
Error-Driven Generalist+Experts (EDGE): A Multi-stage
Ensemble Framework for Text Categorization

Jian Huang
∗

College of Information
Sciences and Technology

Pennsylvania State University
University Park, PA 16802
jhuang@ist.psu.edu

Omid Madani
SRI International

AI Center
Menlo Park, CA 94025
madani@ai.sri.com

C. Lee Giles
College of Information

Sciences and Technology
Pennsylvania State University

University Park, PA 16802
giles@ist.psu.edu

ABSTRACT
We introduce a multi-stage ensemble framework, Error-
Driven Generalist+Expert or Edge, for improved classifica-
tion on large-scale text categorization problems. Edge first
trains a generalist, capable of classifying under all classes, to
deliver a reasonably accurate initial category ranking given
an instance. Edge then computes a confusion graph for
the generalist and allocates the learning resources to train
experts on relatively small groups of classes that tend to be
systematically confused with one another by the generalist.
The experts’ votes, when invoked on a given instance, yield
a reranking of the classes, thereby correcting the errors
of the generalist. Our evaluations showcase the improved
classification and ranking performance on several large-scale
text categorization datasets. Edge is in particular efficient
when the underlying learners are efficient. Our study of
confusion graphs is also of independent interest.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Experimentation, Theory

Keywords
Ensemble learning, text categorization, many class classifi-
cation

1. INTRODUCTION
Automated text categorization has found a variety of

applications, in personalization, document routing, recom-

∗This work was primarily done when the author interned at
Yahoo! Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

mendation, and ad placement [24]. Often, the number of
classes needed for informative and useful categorization of
text is large, easily exceeding 1000s. A number of data
sets, such as Wikipedia, Yahoo! Directory, and OHSUMED
already contain many thousands of classes and 100s of
thousands of instances [15]. Well-designed linear classifiers
have been shown to be among the most accurate [7, 24,
5, 4], and recently, highly scalable discriminative linear
methods have been developed [17, 16, 18]. These methods
treat classes as “flat”, and hence improving their accuracy
is a good possibility: identifying the one correct class from
thousands of candidates, under linearity constraints, can be
error-prone. In this work, we take a data driven approach
to improve accuracy, while exploiting the efficiency benefits
provided by recent advances in linear methods. We note
at the outset that these ideas are in principle applicable to
other learning algorithms and data types as well.

The overall approach, which we refer to as Error-Driven
Generalist+Expert or Edge, has roughly two parts. First
a reasonably accurate (and efficient) generalist classifier is
trained on the entire data. The confusion pattern of the
generalist is characterized by a confusion graph, wherein
nodes are concepts and the presence of an edge indicates
significant confusion between the concept pair connected
(as we describe in more detail). Highly connected concepts
are then identified as “compound concepts”. In the second
part, an expert classifier is trained for each such group (only
on the instances belonging to some concept in the group).
Classification then consists of first utilizing the generalist,
then possibly invoking some of the experts and aggregating
their votes, for improved classification.

The first part of the paper reports on our studies of
confusion graphs obtained from training supervised learning
algorithms on several data sets, and is of independent
interest. We explore the question of whether a significant
portion of errors tend to be systematic, and if so in what
patterns. We find that there are significant amount of
systematic errors and groupings, and in particular the
confusion patterns are often in star shapes. We also report
a number of different statistics, and provide examples of
confused concepts.

The second part of the paper explores whether this
systematic confusion can be substantially corrected, without
incurring too many extra offsetting errors. We train experts
on each of the compound concepts, possibly using a learning
algorithm different from the generalist. Experts tend to
classify more accurately within their own classes than the

83

(a) Confusion graph of FF (θ = 1) (b) Confusion graph of FF (θ = 5)

Figure 1: Confusion graphs generated from the Newsgroup 20 dataset [20] using the FF algorithm [16].

generalist (as we show), the intuition being that the number
of classes is substantially smaller, thus the discrimination
task can be easier. Another question is how to combine
the votes of the different experts (when invoked) and the
generalist together. We explore aggregation schemes and
study different combinations for the generalist and the
experts. Our experiments on a number of data sets show
that simple aggregation schemes can significantly enhance
overall accuracy. The overall classification and training time
degrades but only moderately due to the second stage. Thus
we show that the data driven Edge approach is promising.

We assume basic familiarity with machine learning for text
classification. A good reference is [24].

2. PATTERNS OF ERRORS
We first define the concept of confusion and then analyze

its patterns on real world data, the findings of which
motivate the design of algorithms in the following section.

2.1 Confusion as a Source of Ranking Error
The confusion matrix is a well known technique for

depicting the error made by the classifier, especially in the
multiclass single label learning setting [11]. Specifically, a
confusion matrix CM is a K ×K matrix (K is the number
of classes), where an element ni,j represents the number
of times the classifier classifies an instance of class i as
class j. Consequently, the off-diagonal elements correspond
to the errors made by the classifier on the data. In our
setting, classifiers may recall multiple true categories for
each instance. We extend the idea to characterize ranking
error with the notion of confusion as follows. Seeing an
instance xt, the learned model M retrieves in concepts and
assigns a score sci for each of the concept ci. Hence the
model produces a multi-label ỹt = (ct

i1 , ..., ct
in

) ranked in
descending order according to the scores.

Definition 2.1 (Confusion). For a labeled instance
(xt,yt), the confusion function CONF is defined as

CONF[ci → cj ; (x
t,yt)] = I[scj > sci ∧ ci ∈ yt ∧ cj /∈ yt] (1)

where I is the Iverson bracket and yt are the true categories.
In other words, concept ci is confused with concept cj iff cj

is ranked higher than ci, where ci is one of the true labels
but cj is not.

Confusion corresponds to an arc pointing from a true class
to a false one that has been ranked higher by the system.
Confusion captures error in categorization and is referred to
as a reversed pair in machine learning literature [5].

