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ABSTRACT
Tagged data is rapidly becoming more available on the World
Wide Web. Web sites which populate tagging services offer
a good way for Internet users to share their knowledge. An
interesting problem is how to make tag suggestions when
a new resource becomes available. In this paper, we ad-
dress the issue of efficient tag suggestion. We first propose a
multi-class sparse Gaussian process classification framework
(SGPS) which is capable of classifying data with very few
training instances. We suggest a novel prototype selection
algorithm to select the best subset of points for model learn-
ing. The framework is then extended to a novel multi-class
multi-label classification algorithm (MMSG) that transforms
tag suggestion into the problem of multi-label ranking. Ex-
periments on bench-mark data sets and real-world data from
Del.icio.us and BibSonomy suggest that our model can greatly
improve the performance of tag suggestions when compared
to the state-of-the-art. Overall, our model requires linear
time to train and constant time to predict per case. The
memory consumption is also significantly less than tradi-
tional batch learning algorithms such as SVMs. In addition,
results on tagging digital data also demonstrate that our
model is capable of recommending relevant tags to images
and videos by using their surrounding textual information.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—algorithms; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
tagging system, gaussian processes, prototype selection, multi-
label classification
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1. INTRODUCTION
The amount of web resources and data continues to grow

with the emergence of Web 2.0 sites. As an example, del.icio.us1

and Flickr2 have attracted a significant amount of Internet
traffic, as well as millions of Internet users. Recent statis-
tics indicated that del.icio.us gets roughly 150,000 posts per
day while Flickr gets 1,000,000 photos per day. These web
sites allow users to specify keywords or tags for resources,
which in turn facilitates the organizing and sharing of these
resources with other users. Since the amount of tagged data
potentially available is virtually free and unlimited, inter-
est has emerged in investigating the use of data mining and
machine learning methods for automated tag suggestions,
otherwise known as social annotation [1, 3, 7, 20].

Existing approaches to tag suggestion can be roughly clas-
sified into two categories. By mining usage patterns from
current users, collaborative filtering can be applied to sug-
gest tags from users who share similar tagging behaviors [3,
7]. This approach requires a look-up table of between-user
similarities, which is usually in the form of weighted ma-
trices that are computed and stored in advance. Another
approach is for the semantic meanings between tags to be
leveraged to improve user experience by aggregating simi-
lar tags into clusters as in [1, 20]. Here, tag co-occurrence
and tag distributions are explicitly taken into account as
measurements of tag similarities. The number of optimal
clusters are usually tuned manually.

Unfortunately, while both effectiveness and efficiency need
to be addressed for ensuring the performance of the tagging
services, most of the existing work has focused on effective-
ness [1, 3, 7]. Efficiency, while not being totally ignored, has
only been of recent interest [20].

In this paper, we address the efficiency of tag suggestion
from a machine learning perspective. We propose a novel
sparse Gaussian processes (GP) framework for suggesting
multiple tags simultaneously. The proposed model can be
fit into any kind of multi-class classification tasks with the
advantage of computation efficiency in both the training and
test stages. Generally, our model consumes a very small
amount of memory and takes linear time proportional to
the number of samples for training. The prediction time
is constant per case. The performance on tagged data in-
dicates a better precision and less computational cost than
the state-of-the-art [20].

1http://del.icio.us/
2http://www.flickr.com/
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1.1 Why Gaussian Processes for Tagging?
The reason of advocating GP for tag suggestion is multi-

fold. First, GP have become an important non-parametric
tool for classification. Unlike generative classifiers such like
Naive Bayes, GP make no assumption on the form of class-
conditional density of the data making it immune to any
poor performance caused by a false model assumption. An-
other advantage of GP is that the predicted result of the
model yields a probabilistic interpretation, while traditional
discriminative classifiers such like SVMs usually do not con-
sider the predictive variance of test cases3. For tag sugges-
tion where the tagged data (e.g., web pages) usually does
not contain any class labels, the user-assigned tags can be
used as labels. In this case, GP classifiers that inherit some
level of uncertainty can provide a probabilistic classification
which tolerates the limitations and possible errors caused
by the tags. The predictive variance also offers flexibility of
making predictions to new instances.

The other characteristic of tagged data is the unbounded
vocabulary. Research has shown a constant growth of the
tag vocabulary for a major social bookmarking site CiteU-
Like4 [5]. Consequently, the tagged data sets used for empir-
ical analysis are usually of high-dimensionality and sparse-
ness [20]. In this case, the efficiency of the model training
should also be considered in addition to the performance is-
sue. Nevertheless, massive training data often requires large
memory and high computational cost for most discrimina-
tive approachs including SVMs. Ad-hoc methods have been
developed to select subset for training but those approaches
are somewhat heuristic and often performed outside of the
model itself. Instead, the sparse GP framework we devel-
oped directly selects a subset of most informative documents
from all tagged data during training. The prototype selec-
tion algorithm we developed requires no extra cost because
it reuses the covariance function developed by the GP frame-
work. Consequently, the GP model shows a very promising
performance when limited training resources are available
by comparing to SVMs. Details can be found in Section 4.

1.2 Our Contributions
Our contributions consist of both new methodology and

application to tag suggestion. Our major contributions are:
1. A novel prototype selection method for multi-

class GP classification. In the literature of GP [19], opti-
mizing the parameters and finding the best subset of points
have been performed jointly. However, we propose a proto-
type selection method to select the most informative points
independently. Empirical results show that it performs bet-
ter in the case of multi-class classification.

