
CiteSeer-API: Towards Seamless Resource Location
and Interlinking for Digital Libraries

Yves Petinot1,2, C. Lee Giles1,2,3, Vivek Bhatnagar2,3, Pradeep B. Teregowda2,

Hui Han1,3, Isaac Councill3

1Department of Computer
Science and Engineering
The Pennsylvania State

University
111, IST Building

University Park, PA 16802
{petinot,hhan}@cse.psu.edu

2eBusiness Research Center
The Pennsylvania State

University
401 Business Administration

Building
University Park, PA 16802

{vivekb,pbt105,igc2}@psu.edu

3School of Information Sciences
and Technology

The Pennsylvania State
University

332, IST Building
University Park, PA 16802

{giles}@ist.psu.edu

ABSTRACT
We introduce CiteSeer-API, a public API to CiteSeer-like
services. CiteSeer-API is SOAP/WSDL based and allows for easy
programmatical access to all the specific functionalities offered by
CiteSeer services, including full text search of documents and
citations and citation-based document discovery. In order to
enable operability and interlinking with arbitrary software agents
and digital library systems, CiteSeer-API uses digital content
signatures to create system-independent handles for the
Document, Citation and Group resources of CiteSeer servers. We
discuss specific functionalities of CiteSeer-API that take
advantage of these handlers in order to enable seamless location of
CiteSeer resources. Finally we argue that the digital signature
scheme used by CiteSeer-API is well suited for the creation of
machine-usable semantic descriptions of digital library services
which is the key toward seamless discovery and integration of
services such as CiteSeer-API. CiteSeer-API is currently
showcased on CiteSeer.IST, the CiteSeer server of the School of
Information Science and Technology at the Pennsylvania State
University.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: retrieval models.
H.3.7 [Digital Libraries]: dissemination, standards, system issues.

General Terms
Design, Experimentation, Standardization.

Keywords
CiteSeer-API, CiteSeer, digital libraries, interfaces, services,
interoperability, interlink, Semantic Web.

1. INTRODUCTION
Digital Libraries (DL) systems remain strongly proprietary in the
way they collect, index, store, and present their document
collections. This phenomenon is usually unavoidable as different
digital library systems tend to address different content types –
e.g. textual content vs. multimedia - and are consequently tuned
towards these contents and their specific audiences. Efforts for
access normalization, such as that of the Open Archives
Initiatiative’s Protocol for Metadata Harvesting (OAI-PMH) [20]
address the issue of presenting collections in a standard format
that allows, if not interoperation of those systems, at least the
creation of meta-systems able to virtually aggregate many
heterogeneous collections. The interoperation of digital library
systems themselves is however not addressed by those efforts.

We introduce CiteSeer-API [3,33], a SOAP/WSDL-based [28,30]
API to CiteSeer-like servers [3,4,8,13] that, in addition to enabling
programmatical access to CiteSeer functionalities, supports
system-independent primitives that allow arbitrary agents and
digital library systems to effectively interoperate with CiteSeer-
like services. In the context of digital library services we refer to
interoperation as the ability for an agent to locate a specific digital
resource hosted by a digital library while having no knowledge of
the internals of that digital library. By providing such
functionalities on top of the CiteSeer server, CiteSeer-API offers
many opportunities for digital library systems to localize and
interlink with CiteSeer-hosted resources.

The rest of this paper is organized as follows. In section 2 we
address the general issue of making digital library services more
interoperable and discuss API requirements to allow
interoperation between digital library systems. Based on this
discussion, Section 3 defines a model for resource handlers that is
based on digital signatures and that permits CiteSeer-API to
provide system-independent access to CiteSeer-hosted resources.
The standard functionalities of CiteSeer-API for search and
citation-based document discovery are described in Section 4.
Section 5 puts a special emphasis on CiteSeer-API functionalities
that enable interoperation of CiteSeer services with arbitrary
agents and digital library systems. Section 5 also describes a
simple semantic framework that enables the use of CiteSeer-API
through the Semantic Web. In section 6 we discuss potential
applications of CiteSeer-API for access and visualization,
interlinking, mirroring and version control applications. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’04, November 8-13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-874-1/04/0011...$5.00.

553

conclude in section 7 with related work and a roadmap towards
further integration of CiteSeer-API in the Semantic Web.

We encourage research groups to register at [3] and take
advantage of the terabyte scale data-set available through
CiteSeer-API.

2. INTEROPERABLE DL SYSTEMS
In this section we take a general perspective on digital libraries
interoperation. In the context of digital library services we refer to
interoperation as the ability for an agent to locate a specific digital
resource hosted by a digital library while having no knowledge of
the internals of that digital library. In the following we consider
the necessary features that a digital library API should provide in
order to enable this level of interoperability. First we address the
specific case of interoperability between CiteSeer-like services
then the issue of interoperation between CiteSeer services and
arbitrary agents and digital library systems.