Similar to the confusion matrix, we are mostly interested
in systematic error made by the model in the dataset and
thus this leads to the definition of cumulative confusion
between concept ci and cj as follows:

NCONF[ci → cj] =
∑

t

CONF[ci → cj ; (x
t,yt)] (2)

Note that in the single label case, NCONF[ci → cj] exactly
corresponds to the element nci,j in the confusion matrix.

As an analogy to confusion matrix, we formally define
confusion graph as a means to analyze classification errors.

Definition 2.2 (Confusion Graph). Confusion graph
G(V, A; θ) is a directed graph. In this graph, an arc (vi, vj)
belongs to the arc set A if and only if NCONF[vi → vj] > θ,
where θ is a positive threshold. Each arc (vi, vj) is associated
with weight wi,j = NCONF[vi → vj]. The vertex set V
is constituted with all the categories minus the singleton
categories (i.e. having zero degree).

Figure 1 demonstrates the confusion graph of the Feature
Focus algorithm (FF) [16] on the Newsgroup 20 dataset
[20]. Setting θ = 5 (Figure 1 right), we observe that
confusion is usually incurred on highly related categories.
For instance, the categories sci.electronics, comp.os.ms-
windows.misc, comp.graphics and misc.forsale are confused
with comp.sys.ibm.pc.hardware. In particular, we note that
confusion may occur between categories that belong to
different branches of the taxonomy, e.g. sci.electronics and
comp.sys.ibm.pc.hardware. On the other hand, categories
that are close, in terms of ‘semantic’ distance in the
taxonomy, may not necessarily be confused with each other,

84

10
0

10
1

10
2

10
−2

10
−1

Degree k

p(
k)

RCV1 confusion graph

In−degree distribution
Fitted in−degree
Out−degree distribution
Fitted out−degree

(a) RCV1 degree distribution

10
0

10
1

10
2

10
−3

10
−2

10
−1

Degree k

p(
k)

OHSUMED confusion graph

In−degree distribution
Fitted in−degree
Out−degree distribution
Fitted out−degree

(b) OHSUMED degree distribution

Figure 2: In-degree and out-degree distribution and the fitted line of confusion graphs, shown in log scale
using logarithmic binning.

e.g. comp.sys.mac.hardware and comp.sys.ibm.pc.hardware.
In this real example, traditional hierarchical classification
approaches may redundantly train multiclass classifiers,
dictated by the underlying taxonomy. Also, they may risk
prematurely splitting the classification tasks, which makes
the discrimination more challenging due to the large number
of categories in high levels of the hierarchy. The remainder
of this section seeks for natural groupings of classification
tasks transcending the boundaries of a taxonomy.

2.2 Confusion Graph Analysis
We explore the confusion graph GRCV1(V, A; θ)1 of the

Reuters dataset (see Section 4) by using statistical graph
analysis techniques. The findings motivate the choice of sub-
learning problems for experts. Intuitively, we expect the
confusion graph to possess some structural characteristics,
e.g., clustering based on topics as relevant topics are more
difficult to differentiate.

2.2.1 Power Law Degree Distributions
Figure 2(a) illustrates the degree distribution of the

confusion graph of RCV1. We note that both in-degree
and out-degree follow the power-law distribution, as one
can visually fit a line in the log-log plot (the fitted in- and

out-degree distributions are P
(in)
k ∼ k−0.683 and P

(out)
k ∼

k−0.549 respectively). Similar scale-free degree distribution
is also observed in the OHSUMED (Figure 2(b)) and Y!
Web data. We note that the in-degree distribution has
a wider spread in both diagrams. In Figure 2(a), there
are 30 nodes with in-degree greater than 100, compared
to only 4 with out-degree greater than 100. Such a high
in-degree node (called sink), combined with its satellite
categories, constitutes a star pattern in the confusion graph.
An example of the star pattern is found in Figure 1,
comprised by ibm.pc.hardware and its satellites ms-windows,
electronics, graphics and forsale.

2.2.2 Disassortative Mixing by Node Degrees
We consider the mixing patterns in the confusion graph

in terms of node degrees. For a directed graph, the

1In this confusion graph, |V | = 306, |A| = 7268 and θ = 5.

assortativity coefficient r [19] is defined as

r =

∑
i jiki −

∑
i ji

∑
i ki

/
M√

[
∑

i j2
i − (

∑
i j2

i)
/
M][

∑
i k2

i − (
∑

i k2
i)

/
M]

(3)

where ji and ki are the excess in- and out- degree of
a node i respectively, and M is the total number of arcs.
Essentially, this quantity is the Pearson correlation between
the normalized out- and in-degree. We found the confusion
graph of RCV1 to be disassortative (r = −0.274). This type
of degree anti-correlation implies that high in-degree nodes
(sinks) are preferentially attached to by low out-degree
nodes, and vice versa. Similar disassortative pattern is also
found in technological (e.g. the assortativity of Internet is
-0.189) and biological networks [19].

2.2.3 Directional Connection
We are interested in the two categories incident on a

confusion arc. In GRCV1, nearly 90% arcs originate from a
less frequent category to a equally or more frequent category
in the training data. Also, 58% arcs link from a category
to another one that is at least five times more frequent.
Hence, rarer concepts are more prone to be confused with
more frequent concepts, but not vice versa. This is not
surprising as many text categorization algorithms favor
common categories to attain high (micro) accuracy.

2.2.4 Clustering Coefficient
Clustering coefficient of node i is defined as the proportion

of the number of (closed) triangles connected to i to the
number of triples centered on i. Formally, the clustering
coefficient of a node i is [27]:

Ci =
|{(vj , vk)|vj , vk ∈ Neighborhood(vi)}|

di(di − 1)
(4)

where di is the total degree of node i and Neighborhood(vi) =
{vj |(vi, vj)

∨
(vj , vi) ∈ A}.

In GRCV1, the mean clustering coefficient is 0.203,
manifesting significant local clustering effect. This finding
is in concord with scale-free networks, as a similar size
random network has much lower clustering coefficient value

85

0.0777. For confusion graphs, this indicates that two
concepts confused with a common concept are also likely
to be confused with each other.