2. A novel multi-label method for tag suggestion.
The proposed multi-class GP framework is naturally ex-
tended to address the multi-label problem. We treat each
associated tag as a label for the document and perform an
effective label ranking algorithm for tag suggestion.

3. Comparison of classification with Support Vec-
tor Machines. SVMs have been well-recognized as one of
the best methods for classification. Yet research has shown
a close correspondence between SVMs and GP [15]. Em-
pirically, we investigate their performance when there exists

3Though Platt suggested an ad-hoc prob. SVM in [14], it
doesn’t consider the predictive variance of the function.
4http://www.citeulike.org/

very few training instances and conclude that our GP frame-
work performs better in this case.

4. Comparison to other tag suggestion methods.
We compare our framework with a most recent tag sugges-
tion method [20] as well as SVMs on several real-world data
sets and find improved tag suggestion performance.

2. RELATED WORK
In this section, we briefly review the recent development

of tag suggestion methods, followed by the review of the
basic Gaussian processes framework.

2.1 Machine Learning for Tag Suggestion
Though some still question the use of computer algorithms

to generate tags for social bookmarking services [8], a num-
ber of machine learning frameworks have been proposed to
address the problem of automatic tag recommendation for
both text and digital data on the web [3, 1, 12, 20]. Recent
work has shown the effectiveness of leveraging user tags to
improve language models [22].

In [3], the authors suggested a method named P-TAG
for automatically generating personalized tags in a seman-
tic fashion. They paid particular attention to personalized
annotations of web pages. In a document-oriented approach,
a web page is compared with a desktop document using ei-
ther cosine similarity or latent semantic analysis. Keywords
are then extracted from similar documents for recommenda-
tion. The second keyword-oriented approach alternatively
finds the co-occurrence of terms in different documents and
recommends the remaining tags from similar desktop docu-
ments to the web page. The third hybrid approach combines
the previous two methods. From a collaborative filtering
point of view, the first two methods can be interpreted as
item-based CF with the item being documents and keywords
respectively. Their methods, however, do not investigate the
behaviors between different users for similar web pages.

A clustering-based approach was proposed in [1] to ag-
gregate semantically related user tags in to similar clusters.
Tags are represented as graphs where each node is a tag
and the edge between two nodes corresponds to their co-
occurrence in the same documents. Tags in the same cluster
were recommended to the users based on their similarities.
Similarly, an automatic annotation method for images was
proposed in [12]. A generative model is trained by exploit-
ing the statistical relationships between words and images.
A discrete distribution (D2-) clustering algorithm was intro-
duced for prototype-based clustering of images and words,
resulting in a very efficient model for image tagging.

Recently, a method that combines the power of clustering
and mixture models was proposed in [20]. The annotated
documents were first represented into a triplet of (words,
docs, tags) by two bipartite graphs, which were then clus-
tered into topics by a spectral recursive embedding (SRE)
[23]. To deal with the sparseness of the topic clusters, a
two-way Poisson mixture model (PMM) [13] was applied to
simultaneously group documents into components and clus-
ter words. Inference for new documents was based on the
posterior probability of topic distributions. Tags were rec-
ommended according to the within-cluster tag rankings.

2.2 Gaussian Process Classification
A Gaussian process (GP) is a stochastic process consists

of a collection of random variables x, which forms a multi-
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Figure 1: One-dimensional illustration of Gaussian
process construction for classification. (a) A latent
function f(X) drawn from Gaussian Process, where
f(xi) denotes the latent function value of point xi.
(b) The class probability of X after scaling f(X) into
(0, 1) by a sigmoid function Φ(fi) = 1 + exp(−fi)

−1,
where P (xi) denotes the class probability at xi.

variate Gaussian distribution specified by a mean function
μ(x) and covariance function k(x,x′). For classification, the
objective is to assign a new observation x∗ to one or more
predefined classes denoted by y∗ ∈ {1, ..., C}. GPs can not
be applied to the classification task directly because the val-
ues of y are not continuous. Consequently, a latent func-
tion f(x) is employed to infer the labels. The GP prior
is therefore placed over f(x). Fig 1 (a) illustrates an one-
dimensional case of the latent function with mean 0. To
make a prediction given a new x∗, one first determine the
predictive distribution p(f∗|f), where f is obtained from the
training set, f |Xtrain ∼ N (0,K), with K denoting the mul-
tivariate covariance matrix. The class probability y∗ is then
related to the latent function f∗.

