crawler model, where the crawler crawls
continuously downloading new pages and refreshing the old
ones, and seeds are updated periodically to keep up with the
changes in the web.

2. THE PROBLEM OF SEED SELECTION
Since there exists a wide variety of crawling strategies, in

this paper we make several assumptions about the crawling
strategy. First, we assume that the number k of seeds is
given. Second, we assume that a crawler crawls pages only
within h hops from the seed and it always crawls all pages
within h hops. We note that the values of h and k are
related. Given a fixed repository size, the larger the number
of seeds k is, the less hops h the crawler can crawl on average
before it fills the repository. Third, we assume that the
cost of downloading and processing a web page (measured
in terms of time, CPU, and storage required) is constant.

As noted earlier, in an incremental crawler, seed selection

1967

happens periodically in order to keep up with the changes
of the web. It is always based on the information from a
portion of the web which is already crawled. Thus, an in-
tuitive definition of the problem of seed selection is, given
a currently known portion of the web and the desired num-
ber of seeds k, to select seeds so that as many as possible
new good pages will get crawled, and as many as possible
currently crawled good pages will be retained.

Several heuristic approaches can be used for seed selection.
The simplest strategy, used as a baseline in our experiments,
is to select the seeds at random. Another strategy is to select
k pages with the highest PageRank. This makes sense since
one can expect to find high quality pages around other high
quality pages. Another intuitive strategy is to select k pages
with most outlinks.

A heuristic which can improve the above strategies is
to first split the known portion of the web into smaller
units, such as web sites, and then select seeds independently
for each web site. Such strategy allows distributing seeds
“evenly” across the web, allocating to each web site a frac-
tion of the total number of seeds, which is proportional to
the site’s importance. It also allows performing seed com-
putation in parallel and on a smaller data set.

3. GRAPH-BASED SEED SELECTION
While the above heuristics make sense intuitively, they

do not directly optimize the criteria we are interested in.
To formally define the problem of seed selection, we assume
that every crawled web page has an associated value. Higher
value indicates higher quality or higher potential to discover
new pages calculated, for example, as the number of un-
crawled URLs the page links to. In addition, the value can
be negative if the page is undesirable, such as a spam page.
We can now define the seed selection problem as maximizing
the value of the portion of the web graph “covered” by the
seeds.

Definition 1 (Seed Selection Problem). Given a di-
rected graph G = (V, E), a function w : V → R, assign-
ing a weight w(v) to every v ∈ V , and edges unweighted,
given the number of seeds k, and the number of hops a
seed covers h, select the seeds so that w(∪k

i=1Ai) is max-
imized, where Ai = {v|v ∈ V, v within h hops of seed i},
w(A) =

∑
v∈A w(v).

In this formalization, the seed selection problem is an
instance of the Maximum K-Coverage Problem, which is
known to be NP-hard [2]. However, a greedy iterative ap-
proximation exists for this problem, which achieves 1 − 1

e
approximation [2]. The algorithm is shown below.

Unfortunately, performing even a single iteration of the
algorithm is computationally expensive for large h, due to
the exponential in h complexity of step 2. For example, if
the number of outlinks of a page on the website is l, finding
the optimal seed v∗ will take O(n · lh). For a rather typical
scenario of l = 20, h = 5, n = 1, 000, 000, we need O(1012)
operations to find v∗.

Because of the high complexity of step 2, we resort to an
approximation again. We propose and evaluate four approx-
imation algorithms for finding the vertex in the graph that
covers maximal value within h hops. These algorithms are
described below.

Algorithm 1 Seed Selection Algorithm

Input: Weighted Graph G of (a portion of) the web,
Maximal Seed Number k, Number of hops allowed h
Output: Selected Seeds S

Algorithm:

1: FOR i = 1 to k
2: Find vertex v∗ which covers maximal value within h

hops
3: Make h hops from v∗ on graph G
4: Set the values of all covered vertices to zero
5: Add v∗ to S
6: IF values of all vertices are zero THEN
7: BREAK
8: ENDIF
9: ENDFOR

3.1 Maximal Out-degree First
The first algorithm, called MaxOut, always selects as a

seed the page that has the largest out-degree. While this
algorithm does not look at the values of the pages, it is
based on the intuition that covering more pages in the first
hop will lead to covering more value in h hops.

This algorithm is different from the heuristic OutDegree
algorithm, because after each step it updates the graph by
removing the covered vertices. As a result, the out-degree of
remaining vertices will decrease if they have out-links point-
ing to the removed vertices. Therefore, the algorithm will
select seeds which cover substantially disjoint portions of the
web graph.