2.3 Motivations for Algorithm Design
To sum up, the confusion graph is a scale-free network

dominated by star-patterned subgraphs. More precisely,
each subgraph has many satellite concepts with confusion
edges pointing to the sink. Due to disassortative degree
mixing, overlaps between subgraphs are most likely low
degree nodes. According to directional connection, these
satellite categories typically correspond to rarer categories.
Moreover, the high local clustering effect of confusion graphs
suggest that concepts are likely to connect to each other in
these subgraphs as well.

These findings suggest a natural way to divide the complex
text categorization problem into sub-problems and we may
obtain a better solution if we can better solve these smaller
learning problems. The systematic patterns of error, rather
than random occurrences, permit the development of a two-
stage generalist and expert learning framework, which is
described in detail in the following section.

3. METHODS
In this section, we first formally define a few important

concepts, before discussing the details of the Edge frame-
work. We then describe the methods of aggregation and
finally make remarks on the proposed algorithm.

3.1 Preliminaries
The learning problem is naturally divided into sub-

problems in an error-driven manner.

Definition 3.1 (Compound Concept). A compound
concept CCs is a set of concepts containing a sink vs and
its immediate neighbors:

CCs = {vs} ∪ {vt|wt,s = NCONF[vt → vs] > θ} (5)

where the sink vs belongs to the set of top p% nodes2

according to the in-degree distribution of the confusion graph
G(V, A; θ).

Definition 3.2 (Expert). An expert Es is a model
learned from the truncated problem Tr(CCs), derived from
the compound concept CCs and its corresponding instances,

Tr(CCs) = {(xt, zt)|zt = yt ∩ CCs and zt 6= φ} (6)

By contrast, a generalist is a model learned from the entire
learning problem {(xt,yt)}. The concepts of generalist
and expert play a central role in the Edge framework.
Briefly, the generalist provides an initial ranking of concepts
efficiently, while experts fine tune the ranking among the
retrieved concepts. It is also worthwhile to note the
connection between the two concepts. An expert can be
regarded as a special type of ‘generalist’, which simply
acknowledges the predictions of the generalist for concepts
outside its realm of expertise. For concepts within the
compound concept, the expert reweighs them and thus the
expert can also implicitly rank all the categories given the
generalist’s advice.

2The parameter p% in the definition is motivated by the
previous findings, as nodes in the tail of the in-degree
distribution correspond to the sinks in the star patterns.

3.2 The Error-Driven Generalist+Experts
(EDGE) Framework

The Edge framework is a two stage ensemble learning
method consists of generalist and expert learning, as shown
in Figure 3. An aggregator is responsible for combining the
generalist and experts’ decisions.

Algorithm 1 describes the training phase of Edge. The
framework utilizes multiclass learning algorithm(s) (denoted
by Comp Learn Algo) for training a generalist and experts.
After learning a generalist, we compute cumulative con-
fusion and construct the confusion graph G. A set of
compound concepts are then found for the top p% sinks
according to the in-degree distribution of G. In line 6, the
original training data are truncated so that instances not
containing any relevant concepts (in the compound concept)
are removed. Also, features not pertinent to the compound
concept are not presented to the learner, and thus the
experts may consume much less model space. For each of
these compound concepts, an expert is learned in line 7.
Here the learner may differ from that in line 2, as a more
accurate model may better serve as an expert. If the expert
is better suited for classification than the generalist (line 8),
it is added to the set of experts Exp (line 9).

Algorithm 1 Edge training phase.

Input: Training dataset {(xt,yt)}N
t=1; θ

Output: Gen and Exp
1: Train generalist Gen=Comp Learn Algo({(xt,yt)}N

t=1)
2: Compute the confusion graph G(V, A; θ) of Gen in the

training data
3: Obtain compound concepts {CC1, ..., CCM} by using

the top p% sinks according to the in-degree distribution
of G (where M = |V | · p%).

4: Exp ← φ
5: for m = 1 to M do
6: Obtain a truncated learning problem Tr(CCm) for

compound concept CCm

7: Train an expert Em = Comp Learn Algo′(Tr(CCm))
8: if Em’s training error is lower than that of Gen in

Tr(CCm) then
9: Exp← Exp∪{Em}

10: end if
11: end for
12: return Generalist model Gen and experts Exp

The classification phase of Edge is shown in Algorithm 2,
where the subscripts 1 and 2 differentiate the probabilities
predicted by first level classifier (the generalist) and second
level classifiers (experts) respectively. First, the generalist
produces an initial ranking of categories and computes
the prior probability of compound concepts. For each
compound concept having prior probability higher than γ3,
the corresponding expert is then activated to re-score the
categories within the compound concept. Line 6 and 7
realize the view of a specialist learning framework [10].
An expert reweighs the concepts in its compound concept
proportionate to its own probabilistic prediction (line 7).
On the other hand, it leaves the sum of weights for the
concepts outside its expertise unchanged by simply passing
on the prediction of the generalist. In line 10, the scores of

3γ is an insensitive parameter and is empirically set to 0.1
in our experiments.

86

Figure 3: Architecture of the EDGE framework.

Algorithm 2 Edge classification phase.

Input: Testing instance x; activation threshold γ.
Output: Predicted categories c̃.
1: Gen predicts probabilistic score sci(Gen) = P1(ci|x) for

each category ci

2: for all Em ∈ Exp do
3: Compute the probability of compound concept CCm:

P1(CCm|x) =
∑

ci∈CCm
P1(ci|x)

4: if P1(CCm|x) > γ then
5: Activate expert Em to predict probabilistic score

P2(cj |CCm,x), where cj ∈ CCm

6: Normalize the probabilistic scores of concepts
predicted by the awake expert Em

7: scj (Em) = P2(cj |CCm,x) · P1(CCm|x)
8: end if
9: end for

10: Aggregate scores assigned by Gen and the subset awake
experts in Exp

11: return Sorted categories c̃ using the aggregate scores

the generalist and experts are aggregated to make the final
prediction, the details of which are discussed next.

3.3 Aggregation Methods
We now turn our attention to exploring several aggrega-

tion methods for combining the ranking decisions given by
the generalist and experts. The first approach applies fixed
mathematical rules for aggregation, and the latter learns
such aggregation rules from data.