3. TRADITIONAL MULTI-CLASS GP MODEL
Denote a training data set D = {(xi, yi)|i = 1, ..., N} with

N training points X = {xi|i = 1, ..., N} drawn independent
and identically distributed (i.i.d.) from an unknown dis-
tribution, and the associated labels y = {yi|i = 1, ..., N},
where each point xi is a D dimensional feature vector, xi ∈
R

D and yi ∈ {1, ..., C}. Following the convention in [15], we
introduce a vector of latent function values of N training
points for C classes, which has length CN

f = (f1
1 , ..., f1

N , ..., f j
1 , ..., f j

N , ..., fC
1 , ..., fC

N )T , (1)

where xi has C latent functions fi = (f1
i , ..., fC

i ). We fur-
ther assume that the GP prior over f has the form f |X ∼
N (0, K), where K represents the covariance matrix which is

constructed from a pair-wise covariance function K(xn,xn′)
�
=

[KN ]nn′ . Specifically, K is block diagonal of size CN ×CN
in the matrices K1, ..., KC , where each Kj represents the
correlations of the latent function values within class j. A
wide range of covariance functions can be chosen for GP
classification [15].A commonly used function in the classifi-
cation case is the squared exponential function, defined as:

[KN ]nn′ = l exp

0
B@−1

2

PD
d′=1

“
x

(d′)
n − x

(d′)
n′

”2

Σ2

1
CA , (2)

where θ = {l, Σ2} corresponds to the hyper-parameters.Given
the training set D, we can compute the posterior of the la-
tent function by plugging in the Bayes’ rule,

p(f |X, y) =
p(f |x)p(y|f)

p(X,y)
i.i.d.
=

N (0, K)

p(X,y)

NY
i=1

p(yi|fi), (3)

which is non-Gaussian. In eq.(3), the conditional probability
p(y|f) has not been decided yet. In the multi-class case, y
is a vector of the length CN (which is the same as f), which
for each i = 1, ..., N has an entry of 1 for the class which
corresponds to the label of the point xi and 0 for the rest
C − 1 entries. One of the choices is a softmax function:

p(yc
i |fi) =

exp(fc
i )P

c′ exp(fc′
i )

. (4)

To proceed, we compute the predictive distribution of the
class probability given a new x∗ in two steps. First, compute
the latent value f∗ by integrating out f :

p(f∗|X, y,x∗) =

Z
p(f∗|f , X,x∗) p(f |X, y)| {z }

eq.(3)

df , (5)

then y∗ can be computed by integrating out f∗:

p(y∗|X, y,x∗) =

Z
p(y∗|f∗) p(f∗|X, y,x∗)| {z }

eq.(5)

df∗. (6)

This method takes O(N3) to train due to the inversion of
the covariance matrix K. A range of sparse GP approxima-
tions have been proposed [11, 16]. Most of these methods
seek a subset of M (M � N) training points which are in-
formative enough to represent the entire training set. Con-
sequently, the training cost is reduces to O(NM2) and the
corresponding test cost to O(M2). Next we discuss a sparse
way to reduce the computational cost in the multi-class case.

4. OUR MULTI-CLASS SPARSE GP MODEL
Our model involves several steps. First, we choose M

(M � N) points (denote as X̄ = {x̄m}M
m=1) from the train-

ing set. Then we generate their latent functions f̄ from the
prior. The corresponding f for the entire training set is thus
drawn conditionally from f̄ . See Figure 2 for details.

t

K

f y
D

M
N

θα

Figure 2: Graphical representation of our sparse
multi-class GP model. θ is the hyper-parameter that
define the latent function f . α denotes the extra pa-
rameter for placing a distribution over θ.

First, assume that the M points have already been chosen.
Then place a GP prior on X̄, which uses the same covariance
function as shown in eq. (2), such that these points have a
similar distribution to the training data,

p(f̄ |X̄) = N (f̄ |0,KM ). (7)
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Given a new x∗, we utilize M latent functions f̄ for pre-
diction. We compute the latent values f∗ by integrating the
likelihood with the posterior:

p(f∗|x∗, X,y, f̄ , X̄) =

Z
p(f∗|x∗, f̄ , X̄)| {z }

A

p(f̄ |X, y, X̄)| {z }
B

df̄ , (8)

where A represents the single data likelihood by applying to
the reduced set of points. With f̄ determined, the likelihood
can be treated as a bivariate normal distribution, which fol-
lows a normal distribution:

f∗|x∗, f̄ , X̄ ∼ N (f∗|kT
x∗K

−1
M f̄ , Kx∗x∗ − kT

x∗K
−1
M kx∗), (9)

where kx∗ = K(x̄, x∗) and [KM ]ij = K(x̄i, x̄j).
Nevertheless, the problematic form of posterior B does not

follow a normal distribution and has to be approximated.

4.1 Laplace Approximation for the Posterior
Our method to approximate B in eq.(8) is based on the

Laplace approximation, which were used in [15] for binary
classification. Using the Bayes’ rule,

p(f̄ |X,y, X̄) =
p(f̄ |X̄)p(y|f̄ , X, X̄)

p(y|X, X̄)

=
p(f̄ |X̄)

R Cz }| {
p(f |f̄ , X, X̄)p(y|f) df

p(y|X, X̄)
. (10)

The detail of the derivation is long and omitted. The
approximated mean and variance of eq.(10) is:

µ∗ � µp,

Σ∗ = KM + Σp.

where µp =
Q−1P

2
, Σp = Q−1,

Q = (KNMK−1
M )T Λ−1(KNMK−1

M ) + KM ,

P = f̂T Λ−1(KNMK−1
M ). (11)

4.1.1 Determine the class label of test documents
The final step is to assign a class label to the observation

x∗, given the predictive class probabilities by integrating out
the latent function f∗:

p(y∗|x∗, X,y, f̄ , X̄) =

Z
p̃(f∗|x∗, X,y, f̄ , X̄)p(y∗|f∗)df∗,

(12)
which again cannot be solved analytically. One way to ap-
proximate is to use cumulative Gaussian likelihood. In [15],
the authors estimated the mean prediction by drawing S
samples from the Gaussian p(f∗|y), softmax and averaging
the results. Once the predictive distribution of the class
probability is determined, the final label of x∗ can be de-
cided by choosing the maximum posterior (MAP):

t(x∗) = arg max
c

p(y(x∗)
c|·), c = 1, ..., C. (13)

4.2 Informative Points Selection
It remains to optimize the parameters Θ = {θ, X̄}, which

contain the hyper-parameters (l,Σ) for the covariance ma-
trix K as well as finding the subset X̄ of M points. Tradi-
tionally, they are optimized jointly by optimizing the marginal
likelihood of the training data. In our approach, we instead
treat them individually.