Here we use the following example to illustrate the process
of this algorithm and show the difference with the heuristic
OutDigree algorithm. For this example, we assume the num-
ber of seeds, k, is 2 and the number of hops, h, is 1. In Fig-
ure 1(a), the top two nodes (pages) with highest out-degree
is node 1 (out-degree=5) and node 2 (out-degree=4). These
two nodes will be selected as seeds if we use the heuristic
OutDegree algorithm. On the contrary, if we use MaxOut
algorithm, node 1, 3, 4, 5, 6, and 11 will all be removed
after the first step because they are all covered within 1 hop
from the first selected node 1. In step 2 (Figure 1(b)), node
2 is no longer the one with the highest out-degree because
some nodes it links to have already been covered by previous
selected seeds. Instead, node 9 is the best one for this step.

(a) Step 1 (b) Step 2

Figure 1: An Example of MaxOut Algorithm

3.2 Maximal Depth-d Weight First
This algorithm, called MaxWeight, selects as a seed the

page that has the maximal depth-d weight, where depth-d
weight is defined as follows.

1968

Definition 2 (Depth-d weight). Given vertex v,

depth-d weight of v = w(v) +
∑

u∈C

w(u)

where C is the set of vertices within d hops from v.

The MaxWeight algorithm tries to approximate the opti-
mal seed, which has a maximal depth-h weight, with a seed
that has a maximal depth-d weight, d < h. Since we always
set the values of all covered vertices to zero after we select
each seed, we have to recalculate the depth-d weight for all
vertices of the input graph.

In our experiments we used values 2 and 3 for d. We found
that using values larger than 3 results in prohibitively long
running times.

3.3 Maximal Weighted SCC First
In this algorithm, called MaxSCC, we first calculate the

Strongly Connected Components (SCC) of the link graph.
A strongly connected component is a subgraph consisting
of all vertices such that there is a path from each vertex
in the subgraph to every other vertex. The algorithm then
selects as the seed a page that has the maximal depth-d
weight in the maximal weight SCC. Similarly, we also need
to recalculate the weight of all vertices after we select each
seed.

This algorithm is based on the intuition that selecting the
seed within the highest-weight SCC will lead to crawling
all the pages within that SCC, if the diameter of the SCC
is less or equal than h. If the diameter is greater than h,
the algorithm tries to select a seed that covers the most
high-weight portion of the SCC, based on the MaxWeight
algorithm.

3.4 Root SCC First
Given a link graph G, we can form a higher level graph G′

as follows. We collapse each strongly connected component
in G into a vertex. Then, we add a directed edge e(c1, c2),
connecting the vertex corresponding to SCC c1 to the vertex
corresponding to SCC c2 if and only if there exists at least
one hyperlink from a page in c1 to a page in c2. It is not
difficult to see that G′ is a directed acyclic graph. Given
two components c1, c2 in G′, we say that c1 is a parent of
c2, and c2 is a child of c1, if there is an edge e(c1, c2) ∈ G′.
Components without parents are called root components.

Suppose there is no limit on the number of hops. Then
any seed selected in a parent component will cover all the
pages in its child components. This motivates the RootSCC
algorithm (Algorithm 2), which selects as a seed a page that
has the maximal depth-d weight in the maximal weight root
SCC of the maximal weight SCC in G.

4. EXPERIMENTAL RESULTS

4.1 Experiment Setup
To evaluate the performance of the algorithms, we selected

a random sample of 2000 web sites from Malaysian web, each
containing at least 100 pages and having at least 1 external
link into the site. We used an experimental web-scale crawl
from the summer 2008 to obtain all pages crawled from these
web sites. We also obtained other page attributes, such as
whether the page was determined to be spam, whether the

Algorithm 2 Root SCC First

Input: Weighted Graph G of a website, Maximal Seed
Number k, Number of hops allowed h, Number of hops to
examine d
Output: Selected Seeds S of this website

Algorithm:

1: Calculate strongly connected components of G
2: Build a directed acyclic graph G′ by collapsing each SCC

into a vertex
3: FOR each SCC c
4: Calculate total weight of all vertices in c
5: ENDFOR
6: FOR i = 1 to k
7: Pick SCC c1 which has the largest total weight
8: Get SCC c2 which is the maximal weight root SCC

for c1 in G′

9: Calculate depth-d weight for all vertices of c2

10: Get seed s from c2 which has the largest depth-d
weight

11: Make h hops on graph G, mark all covered vertices
12: Set the values of all marked vertices to zero
13: Recalculate total weight for each SCC
14: Add s to S
15: IF the weight of all vertices in G is zero THEN
16: BREAK
17: ENDIF
18: ENDFOR

page was clicked on in search engine results, and how many
uncrawled pages the page links to. We assigned a value to
each page according to the following rules:

For every page p set w(p) = 1. If p is spam, set w(p) =
−10. If p was clicked, set w(p) = 10. Let n be the number
of uncrawled pages the page links to. Set w(p) = w(p) +
n ∗ Puniq , where Puniq is the probability of uniqueness of a
newly crawled page on the site. This probability is calcu-
lated based on past crawl statistics.

We implemented the three heuristic approaches and the
five graph-based algorithms described above. We use Ran-
dom algorithm as a baseline, and report the average per-
formance of the algorithms over the 2000 sites in terms of
the percentage of improvement over Random. We vary the
number of seeds generated for each site from 1 to 10, keeping
the number of hops fixed at 5, and vary the number of hops
from 1 to 5 keeping the number of seeds fixed at 5.

4.2 Experiment Results
Figure 2 shows the results for the page coverage and Fig-

ure 3 shows the results for the value coverage for the fixed
number of hops and varying number of seeds (error bars in-
dicate standard errors). The following conclusions can be
drawn from these graphs. First, Random performs rather
poorly. All other strategies outperform it significantly. As
one may expect, the improvement over Random is larger
when the number of seeds is small, and it decreases as the
number of seeds grows. One can also see that PageRank,
while outperforming Random, performs much worse than
the other heuristic approach, OutDegree, in terms of both
the page coverage and the value coverage.

Second, all four of the graph based algorithms outperform
the heuristic seed selection approaches. The MaxOut algo-

1969

rithm, which only uses outdegree of a page to select the best
seed, performs best in terms of the coverage of pages. How-
ever, as expected it performs much worse than most of the
graph-based strategies in terms of the coverage of value.

Third, the algorithms using simple depth-d approxima-
tion perform better than the algorithms that try to utilize
the knowledge of strongly connected components and their
connectivity. In fact, the RootSCC algorithm performs very
poorly in terms of the value coverage, worse than the heuris-
tic OutDegree algorithm. The reason for this might be that,
as we showed earlier, most of web sites tend to consist of
many small-size SCCs, so selecting the seeds based on the
direct estimation of the depth-d value is better than select-
ing seeds based on the the value of the SCC the seed belongs
to.

Finally, the two MaxWeight algorithms using d = 2 and
d = 3 perform similar, suggesting that using 2 hop approxi-
mation is enough to identify a good seed.

Figure 2: Coverage of Pages

Figure 3: Coverage of Value

Figures 4 and 5 show the results for the page coverage and
the value coverage for the fixed number of seeds and vary-
ing number of hops. As once can see, improvement of the
algorithms over Random increases slightly with the number
of hops increasing. The increase is higher for the page cov-
erage, and smaller for the value coverage. This is expected
because due to the nature of our algorithms most high-value
pages should be covered within a few hops. The relative or-
der of the algorithms is the similar to the one on figures 2
and 3.

Overall, the results show that the graph-based strategies
significantly outperform the heuristic approaches, demon-
strating the advantage of the graph-based seed selection
framework. While we only evaluated the algorithms for
one specific setting of page values applicable in a web-scale
crawler setting, we believe that the results will generalize to
other settings, such as the ones arising in a news or blog
search engine.

Figure 4: Coverage of Pages

Figure 5: Coverage of Value

5. CONCLUSIONS AND FUTURE WORK
In this paper we discuss the problem of seed selection for a

web-scale crawler. We formalize this problem as a graph the-
oretic problem, analyze its complexity and propose several
approximate algorithms. Experimental results on a dataset
of 2000 real web sites demonstrates that our algorithms sig-
nificantly outperform the naive seed selection strategies.

6. REFERENCES
[1] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,

S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the Web. Computer Networks,
33(1-6):309–320, 2000.

[2] D. Hochbaum and A. Pathria. Analysis of the Greedy
Approach in Problems of Maximum k-Coverage. Naval
Research Logistics, 45(6):615–627, 1998.

[3] G. Pant, P. Srinivasan, and F. Menczer. Crawling the
Web. Web Dynamics, pages 153–178, 2004.

1970