3.3.1 Reranking with Fixed Combination
Before proceeding to the aggregation methods, we first

recall the setting of our work. First, the framework
is intended to handle large scale datasets and thus it
prohibits the use of computationally expensive combination
methods. Second, experts in the Edge framework specialize
on different part of the feature space and only have access
to the features and categories in their respective compound
concepts. This is further complicated by insufficient training
data in rare categories. As such, experts’ performance may
not be directly comparable with each other. Various simple
combination methods have been proposed in the literature,
including averaging [25], voting [29] belief integration in
Bayesian formalism and Dempster-Schafer formalism [29],
etc. However, many of these methods implicitly assume the
comparability of classifiers for pooling or require expensive
computation, which is not applicable in our setting.

The averaging method, which simply computes the arith-
metic average of the classifiers’ output, is an exception
to these drawbacks. Simple averaging has been observed
to provide comparable, sometimes superior, accuracy, with
minimum computation cost [25]. Following the nota-
tions in Algorithm 2, consider the aggregation of the
generalist output sci(Gen) and the scores sci(Em), where
Em ∈ A Exp(i) (the set of activated experts for class
i). If A Exp(i) is empty, the aggregated score is trivially
sci(Gen). Otherwise, the simple averaging score is4,

s
ave
ci

=
1

|A Exp(i)|+ 1


sci

(Gen) +
∑

Em∈A Exp(i)

sci
(Em)


 (7)

Since the performance of experts learned in Edge may
be uneven, simple averaging can be susceptible to poorly
performed expert. Robust order statistics combiners have
been suggested as alternative simple combination methods
with theoretical underpinnings [26]. Assume that we have
N scores from the generalist and experts for class i (by
replacement of labels), ordered ascendingly,

s(1)
ci
≤ s(2)

ci
≤ ... ≤ s(N)

ci
(8)

Accordingly, the kth order statistics is s
(k)
ci and the max and

min combiners are smax
ci

= s
(N)
ci and smin

ci
= s

(1)
ci .

Depending on the underlying component learning algo-
rithm, we assume the probabilistic scores assigned by the
generalist and experts to be an estimation of the posterior
class probability. Hence the interpretation of the max
combiner is to choose the classifier that is most confident
about its prediction as the combiner’s output. The downside
is that it can be dominated by the classifier that generally
outputs high values, and deteriorates if such classifier
performs poorly. The min combiner performs a minimax
operation, and may suffer less from a single error [26]. The
spread combiner was proposed in [26] to avoid the impact of
a single classifier’s output on the final output,

sspr
ci

=
1

2
(smin

ci
+ smax

ci
) (9)

3.3.2 Learning The Aggregation
From an alternative point of view, the aggregation of

decisions in general can be regarded as obtaining the optimal

4Recall that an expert can be seen as a special ‘generalist’
that reranks categories in its compound concept and passes
on the generalist’ decisions for other categories. The output
of the generalist and experts are thus treated similarly.

87

configuration of the prediction of experts and generalist.
Therefore, we can create a new learning problem where
the features are the outputs of the generalist (for all
categories) and the experts (for their respective compound
concepts), and the output space corresponds to all the
categories. A fully fledged classifier can be used for learning
the aggregation. From the perspective of this additional
learner, the generalist and experts act as agents for feature
reduction and selection, as generally there are many more
(orders of magnitude) features than categories. Also, the
learning task may be much less difficult as feature values
are strongly indicative of the categories. Therefore, a
simple (perhaps linear) learner would suffice for this task
to minimize computation burden and avoid overfitting.

As a conclusion to this part, we establish the links of
aggregation to other ensemble learning framework. By using
different types of classifiers in the generalist and experts, or
by training classifiers using different features, the biases and
error of the classifiers will be less correlated. In this manner,
the ensemble framework promotes diversity among classifiers
which closely follows the same rationale as many other
ensemble methods. Also, the fixed combination method has
also been shown to reduce error due to variance reduction.

3.4 Remarks on the Algorithm
We first comment on several aspects of efficiency of

the proposed Edge framework. The computation of the
compound concepts is done by testing the generalist on the
training data. In online learning setting, this can usually be
done along with the update step.

Second, compared to boosting methods [9] where weak
hypotheses are of the same size, each expert is usually
much smaller than the generalist and is learned much
faster. Also, unlike weak hypotheses learned in a sequential
manner, experts learn and predict independently and thus
the computation can be performed in parallel.

Third, Edge is flexible in combining different types of
multi-class learners (to strike the balance of space and
time efficiency) to achieve superior results. Boosting strong
classifiers, on the other hand, may lead to overfitting.

Also, although we use linear methods for efficient cate-
gorization, the two-stage classification and the combination
methods render the Edge method nonlinear. Nonlinearity
(and the capability of experts to better discriminate between
difficult categories) yields performance gains over a mono-
lithic linear learning method, as we show in the next section.

4. EXPERIMENTS AND RESULTS
In this section we first introduce two sets of evaluation

metrics, followed by the description of the experiment
datasets and component learners. A series of experiments
are conducted to investigate the performance of the aggre-
gation methods, the experts and the Edge algorithm.

4.1 Evaluation Metrics
We use two sets of metrics to evaluate the efficacy of the

proposed approach. The first set of metrics measure the
position of the highest ranked true category, denoted by kx

(kx is an integer and kx = ∞ if true categories are not
retrieved). We define recall at k, denoted by Rk, to be the
proportion of instances for which at least one of the retrieved

true categories are among the top k categories:

Rk = E[kx ≤ k] (10)

In the single label (multiclass) setting, R1 corresponds to
the traditional accuracy. Since the learners in this paper
are capable of providing a list of ranked categories, we also
report R5 to measure the portion of test instances having at
least one true category among the top five categories.

In the multi-label or ranked retrieval setting, we are inter-
ested in the algorithm’s performance in ranking categories.
max F1 is derived from the F1 measure which has been
commonly used in evaluating Information Retrieval systems
[5]. For an instance x, the F1(r) value (at position r) is the
harmonic average of precision P (r) and recall R(r), i.e.