4.2.1 Parameter Inference for the Covariance Matrix
The marginal likelihood of y can be obtained by integrat-

ing out f̄ ,

p(y|X, X̄, Θ) =

Z
p(y|X, X̄, f̄)p(f̄ |X̄)df̄ =

Z
exp(L(f̄))df̄ .

(14)

With a Taylor expansion of L(f̄) around ˆ̄f we find

L(f̄) � L(ˆ̄f) + (f̄ − ˆ̄f)∇f̄L(f̄)| {z }
=0

+
1

2
(f̄ − ˆ̄f)T∇∇f̄L(f̄)(f̄ − ˆ̄f).

Therefore, the approximation of the marginal likelihood
can be written as

p(y|X, X̄, Θ) =

exp(L(ˆ̄f))

Z
exp

„
1

2
(f̄ − ˆ̄f)T∇∇f̄L(f̄)(f̄ − ˆ̄f)

«
df̄ . (15)

The log marginal likelihood can be obtained by taking
logarithm on both sizes of the above equation,

log p(y|X, X̄, Θ) = L(ˆ̄f) − CN

2
log 2π − 1

2
log |∇∇f̄L(f̄)|,

(16)
which can be maximized w.r.t. the parameters Θ to obtain
l̂ and Σ̂. Note that each Σc is a D × D symmetric matrix,
where D is the number of dimensions. We assume that each
dimension is independent, thus simplifies Σc to be a diagonal
matrix. However, this still yields DC parameters to estimate
for Σ. Therefore, we further assume that within each class
c, the covariance of each dimension is the same, so that the
total number of parameters for Σc is reduced to C.

4.2.2 Prototype selection for X̄

The original gradient calculation in eq.(16) is very com-
plicated. However, we can simplify it with the assumption
made on the covariance matrix. Since each Σc is now inde-
pendent of each other, we can estimate the locations of the
active points regardless of the choices of l and Σ. We greed-
ily find the locations of X̄ by stochastic gradient descent
method. This is similar to finding the optimal prototypes for
each class, which is a subset of points that contains enough
information for each class. Our method for optimal proto-
type search is parallel to [18], which is used for K-nearest
neighbor classification. We select a set of M prototypes by
minimizing the misclassification rate of the training set,

L(X, X̄) =
1

N

NX
n=1

MX
m=1

P (x̄m|xn)(1 − I(ȳm = yn)), (17)

where the indicator function I is 1 if the condition is hold
and 0 otherwise. The likelihood P (x̄m|x) can be calculated
by plugging in the normalized covariance:

P (x̄m|x) =
kx̄mxPM

m′=1 kx̄m′x
. (18)

We can further rewrite the loss function in eq.(17) by re-
moving the indicator function:

L(X, X̄) =
1

N

X
n

X
{m:ȳm �=yn}

P (x̄m|xn)

| {z }
lm

, (19)
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Figure 3: An example of prototype selection with
M = 2. Left figure shows the original distribu-
tion; right figure, contour-plots the results of de-
scent where black dots are the starting points.

where lm indicates the individual cost of misclassification,
which is continuous in the interval (0, 1). Therefore, it can
be minimized by gradient descent w.r.t. X̄,

x̄m(t + 1)

= x̄m(t) − α(t)∇x̄m lm(t)

= x̄m(t) + α(t)p(x̄m|x) (I(ȳm �= yn) − lm(t))
δkx̄mx

δx̄m
.

= x̄m(t) +

j
lm(1 − lm)P (x̄m|x)(x̄m − x) if ȳm �= yn

−lm(1 − lm)P (x̄m|x)(x̄m − x) otherwise

Here α(t) > 0 is a small enough number which specifies
the step length of the descent. The program stops when a
stopping criterion is reached. We further notice that only
those points falling into a particular area of the input space
can contribute to the update of the prototypes. This fact
is explained as the window rule in [9]. So we can speed up
the prototype updates by searching over those points only.
Figure 3 shows an example of two prototypes. It can be seen
that after three steps of descent, our algorithm successfully
finds informative points for each class.

For brevity we hyphenate our method as Sparse Gaussian
process with Prototype Selection (SGPS).

4.3 Discussion of the Computational Cost
In our sparse framework, only the covariance matrix KM

for the M prototypes is required to be inverted. To be ex-
act, KM needs to be inverted when calculating Λ, f ′, Q
and P in eq.(11). For efficiency, Cholesky decomposition is
often employed, which ensures that for N training points
distributed in C classes, the training stage can be realized
in O(M2NC) time,with O(M2C) per prediction.

As for the cost of prototype selection, since the updates re-
uses covariance matrix in eq.(18), no additional storage and
computation are required. Therefore, the gradient descent
can be efficiently updated in at most O(NC) time.