2.1. Overview of DL interoperation
Current digital library systems, including CiteSeer servers, do not
allow for easy interoperability. From the perspective of service
designers, a very desirable feature for a digital library system is its
ability to let other agents – or services - automatically locate a
specific resource it hosts. Hence in the case of CiteSeer services,
the ability to link to other bibliography-focused services is
important in order to provide results that are as complete as
possible. CiteSeer currently links to DBLP [9] and
HomepageSearch [15] to enhance its author and homepage
information respectively. However the linking to these external
services is often more informative than precise as the links take
the form of queries to those services and there is therefore a
limited confidence in the fact that the searched author or
homepage is actually listed by those services or, if it is, that it is a
valid answer to the user’s original query. The weakness of the
previous linking approach is that it relies on keyword-querying the
services we want to link to. While this certainly allows for rapid
and automatic linking, a usual service won’t return a single link
matching the request but instead a list of the top N matches for
that query. Without extra intelligence or the introduction of
concept search [19] or semantic search [14], it is unlikely that
linking to search engine services can be achieved more efficiently.
The issue of linking to digital libraries is however more
approachable as such systems effectively hold content, and
therefore any agent with sufficient knowledge of the resource it
wants to link to should have the ability to do so without having an
understanding of the DL internals. In this section we consider the
requirements on DL interfaces to enable resource location. We
address the specific requirement for interlinking between CiteSeer
services and generalize to interlinking between CiteSeer services
and arbitrary DL systems.

2.2. Requirements for DL Interoperability
Digital Library systems are geared toward the task of managing
collections of digital objects and their associated metadata. Each
digital object is meta-tagged [10] in order to provide additional
information on its content and its relatedness to other digital
objects. Current efforts for normalization of content access [29]
and presentation [20] build on top of the metadata layer provided
by digital library and information retrieval systems. However
metadata-based access to digital libraries reduces the location

process to a search-engine query which, as discussed earlier, does
not enable efficient interlinking with the digital library resources
unless additional logic is provided.

Here we want to provide support for resource linking with a good
level of confidence and not by simple query-forwarding. As such
we propose an alternative for large-scale resource location and
interlinking.

The interoperability of digital library systems relies on their ability
to provide APIs for non-human access to their content. Still as
outlined above, existing interfacing standards simply shift the
human search problematic to an agent search problematic, not
simplifying the location of digital objects themselves. Digital
library resources are best represented by digital signatures which
uniquely identify them in the digital space and which can be
computed directly from the original digital resources [7].
Consequently we propose an extension to traditional DL API
functionalities where agents are allowed to search the digital
repositories using digital signatures. In the rest of this section we
further discuss the relevance of using digital signatures as API
object handlers and show how CiteSeer services can take
advantage of such search features to automatically interlink. We
finally describe additional features that enable interlinking from
heterogeneous DL systems with CiteSeer services.

2.3. Digital Signatures As Object Handlers
Most digital library systems – including CiteSeer services - tend to
assign internal – arbitrary - identifiers to the resources they
manage. Although this is a perfectly acceptable practice in a non-
distributed environment, it becomes much of a problem when
considering the issue of interlinking collections from two or more
distributed digital libraries. The internal identifiers usually convey
no information on the resources themselves hence preventing
immediate cooperation with other DL systems. Note that this issue
remains even if digital library systems make use of Document
Object Identifiers (DOIs) [34] as handles for their electronic
objects: even though each DOI represents an agreed-on/standard
object identifier, it has no direct relation to the original document
and requires the use of a resolution service to map those “opaque
strings” [34] to actual resource locations and/or associated
metadata.

One of our goals in designing CiteSeer-API is to enable the
interoperation of heterogeneous digital libraries. We believe that -
from the API standpoint – resource handles should be features that
can be computed directly from the original digital resources and
should therefore be implemented as checksums or CRCs of these
resources. By using this approach, distributed system can, without
any communication being required, compute the same identifier
for any given document. Document URIs created from the
document checksums will allow heterogeneous DL to locate
CiteSeer resources while having limited knowledge of the system
itself. Although a fully-fledged discussion would be necessary on
this subject alone we can argue that for most digital resources,
including those that do not actually have a digital existence, one
could determine an acceptable digital signature that
unambiguously represents that resource. For example if a digital
library manages author resources, a good representation is to use
the public PGP key of the associated individual as a resource
handler, preferably to the actual author name which would fall in
the metadata category.