P (r) =
TP (r)

r
R(r) =

TP (r)

NTP
F1(r) =

2P (r) ·R(r)

P (r) + R(r)

where TP (r) is the number of true positives in the top r
positions and NTP is the total number of true categories of
instance x. maxF1 is thus defined as maxF1 = maxr F1(r).

Precision Recall Break Even Point (PRBEP) [2, 30] is
commonly used for measuring the performance of text
categorization. A text categorization algorithm typically
exhibits some trade-offs between precision and recall. For
instance, an algorithm that retrieves all categories can
achieve perfect recall (1) while scoring poor precision, and
vice versa. For a document (or an instance) x, PRBEP is
the precision or recall at position r where they are equal.
Equivalently, PRBEP corresponds to the point where the
classifier is tuned to have the same false positive and false
negative. Note that at this point, F1(r) is equal to P (r) or
R(r), and thus PRBEP is no greater than maxF1.

Another popular metric for the text categorization com-
munity is 11-point Average Precision (11-pts AvgP), which
computes the average of interpolated precision values of the
retrieved categories in a document in 11 recall levels (0%,
10% ... , 100%) [30].

The global average values of maxF1, PRBEP and 11-
pts AvgP, giving equal weight to each document (micro-
averaging), are reported in the sequel. We remark that
in tasks with thousands of classes, such as categorizing
web pages or news articles, we seek to label a given text
document with one or a few classes that the system is
confident about. In these tasks, performance measures
based on ranking classes per instance, as we have presented
above, are more appropriate than category based metrics
(i.e. those measures that evaluate the quality of the ranking
of instances for each category). The ranking metrics maxF1
and PRBEP can be regarded as summary statistics of the
precision-recall curve. Moreover, they are independent of
the cutoff threshold usually required by text categorization
algorithms. In addition, 11-pts AvgP accounts for the
precision of the algorithm across all recall levels. To sum
up, R1 and PRBEP are strict measures of relevance, while
R5 and maxF1 are relatively more optimistic metrics.

4.2 Evaluation Datasets
Table 1 summarizes the datasets used in the evaluation.

Two benchmark datasets, commonly used for text catego-
rization [31], are used for evaluating the performance of
the proposed algorithm. RCV1 [14] is the training split
of the Reuters Corpus Volume 1 data. OHSUMED [12]
is a sample of collection from the US National Library of

88

Medicine’s bibliographical database PubMed. OHSUMED
covers abstracts from 270 bio-medical journals in a five year
span from 1987 to 1991. The labels are the human-assigned
Medical Subject Heading (MeSH) terms. Y! Web is a subset
of the Yahoo! web directory for classifying web pages.

These three datasets are large-scale collections (hundreds
of thousands of instances and features as well as tens of
thousands of categories) used in operational settings. In our
experiments, features are standard unigrams and instance
vectors are l2 normalized. Also, these datasets have been
randomly split into two subsets in each trial, 90% for
training and the remaining 10% for testing. More details
of these datasets can be found in [16].

Table 1: Dataset overview. N , D and K stand for the
total number of instances, features and categories.
The last two columns represent the average number
of features and categories per instance.

Dataset N D K
Feats Cats.
/Inst. /Inst.

RCV1 23,149 47k 414 76 2.1
Y! Web 69,591 685k 14k 210 1.0
OHSUMED 233,445 233k 14.3k 87 12.3

4.3 Component Learners
We briefly describe the two types of component learners

used in our experiments. These algorithms learn linear clas-
sifiers, and are capable of handling many training instances
and very high input (feature) dimensionality. Since the goal
of the paper is to develop a meta-learning framework, we
refer the readers to the original papers for more details of
the respective algorithms.

The first type of multi-class learners are feature-based.
The Feature-Focus (FF) [17, 16] algorithm efficiently learns
an index from features to categories. The index is kept
sparse by controlling out-degrees of features and using
weights adding and dropping policy during online learning
[16]. FF drastically reduces training and prediction time
compared to other one-against-rest and top-down hierarchi-
cal classification approaches. Meanwhile, FF enjoys similar
or higher levels of accuracy when compared to the state of
the art (e.g. one-versus-rest SVMs), and it is substantially
better than simpler methods such as Naive Bayes [16].

The second type of multi-class classifiers are prototype-
based, where a prototype vector w is learned for each
class. In prediction, the similarity between a class prototype
and a test instance is computed by their inner product
and categories are retrieved according to the similarity
scores. Passive Aggressive (PA) [4] formalizes the learning
problem as an optimization problem of minimizing the
sum of the prototype changes and the hinge loss (or its
variants). Compared to feature-based methods, prototype-
based methods require the storage of a K by D prototype
matrix (where K is the number of classes and D the feature
dimensions), which may be infeasible when K and D are
large. Also, the time for evaluating the similarity of class
prototypes is proportional to the number of classes and thus
they are inefficient when there are thousands of classes.

4.4 Experiments with Aggregation Methods
The first set of experiments evaluate the performance

of different aggregation rules as discussed in Section 3.3.
We picked RCV1 as the test set which has relatively fewer
categories. Hence the overlap between compound concepts
is more significant and allows us to better distinguish the
relative performance of different combiners. We arbitrarily
set the number of experts to 10 and each compound concept
covers 30% to 60% of the categories.

The upper half of Table 2 shows the performance of
baseline classifiers FF and PA. PA outperforms FF in this
dataset, at the cost of more space consumption and much
longer (over 10 times) training time. Hence we used FF
as the generalist and PA as experts in Edge. The lower
half of the table demonstrates the performance of Edge
using different combiners. We observe that in general,
Edge outperforms the baseline component learners. The
performance of the order statistics combiners min and max
is similar, outperformed by the learning aggregation method
(using PA). The simple averaging combiner performs slightly
better than the learning aggregation method in the ranking
metrics, and similar in the binary recall metrics. Consider-
ing the efficiency in learning and testing, we choose to use
the averaging combiner in the following.