5. MULTI-LABEL TAG SUGGESTION
So far, we have only considered the case that the each

observation is single-labeled, i.e., belongs to only one class.
In fact, many real-world problems are multi-labeled. In the
case of tagged data, each tag associated with a document
may be treated as a label, which may or may not refer to
the same topic as other labels. Thus, the problem of tag sug-
gestion can be transformed into a multi-label classification

Algorithm 1 Multi-label Multi-class Sparse GP Classifica-
tion (MMSG) for Tag Suggestion

1: Input: training data D : {(xi, yi)}N
1 , xi ∈ R

d,yi =
{yi1, ..., yiK̃}

2: M : number of prototypes
3: k: covariance function
4: begin training procedure
5: for i = 1 : N
6: ci = max(s(yi)) //decide the category of xi

7: end for
8: Train a GP classifier given {(xi, ci)

N
1 , M,k}

9: Output: X̄, f̄
10: begin test procedure
11: Input: a test object x∗
12: Decide its category probabilities c∗ given X̄, f̄ (eq.(12))
13: for each category m ∈ {1, ...,C}
14: for each label y

(c)
ij ∈ {y(c)

i1 , ..., y
(c)

iK̃
}

15: P (y
(c)
ij |x∗) = Rank

(c)
yij

· cm(x∗)

16: end for
17: end for
18: Output: P (y∗, x∗)

problem where the objective is to predict the probability of
a document with all possible tags (labels) given a fixed tag
vocabulary and associated training documents.

The problem of multi-label classification (MLC) is ar-
guably more difficult than the traditional single-label clas-
sification task, since the number of combinations for two or
more classes is exponential to the total number of classes.
For N classes, the total number of possible multi-labeled
class is 2N , making it unfeasible to expand from an algo-
rithm for single-label problems. Much research has been
devoted to increasing the performance of MLC and gener-
alize the framework to single-label classification; see related
work for more information[21].

As pointed out in [2], multi-label classification can be
treated as a special case of label ranking, which can be re-
alized if the classifiers provide real-valued confidence scores
or a posterior probability estimates for classification out-
comes. Thus, the multi-class SGPS model readily maps to
this problem, since the output vector y∗ contains real-valued
scores of the posterior class probabilities. Specifically, in the
multi-label case, we assume that the class label of a train-
ing instance xi is no longer a binary value, but rather a
vector yi of binary values where each yij denotes the exis-
tence/absence of xi in class j. We further assume that these

d1 d2 d3 d4

xbox fun game cat puppy

documents

tags

category xbox game fun puppy

Figure 4: Example of document-tag graph. Each
document is associated with multiple tags. Tag with
the highest frequency is treated as the category of
that document (shown in bold line).
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class probabilities can be ranked according to their values,
where s(yim) > s(yin) indicates that yim is preferred to
yin. In the context of tags, the value of a tag is defined as
the number of times it has been used to annotate the spe-
cific object. So if a document d1 (cf Figure 4) is tagged 4
times with game, 3 times with fun and 5 times with xbox,
we can rearrange the labels in the descending order, yield-
ing, { xbox(5), game(4), fun(3) }. Note that normalization
is usually required to ensure the well-defined class proba-
bility, thus the class probabilities of the above case become
{0.42, 0.33, 0.25}. Figure 4 shows an example of 4 documents
and 5 tags with their categories in bold lines.

In this way we can transform multi-class multi-label classi-
fication into multi-category single-label classification. Specif-
ically, we first assign each xi into a single category c which
corresponds to its top-ranked label (e.g., in the above case,
the category is xbox). Each category contains a set of la-
bels that belong to the objects in that category. Intuitively,
tags that belong to the same category are more semanti-
cally related than tags in different categories, i.e., tags in
the same category have a higher co-occurrence rate. How-
ever, it should be noted that an individual tag could belong
to multiple categories, e.g., in Figure 4, fun appears in two
categories. The above two phenomenon can be roughly ex-
plained by the behavior of polysemy and synonymy in lin-
guistics. Table 1 shows three ambiguous tags and their cor-
responding categories in one of our experiments.

tags categories

apple
mac apple computers osx technology IT
food health apple nutrition fruit green

tiger
photos nature animal tiger cute animals

sports video tiger woods golf games

opera
music art opera culture design download
software browser opera web tools internet

Table 1: Example of ambiguous tags from del.icio.us.

Given a training set {(xi,yi)}N
1 , the within-category scores

of all possible labels are defined as

Rank(c)
yi′ =

1

Z(c)

X
i:xi∈c

X
j

s(yij)I(yij = yi′), yi′ = {yi1, ..., yiK̃}

(20)

where Z(c) is a normalization factor for category c. We
summarize this approach in Algorithm 1, K̃ refers to the to-
tal number of possible labels. During the training phase, we
train an SGPS model for C categories, as well as calculating
the within-category scores for all labels. In the test phase,
we use the model first to determine the probabilistic distri-
bution of the categories given a new test case. Then com-
bine this evidence with the within-category scores of tags
in a multiplicative fashion to obtain the final label distri-
bution. The labels are sorted in descending order based on
the estimated likelihoods, the top-ranked tags are used for
recommendation. Figure 5 illustrates the process.

6. EXPERIMENTS
To assess the performance of the proposed framework, we

first evaluate our GP framework SGPS with synthetic and
bench-mark data, then measure the quality of the tag sug-
gestion algorithm (MMSG) using real-world data sets.
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Figure 5: The training and test processes of MMSG.
Each di is a document and each ti is a tag.