On a side note, one is interested in the performance of
combining the stronger baseline in Edge. As is shown,
Edge using PA as both the generalist and experts performs
better than the PA baseline but inferior to that with the
FF and PA combination. One intuitive explanation is that
using different classifiers promotes diversity in the ensemble
and reduces the correlation of errors (biases) in the generalist
and experts. Experts may thus be more capable of rectifying
the confusion of the generalist.

4.5 Experts Learn Better
The premise for Edge to outperform the generalist is that

experts should be more capable of ranking categories in their
compound concepts, either because the discrimination task
is easier with fewer classes or because a more sophisticated
learning method is used. We verify this by using FF as
the learner for both the generalist and experts in Y! Web
data. Figure 4 compares the R1 value of the generalist and
experts (before deactivation in line 8 in Algorithm 1) in the
truncated learning problems. Since all the points locate
above the y = x line, we conclude that experts perform
better than the generalist within their domains of expertise.
Similar scatter plots were also observed in other datasets
(not shown due to space constraints).

Table 2: Performance comparison of component
learners and EDGE using different combiners in the
RCV1 dataset. The generalist and experts (and
learning aggregation) are separated by a plus sign.
Highest values in a column are shown in bold font.
Learner R1 R5 maxF1 PRBEP

FF baseline 0.781 0.943 0.767 0.651
PA baseline 0.856 0.974 0.833 0.750
Edge[FF+PA] max 0.849 0.981 0.847 0.758
Edge[FF+PA] min 0.866 0.969 0.834 0.755
Edge[FF+PA] spr 0.865 0.981 0.855 0.774
Edge[FF+PA] ave 0.874 0.983 0.860 0.778
Edge[PA+PA] ave 0.865 0.981 0.851 0.767
Edge[FF+PA+PA] 0.874 0.978 0.851 0.772

89

Table 3: Comparison of accuracy in three datasets. Relative percentage improvement of EDGE over the
corresponding generalist method is shown in brackets. Standard deviations of the values in five splits are not
greater than 0.008. The highest values of each metric in the datasets are shown in bold.
Dataset Learner R1 R5 maxF1 PRBEP 11-pts AvgP

RCV1

FF 0.781 0.943 0.767 0.651 0.733
Edge [FF+PA] 0.874 (+11.9%) 0.983 (+4.2%) 0.860 (+12.1%) 0.778 (+19.5%) 0.840 (+14.6%)
Perceptron 0.621 0.815 - - -
Committee 0.769 0.918 - - -
SVM 0.783 0.939 - - -

Y! Web
FF 0.375 0.576 0.514 0.375 0.473
Edge [FF+FF] 0.395 (+5.3%) 0.593 (+3.0%) 0.528 (+2.7%) 0.395 (+5.3%)) 0.485 (+2.5%)
Perceptron 0.098 0.224 - - -
Committee 0.207 0.335 - - -

OHSUMED
FF 0.785 0.989 0.553 0.474 0.497
Edge [FF+FF] 0.877 (+12.0%) 0.995 (+0.6%) 0.582 (+5.3%) 0.508 (+7.2%) 0.532 (7.0%)
Edge [FF+PA] 0.928 (+18.2%) 0.995 (+0.6%) 0.584 (+5.6%) 0.507 (+7.0%) 0.516 (+3.8%)

0.7 0.8 0.9 1
0.7

0.8

0.9

1

R1 (Generlist)

R
1

(E
xp

er
t)

Y! Web Scatterplot

Figure 4: Scatter plot of R1 values of the experts
and the generalist in Y! Web dataset using FF.

4.6 Performance Comparison
We include the comparison results with several popular

linear text categorization methods in the RCV1 and Y!
Web datasets [16]. Support Vector Machines (SVMs) was
originally designed for two class classification problems.
One-versus-rest is the most popular mechanism for reducing
multi-class problems to two-class problems, where a set of
K classifiers are trained to discriminate between one class
and the other K−1 classes. Though the comparison of these
independently trained classifiers (on different problems) may
not be meaningful, properly regularized binary classifiers
are capable of achieving competitively empirical results [21].
We use a state-of-the-art efficient variant of the SVMs
algorithm [13] in our comparison. As the number of classes
exceeds the range of 10s or 100s of categories (many class
setting), one-against-rest methods are incapable of handling
problems of such scale. In the realm of K-ary classification,
We empirically compare our methods with the Perceptron
algorithm [22], which uses additive updates for linear online
learning. Additionally, we compare with a committee of 10
Perceptrons [3], which has shown performance comparable
to linear SVM while being more efficient. Note that
these learning algorithms are different from our component
learners as well as the Edge ensemble mechanism.

Table 3 summarizes the average results of Edge over

five trials of each dataset5. The generalists used in these
datasets are competent in the text categorization task (e.g.,
FF achieves similar R1 and R5 as SVMs, significantly
outperforming Perceptron and Committee). On the other
hand, Edge overall yields substantial performance gains in
both classification and ranking metrics in all three datasets.

As we’ve shown earlier, Edge achieves over 10% gain in
the R1 and maxF1 metrics compared to the generalist in the
RCV1 dataset. Edge also outperforms linear one-versus-
rest SVMs in the R1 and R5 metrics. In the single-label
Y! Web dataset, the improvement of Edge in the R1 and
R5 metrics are 5% and 3% respectively. On the other hand,
the OHSUMED dataset has as many as 12 categories per
instance and we are more interested in the ranking results.
Using FF and PA as the experts, Edge outperforms the
generalist by 5%, 7% and 7% in the maxF1, PRBEP and 11-
pts AvgP metrics. We also provide the results of committee
of 10 perceptrons [16] for comparison. Edge outperforms
committee by 13% in the RCV1 dataset and as much as
91% in the Y! Web dataset. In all, Edge improves the
accuracies of the component learners without showing signs
of overfitting in these large-scale datasets.

It is also worthwhile to note the scalability of the methods
using the largest dataset OHSUMED. FF finished learning
in 2 minutes, whereas PA was not able to run as a generalist
algorithm due to the huge number of categories (and
consequently the prohibitive space and time consumption).
Edge learned 60 FF experts (with tens to hundreds of
concepts each) in less than 25 minutes. By decomposing the
categories into compound concepts, Edge also allowed PA
to learn as experts, yielding slightly better results. We note
that the performance is better than that of KNN (micro-
F1 = 0.51, substantially slower and with significant feature
reduction) [30], the only text categorization method used on
the full domains of MeSH terms in OHSUMED [31].

4.7 Improvements on a Relative Scale
The ultimate performance metric for classification algo-

rithms is classification error, which consists of model error
and Bayes error. Bayes error is the irreducible error of the

5Empirically, 20% was used for p% and θ=5, 5, and 200 in
RCV1, Y! Web and OHSUMED respectively. The choice of
these parameters is however not sensitive for Edge.

90

Table 4: Percentage of instances fixed. R1 Gen and R1 max denote the R1 value of the generalist and the
optimal classifier respectively.

Dataset #Fixed #Reversed #Net #Fixable Fixed R1
fixed Percentage Gen Edge max fixed

RCV1 (training) 1,120 320 818 1,318 62% 0.930 0.971 0.993
RCV1 (testing) 276 64 212 425 50% 0.781 0.874 0.964

problem, with respect to the true data distribution. The
underlying distribution, however, is in general unknown and
thus one can only measure such error indirectly. This section
reveals the approximate reduction of model error to help us
better interpret the results in Table 3.

We first define two events corresponding to the fine-tuning
of the experts. We call an instance fixed, if the generalist
fails to rank its true category in the first rank but Edge
successfully ranks it first (via experts’ reranking and decision
aggregation). Similarly, an instance is reversed, if Edge fails
to rank the true category first while the generalist ranks it
correctly. Clearly, model error is reduced if the number of
net fixed (#fixed - #reversed) is greater than 0. We also call
an instance fixable if there is an edge from the true category
to the top-ranked false category in the confusion graph. In
other words, we ignore those insignificant confusions below
the θ threshold which are prone to be noise. A perfect error-
driven framework (denoted by max fixed) may optimally
remove all edges from the confusion graph, though this is
generally not achievable because the Bayes error is non-zero
with overlapping class distributions.

Table 4 illustrates the gain of Edge in the R1 metric in
the RCV1 dataset. Edge is able to fix 62% of the fixable
instances in the training data, and approximately half in
the test data. This is also reflected in its R1 value, which is
approximately the mid-point of that of Gen and max fixed.

5. RELATED WORK AND DISCUSSIONS
Automatically categorizing text documents is a challeng-

ing task with the availability of massive datasets [7, 31,
15]. The Edge method proposed in this paper leverages
recent advances in linear classification methods [5, 4, 16]
and provides a scalable solution for this problem.

Edge belongs to the family of ensemble learning, which
is an important subject of machine learning research. We
only discuss a few popular ensemble methods, highlight-
ing similarity and distinction with the proposed method.
Boosting is a particularly popular error-driven ensemble
method. AdaBoost [9] regards each learner as a weak
hypothesis and combines multiple learners into a committee
for classification. Unfortunately, boosting methods are
not practical given the scale of the text categorization
problems: it is infeasible to run a many-class learner on
the reweighed data for hundreds or thousands of iterations.
Also, they risk overfitting when the underlying learner is
strong. TreeBoost.MH [8] is an extension to the popular
multiclass AdaBoost.MH algorithm [23] by accounting for
the hierarchical structure. It reduces the time complexity by
an exponential factor compared to AdaBoost.MH. However,
to achieve similar accuracy, TreeBoost.MH is still two orders
of magnitude slower than the linear learning methods used in
this paper, and thus is not scalable to massive data. Stacking
[28] is another meta-learning approach for pooling classifiers.
Stacking works by first learning multiple classifiers and then

a generalizer which combines their outputs. This is not
unlike learning aggregation in Section 3.3.2. However, the
first level classifiers still learn from the entire dataset. In
contrast to these ensemble methods, samples from the entire
feature space during testing, we propose to Edge only learns
experts that specialize only on part of the feature space
(features and categories).

Taxonomies offer potential efficiency and efficacy advan-
tages in text categorization [6, 1, 15]. However, premature
mistakes in high-level classifiers can hamper accuracy in
lower level categories. Also, a taxonomy may be unavailable
or may not be a tree (e.g. MeSH terms in OHSUMED
form a DAG), besides its complex implementation. Instead
of learning classifiers for sibling categories, Edge discov-
ers compound concepts in a data-driven manner. These
compound concepts are not confined to the hierarchical
structure, as sibling categories are not necessarily confused
and easily confused categories may be non-siblings (e.g.
alt.atheism vs. soc.religion.christian in Figure 1). Hence
error-driven decomposition of the text categorization prob-
lem may overcome the aforementioned drawbacks in hierar-
chical text categorization and yield improved performance.

Our work shares similarities with the work of [11], who
used the confusion matrix of a Naive Bayes classifier to
scale up one-versus-rest SVM learning. In their work, the
first level classifier discriminates among all categories. For
the highest predicted class, the two-class SVMs (trained
on that class and its confused categories in one-versus-rest
setting) are invoked to confirm or overturn that prediction.
However, the first level classifier may prematurely categorize
an instance into a class that the SVMs experts are unable to
recover. Also, since the set of SVMs need to be learned for
each category, this method is not appropriate for the many-
class and multi-label learning setting, and the experiments
were run on relatively small data sets (news groups and
Reuters, with 20 and 60 classes). In our work, Edge
learns an expert per compound concept with respect to
the confusion graph (a generalized notion of the confusion
matrix in the multi-label setting). Since the number of
compound concepts tends to be significantly lower than the
total number of concepts, and each generated problem is
smaller, training time is significantly reduced in the second
stage. Furthermore, rather than relying on the decision of a
single expert, Edge aggregates the decision of the generalist
and all activated experts, which possesses the merits of
ensemble learning mentioned earlier.