6.1 Comparison of Sparse Gaussian Models
For comparison, we use the multi-class Laplace approxi-

mation algorithm by Williams (GPLA)[15], to see how dif-
ferently our sparse framework will perform against the full
Gaussian model. We also include the sparse variational
Bayesian method (VBGP)[6] and the multi-class informa-
tive vector machines (IVM)5 [16] as two of the sparse Gaus-
sian process models. Three common metrics are employed
for assessment: the marginal likelihood of the training set
in eq.(16), the predictive error of the test set, and the algo-
rithm running time. For the first metric, we fix the number
of prototypes M to be 5%. For the other two, we examine
the performance variation with the change of M .

6.1.1 A Toy Data Set
Following [6], we generate a three-class synthetic data set

which has ten-dimensions. Only the first two dimensions of
the data are responsible for defining the three class labels,
while the other eight dimensions are irrelevant. In order to
compare with previous work, we use the same experiment
setting as in [6]. i.e., we create 500 instances for training,
and draw another 5,000 instances independently for testing.

6.1.2 Marginal Likelihood
In order to judge the change of the marginal likelihood, a

common approach is to perform a range of experiments with
different values of the hyper-parameters. In [10], the authors
created a regular 21 × 21 grid for both hyper-parameters.
Here, we fix M to be 5% (i.e., 25 training points) and inves-
tigate the change of p(y|X, X̄, Θ) with Σ and l.

Figure 6 shows a contour plot of the marginal likelihood
as a function of l and Σ. Usually, higher marginal likeli-
hood yields better predictive performance. In this figure,
we notice that the variation of marginal likelihood from our
model SGPS preserves the shape of GPLA, with the change
of parameters. The result justifies the use of the sparse ap-

5Somehow the code of multi-class IVM is not available, we
thus use the binary version with one-vs-all classification.
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Figure 6: Contour plot of the approximated
marginal likelihood, as a function of hyper-
parameters l and Σ. The marginal likelihood reaches
an optimum at l = 1.38, Σ = 3.13 for GPLA, and
l = 1.15, Σ = 4.05 for our model SGPS.

4% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

10

20

30

40

50

60

70

Percentage of Points Included

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

VBGP

GPLA

SGPS

IVM

4% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

5

10

15

20

25

Percentage of Points Included

T
im

e
 f

o
r 

T
ra

in
in

g
 5

0
0

 P
o

in
ts

 (
S

e
c

.)

 

 

SGPS

VBGP

GPLA

IVM

(a) Prediction Error. (b) Training Time.

Figure 7: The performance of the toy data set. The
full Gaussian model GPLA is used as a baseline.
Our model (SGPS) achieves better predictions and
requires less running time than VBGP and IVM.

proximation SGPS of the full Gaussian model GPLA for the
toy data set.

6.1.3 Prediction Error
Figure 7(a) plots the prediction error of the 5,000 test

points for the three methods. Our model SGPS incurs signif-
icantly less error with M from 4% to 90%. Especially when
M is quite small, our model exhibits its robustness. With
only 4% of the training points, our model is capable of mak-
ing more than 70% correctly predictions, which quickly con-
verges to the performance of the full model GPLA. Whereas
for VBGP and IVM, the outcome is not attractive in the
lower region of M , although VBGP slightly outperforms (Er-
ror = 3.96%) our model (Error = 4.01%) when M = 100%.
Overall, our model exhibits better predictive performance.

6.1.4 Computational Cost
The training cost of the three methods are depicted in

Figure 7 (b). The test result shows similar patterns thus ig-
nored here. Results are averaged over 10 run with standard
deviations eliminated for better interpretation. It is clear to
see that our model requires much less time to train compared
to VBGP and IVM, which is consistent with the theoretical
foundation. Recall that for our sparse approximation, only
O(M2NC) time is required for training, whereas the number

GPLA VBGP IVM SGPS
Iris (C = 3, N = 150)

Marginal likelihood -187.2 -33.1 -36.7 -31.8
Predictive error 3.7 5.8 6.4 5.2
Training cost 430.9 53.5 76.1 28.4
Test cost 204.2 35.3 48.4 17.1

Letter (C = 10, N = 20000)
Marginal likelihood -476.3 -122.4 -137.2 -98.1
Predictive error 4.5 12.5 13.8 6.8
Training cost 3854.2 983.2 1658.3 1032.4
Test cost 1777.5 542.2 590.2 472.5

Pendigits (C = 10, N = 10992)
Marginal likelihood -255.3 -78.5 -84.3 -65.2
Predictive error 3.8 13.2 10.5 5.3
Training cost 1572.3 665.3 853.2 501.3
Test cost 865.2 388.4 390.3 305.2

Table 2: Performance on three UCI data sets (C:
number of classes, N: number of instances).

is O(M2NC3) for the multinomial logit Laplace approxima-
tion, both with M prototypes. Thus, when the number of
classes become larger, SGPS can exhibit better performance.

6.1.5 UCI Multi-class Bench-mark Data
We further assess the model performance using 15 stan-

dard multi-class data sets from the UCI ML Repository6.
Due to space limitations, we only report 3 data sets here.
We randomly select 60% of the data for training and the
rest 40% for test. The experiment is repeated 50 times and
we report the average. The experimental results with means
and standard deviations can be found in Table 2.

The predictive error of SGPS is consistently lower than
the competitors. Meanwhile, our model requires less time
to train and make predictions. For larger data sets (e.g.,
letter and pendigits), SGPS gains much better performance,
which indicates a good scalability in practical uses. We also
notice that VBGP often outperforms IVM.

6.2 Application on Multi-label Data Sets
To justify the effectiveness of our multi-label algorithm

MMSG, we empirically analyze its performance using both
bench-mark and real-world data. We use SVMstruct as the
multi-label extension of SVM for comparison7.

6.2.1 Reuters Corpus Volume I (RCV1)
The Reuters2000 data set is employed as a bench-mark.

The data contains 800,000 newswire stories, each of which
belongs to a subset of 101 categories. The data is stored in
TFIDF format with more than 47,000 features. For our ex-
periment, we restrict the categories to three: topics, regions
and industries. Four standard metrics are used: Precision,
Rank Loss, Hamming Loss and One Error [4]. For preci-
sion, higher percentage indicates better performance, while
for the other three, low scores are generally better.

Table 3 shows that our algorithm has lower performance
for all four metrics but is computationally much more effi-
cient. A reduction of 13% of the precision required almost
80% less memory. The program run time is reduced from

6http://mlearn.ics.uci.edu/MLRepository.html
7http://svmlight.joachims.org/
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(a) Results of popular tags (e.g, web, network, clustering) (b) Results of rare tags (e.g., asp.net, latex, 3d, fbi)

Figure 8: Tag suggestion results on popular tags and rare tags for Delicious and BibSonomy. MMSG uses
only M = 5% prototypes and outperforms PMM and SVM.

107.3 minutes to 32.5 minutes. We also trained a sparse
SVM (denoted as S-S) by using 5% of the data. The result
shown here is apparently worse than MMSG.

SVM MMSG S-S

Memory Time
 

 

MMSG

SVMstruct

378 MB

1325 MB

32.6 Min

107.3 Min

Precision 0.69 0.59 0.48
R-Loss 0.26 0.32 0.38
H-Loss 0.25 0.27 0.33
O- Error 0.20 0.30 0.35

Table 3: Multi-label classification results on RCV1.
For SVMstruct, L1-loss function is used. MMSG and
S-S use M = 5% points for training.

6.3 Experiments on Tag Recommendation
We compare the performance of tag recommendation of

our algorithm with two other approaches. We first use SVMstruct

to train a multi-label model and use the same ranking func-
tion as in eq.(20) to return top ranked tags. We also com-
pare to the tag suggestion method using the Poisson mixture
model (PMM) [20], which often outperforms other existing
tag suggestion methods.

6.3.1 Del.icio.us and BibSonomy
We collected data from del.icio.us and BibSonomy8 be-

tween Oct 15 2007 and Jan 10 2008. For both data sets, we
randomly sampled 50 tags from the tag lists. For each tag,
we retrieved the content of bookmarks with related tags.
A typical instance in our experiment contains title, content
and tags. The titles and contents are treated with equal
importance here9. Overall, the del.icio.us data contains
45,715 unique items with 93,215 words, while BibSonomy
has 14,200 items with 37,605 words. The total numbers of
tags are 8,792 and 6,321, respectively. Table 4 shows top 10
tags for both data sets.For training, the data is organized
into 50 classes. Considering the temporal characteristics of
tags, we ordered the data by time and used the earlier data
for training and tested on later data. We performed exper-
iments with training data from 10% to 90%. Due to space
limitation, we only report the results of 50% splitting here.

8http://www.bibsonomy.org
9We performed test by assigning higher weights to titles,
with almost same results found.

del.icio.us BibSonomy
Tag Name Frequency Tag Name Frequency

internet 1743 tools 2459
technology 1543 computing 2294

java 1522 software 1974
software 1473 blog 1717

web 1429 internet 1647
photography 1375 web 1631

news 1328 analysis 1562
music 1291 data 1248

business 1115 search 1196
travel 1092 design 1117

Table 4: Top 10 most popular tags in del.icio.us and
BibSonomy with respective frequencies.

We present a summary of the experimental results in Ta-
ble 5. Overall, our model is able to boost the tagging per-
formance when comparing with PMM and SVM, by roughly
6% and 12% on average. Note that this is efficiently achieved
by using only 5% of the training instances.

In addition, we also examined the performance of individ-
ual tags by looking at the top 10 suggested tags. We are
interested in the difference in performance between popu-
lar tags (e.g., web, network, clustering) and rare tags (e.g.,
asp.net, latex, 3d). For each data set, we chose the top-5
most/least popular tags and averaged the suggesting results.
Figure 8 depicts the results. It can be observed that MMSG
outperforms PMM and SVM in most cases. The top-most
suggested tag for del.ici.ous and BibSonomy from MMSG

Algorithm Precision Recall F-Score
delicious
SVM 40.21% 61.44% 50.63%
PMM 43.52% 62.31% 52.77%
MMSG 47.38% 66.16% 54.23%
BibSonomy
SVM 33.45% 52.93% 45.56%
PMM 35.21% 55.72% 47.23%
MMSG 39.45% 57.01% 52.32%

Table 5: Tagging performance.
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Figure 9: Comparison of tagging performance of
SVM and MMSG. Two covariance functions used:
SE = squared exponential, NN = neural network.

gains 6% and 4% improvement over PMM for popular tags.
While SVM is comparable to MMSG for popular tags, our
algorithm shows a clear edge over SVM for rare tags, with
more than 18% improvement. Since rare tags appear in
fewer documents, this result gives credibility to the claim
that MMSG works well with very few training instances.