6. CONCLUSION AND FUTURE WORK
In the setting of text categorization with tens of thousands

of categories, building a highly accurate and efficient many-
class classifier is essentially a very difficult task. Rather than
attempting to build a monolithic classifier, Edge decom-
poses the learning problem and builds a number of smaller
and more accurate classifiers, which we call experts in this

91

paper. Experts utilize fewer classes and lower dimensionality
and may be complementary to each other. The discovery of
these experts is data driven: learning resources are placed
on distinguishing concepts that tend to be confused by the
generalist. By combining the decisions of the experts and
the generalist, Edge demonstrates substantial improvement
in classification and ranking accuracies in large-scale text
categorization datasets. There are several opportunities
for improvement. First, experts can be combined with
consideration of their ratings (i.e. their relative prediction
performance on data). Also, learning a generalist in
conjunction with the experts, possibly in an online manner,
may prove useful. We also want to explore the use of
statistical tests of significance in constructing the confusion
graphs and in computing compound concepts.

7. ACKNOWLEDGMENTS
The authors would like to thank Rosie Jones, Preston

McAfee and Ron Brachman from Yahoo! Research for
valuable comments and reviewers for helpful feedback.

8. REFERENCES
[1] L. Cai and T. Hofmann. Hierarchical document

categorization with support vector machines. In Proc.
of 13th ACM international conference on Information
and knowledge management (CIKM), 2004.

[2] R. Caruana and A. Niculescu-Mizil. Data mining in
metric space: an empirical analysis of supervised
learning performance criteria. In Proc. of 10th ACM
SIGKDD Conference, 2004.

[3] V. R. Carvalho and W. W. Cohen. Single-pass online
learning: performance, voting schemes and online
feature selection. In Proc. of 12th ACM SIGKDD
Conference, 2006.

[4] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. Online passive-aggressive algorithms.
Journal of Machine Learning Research, 7, 2006.

[5] K. Crammer and Y. Singer. A family of additive
online algorithms for category ranking. Journal of
Machine Learning Research, 3:1025 – 1058, 2003.

[6] S. Dumais and H. Chen. Hierarchical classification of
web content. In Proc of 23th ACM SIGIR conf., 2000.

[7] S. Dumais, J. Platt, D. Heckerman, and M. Sahami.
Inductive learning algorithms and representations for
text categorization. In Proceedings of the 7th ACM
International Conference on Information and
Knowledge Management (CIKM), 1998.

[8] A. Esuli, T. Fagni, and F. Sebastiani. TreeBoost.MH:
A boosting algorithm for multi-label hierarchical text
categorization. In Proc of 13th Int’l Conf on String
Processing and Information Retrieval (SPIRE), 2006.

[9] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Computer & System Sciences, 55(1), 1997.

[10] Y. Freund, R. Schapire, Y. Singer, and M. Warmuth.
Using and combining predictors that specialize. In
ACM Symp. on Theory of Computing (STOC), 1997.

[11] S. Godbole, S. Sarawagi, and S. Chakrabarti. Scaling
multi-class support vector machines using inter-class
confusion. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), pages 513–518, 2002.

[12] W. Hersh, C. Buckley, T. Leone, and D. Hickam.
OHSUMED: An interactive retrieval evaluation and
new large test collection for research. In Proc. of the
17th ACM SIGIR Conference, pages 192 – 201, 1994.

[13] S. Keerthi and D. DeCoste. A modified finite newton
method for fast solution of large scale linear SVMs.
Journal of Machine Learning Research, 6, 2005.

[14] D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new
benchmark collection for text categorization research.
Journal of Machine Learning Research, 5, 2004.

[15] T. Liu, Y. Yang, H. Wan, H. Zeng, Z. Chen, and
W. Ma. Support vector machines classification with a
very large-scale taxonomy. KDD Explorations, 2005.

[16] O. Madani and M. Connor. Large-scale many-class
learning. In SIAM Conf on Data Mining (SDM), 2008.

[17] O. Madani, W. Greiner, D. Kempe, and M. R.
Salavatipour. Recall systems: Effcient learning and
use of category indices. In Proceedings of the 11th
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2007.

[18] O. Madani and J. Huang. On updates that constrain
the features’ connections during learning. In
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining
(KDD), 2008.

[19] M. E. J. Newman. Mixing patterns in networks.
Physical Review E, 67:026126, 2003.

[20] J. Rennie, L. Shih, J. Teevan, and D. Karger. Tackling
the poor assumptions of naive bayes text classifiers. In
Proceedings of the 20th International Conference on
Machine Learning (ICML), pages 616 – 623, 2003.

[21] R. Rifkin and A. Klautau. In defense of one-vs-all
classification. J. Machine Learning Research, 5, 2004.

[22] F. Rosenblatt. The perceptron: A probabilistic model
for information storage and organization in the brain.
Psychological Review, 56(6):386–408, 1958.

[23] R. Schapire and Y. Singer. Improved boosting
algorithms using confidence-rated prediction. Machine
learning, 37(1):297 – 336, 1999.

[24] F. Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys, 2002.

[25] K. Tumer and J. Ghosh. Analysis of decision
boundaries in linearly combined neural classifiers.
Pattern Recognition, 29(2):341–348, 1996.

[26] K. Tumer and J. Ghosh. Robust combining of
disparate classifiers through order statistics. Pattern
Analysis & Applications, 5(2):189 – 200, 2002.

[27] D. J. Watts and S. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393:440–442, 1998.

[28] D. H. Wolpert. Stacked generalization. Neural
networks, pages 241 – 259, 2002.

[29] L. Xu, A. Krzyzak, and C. Y. Suen. Methods of
combining multiple classifiers and their applications to
handwriting recognition. IEEE Transactions on
Systems, Man and Cybernetics, 22(3):418 – 435, 1992.

[30] Y. Yang. An evaluation of statistical approaches to
text categorization. J. of Information Retrieval, 1999.

[31] Y. Yang, J. Zhang, and B. Kisiel. A scalability
analysis of classifiers in text categorization. In
Proceedings of the 26th annual international ACM
SIGIR conference on research and development in
information retrieval (SIGIR), 2003.

92