Model Selection for Tag Suggestion

Next we quantitatively show how the model selection re-
flects the performance of tag suggestion. In our framework,
model selection involves the decision of (1) the number of
prototypes, (2) the covariance function and (3) the hyper-
parameters. Since the hyper-parameters are often associated
with the covariance function and can be chosen by optimiz-
ing the marginal likelihood of the training data, we then fo-
cus on how (1) and (2) affect the performance. A common
covariance function used for classification is the squared ex-
ponential function (SE) in eq.(2). An alternative function
takes the form of neural network (NN):

K(x,x′) =
2

π
sin−1

 
2x̃T Σx̃′p

(1 + 2x̃T Σx̃)(1 + 2x̃′T Σx̃′)

!
,

(21)
with x̃ being the augmented vector of the input x.

We compare the results of SVM and our model using these
two covariance functions. Figure 9 demonstrates the results
on the del.icio.us data (The results on BibSonomy are simi-
lar). We set the number of prototypes M to be 5%, 10%, 20%
and 50% respectively. It can be observed that MMSG gener-
ally outperforms SVM by roughly 10% at each point. With
the number of prototypes increases, the precision also soars
up from 50% to 62% for MMSG. Meanwhile, by using neural
network as the covariance function, both SVM and MMSG
gain about 2% precision at each point. Overall, MMSG-NN
shows the best performance.

Optimal Prototype Selection for Tag Suggestion

To justify the use of the prototype selection (PS) algo-
rithm, we compare with the criteria used in [17] which ef-
ficiently includes points into the active set based on infor-
mation gain (IG). We also include a random selection (RS)
method as the baseline. Figure 10 presents the results on
del.icio.us. Generally, prototype selection shows better pre-
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Figure 10: Tagging performance of three selection
algorithms. Rand = random selection, Info = infor-
mation gain, Proto = prototype selection.

Side information for an object

Flickr
title, description, user comments, category,
additional information
title, description, comments, category,

Youtube name of related videos, videos from the\
same person

Table 6: Side information for training the model.

cision than IG in all four cases. Specifically, prototype selec-
tion gains more than 10% performance improvement com-
paring with information gain when M = 50%.

6.3.2 Flickr and Youtube
Finally, we also show the power of MMSG on tagging

digital data by using surrounding textual information. We
acquired data from Flickr and Youtube between Sep 15 2007
and Oct 21 2007, by subscribing to their RSS feeds of the
top 30 most popular tags respectively. We then re-crawled
each individual URL in the feeds to get the needed side in-
formation listed in Table 6. Overall, the Flickr data contains
22,186 unique items with 10,341 tags whereas Youtube has
2,489 items with 6,724 tags.

For training, the data is organized into 30 classes. Over-
all, the test results indicate a promising performance. On
average, MMSG achieves a 41.6% precision for the two data
sets, outperforms PMM and SVM by 5% and 9% respec-
tively. Figure 11 lists several examples with good tagging
results by our algorithm. For individual tags, the top-most
suggested tags for Flickr have a 56.2% accuracy, compared
with a 48.2% accuracy for PMM. Likewise, the top-most tags
have 48.2% accuracy for Youtube, 2.3% better than PMM.

Since our algorithm for tag suggestion only leverages tex-
tual information, for an image/video without any support-
ing texts, our algorithm performs no better than a random
guess. But since textual information is usually cheap and
abundant, our algorithm can serve as a good complement
for the content-based approach for digital tagging services.

7. CONCLUSION AND FUTURE WORK
We presented a sparse GP framework for multi-class tag

classification. The framework was generalized for multi-
label classification for tag suggestion. In particular, we gen-
erated real-time tag suggestions for Del.icio.us, BibSonomy,
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japan tokyo wood forrest birthday birthdaycake cakes flower tulip tulips red newyork skycrapers usa sky
architecture acient monks candles people women photo sky netherlands blue rood america blue buildings glass
japan architecture tokyo scene birthday cakes people dinner flower flowers colors color newyork usa blue white
building buildings photo acient photo party birthparty nature red rose blue buildings glass sky street

pets animals comedy fun halo2 halo mod game sports sport tennis roger auto vehicle drift bmw
funny cute kitten kitty pet weapon weapons xbox mods federer top 10 best game m3 track race roadster
animals cats pets fun game halo2 xbox live sports sport roger tennis auto car vehicle bmw
animal funny fight music 360 halo weapon fun raphi fun match federer coupe ford fun movie

Figure 11: Examples of good tags suggested by our algorithm. The first row is the object (image/video).
The second row corresponds to the user tags. The third row is the recommended tags by our algorithm.

Flickr and Youtube. Numerous experiments suggested that
our method is capable of making good tag suggestion with
little training data. Our model successfully outperformed
the best tagging algorithm so far [20]. Future work could ac-
cess how this framework can be extended to semi-supervised
tag suggestions and investigate the issue of selecting the op-
timal number of prototypes for the sparse GP framework.
Statistical significance tests will be performed to examine
the generalization of our methods to other data sets.
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