554

2.4. Interoperation between CiteSeer services
Independent CiteSeer servers currently do not have the ability to
interlink with each other. For instance consider the case of
eBizSearch [12] a CiteSeer-like search engine for e-Business
publications. Assume a document A is indexed by eBizSearch.
Document A cites a document B which is not indexed by
eBizSearch but which is indexed by CiteSeer [5]. How can
eBizSearch locate document B in CiteSeer’s repository with a
high level of confidence ? Since eBizSearch holds a document that
cites document B, it has a – possibly non-canonical –
bibliographical entry for document B. Making use of the citation
search functionalities of CiteSeer-API (section 3), eBizSearch can
locate a matching citation in CiteSeer’s database and access the
corresponding document. Although this approach is likely to
work as expected, we choose to extend the standard functionalities
of CiteSeer-API with a method that takes as its input a
bibliographical entry in its raw textual form and returns the
matching Document URI only if the document is available from
the service. Compared to the keyword based search methods,
which would propose alternative matches, this method is designed
to locate the exact resource if it is available, or to inform the client
agent that it is not available otherwise.

2.5. Interoperation with arbitrary agents
Finally we consider the case of an arbitrary agent wishing to
locate a specific resource hosted by a CiteSeer server. In that case
the bibliography lookup method outlined in 2.4 may be sufficient
in most cases. However one can envision scenarios in which the
client agent does not possess any sufficient metadata on the
resource it is searching for and simply possesses a digital
signature for that resource. In that case, it is desirable to perform a
lookup against the CiteSeer service using the resource digital
signature. If the resource is available or known to the service, it
returns its Document URI. Otherwise the service informs the
client that the resource is unknown.

3. CITESEER-API : AN API FOR
CITESEER SERVICES

CiteSeer has established an original Web-interface model where
bibliographical references of academic publications are mapped to
hyperlinks, allowing a given document collection to be browsed
by following citations from one document to another. In this
section we give a detailed presentation of CiteSeer-API, an API to
CiteSeer services that provide programmatical access to these
CiteSeer-specific functionalities. Although CiteSeer servers have
been brought to OAI-PMH compliance so that their metadata
collection can be accessed by metadata harvesters [23]. many of
their functionalities cannot be accommodated by OAI-PMH,
including full text document and citation search and citation-based
document discovery. Our motivations for CiteSeer-API are
therefore (1) to provide programmatical access for all the
functionalities supported by CiteSeer-like systems; (2) to enable
interoperability of CiteSeer services with distributed and
heterogeneous DL systems as discussed in section 2. Following is
a detailed overview of the functionalities supported by CiteSeer-
API. A full reference for these functionalities and registration to
this service are available at [3].

3.1. CiteSeer Organization Overview
Three concepts are recurrent inside CiteSeer systems : these are
Document, Citation and Group. As CiteSeer-API intends to give a
programmatical vision of any CiteSeer service, these concepts
were mapped into programmatical constructs (XML Schema
encoding). A collection of Documents instances {Di} maintained
by a CiteSeer-like service is organized as follows. Each Document
instance Di contains a set of Citation instances {Cij} that refer to
other documents {dj} that may or may not be part of the collection.
Each Cij uniquely identifies a bibliographical entry in Di’s
reference section, meaning that a reference Ckj - in another
Document instance Dk - to the same document dj is such that
Cij≠Ckj. Citation instances {Cik : k∈[1..K]} that refer to the same
document Dk are however grouped under a single Group instance
Gα. Thus the mapping of a Citation instance Cik to the Document
instance Dk is practically seen as the mapping of the associated
Group instance Gα to the Document instance Dk. In case the
referenced document dk is not part of the collection, the Group
instance Gα is not mapped to any Document instance.

3.2. CiteSeer Object URIs
In order to enable the access to Document, Citation and Group
resources in a distributed environment, the three concepts
discussed above are mapped to object classes and CiteSeer-API
assigns to each instance of these classes a Unique Resource
Identifier (URI). The URI formats associated with each type of
resource are presented in Table 1. Note that the URI formats
presented in Table 1 could fit in the OpenURL [35] specification.

Table 1: CiteSeer-API Resource URIs Formats

Resource Type URI Format

Document http://<server>/document/<doc-id>

Citation http://<server>/citation/<cite-id>

Group http://<server>/group/<group-id>

Depending on the specific task to be achieved by the client agents,
we find it desirable to support various types of resource identifiers
(<doc-id>, <cite-id> and <group-id> in Table 1). To that end, we
break down document identifiers into two distinct parts: encoding
type and value. The encoding type essentially brings semantics to
the value field by identifying which algorithm is used to generate
the value field from the actual document. Citation and Group
identifiers are constructed using the document identifiers as
building blocks. We further discuss the creation of relevant
Citation and Group identifiers later on in this section. The format
of resource identifiers is summarized in Table 2.

Table 2: CiteSeer-API Resource IDs Formats

ID Type ID Format

<doc-id> <enc-type>:<val>

<cite-id> <doc-id1>/<doc-id2>

<group-id> <doc-id>

555

In the situation where CiteSeer-API is used to sequentially access
the entire document corpus of a CiteSeer service – e.g. to train and
test some learning algorithm using part or all of the document
corpus and associated metadata – a simple long integer identifier
enables the enumeration of the entire collection. To that end we
first introduce a “no-encoding” scheme in which the resource
identifier values are the actual internal indexes used by CiteSeer
server to uniquely identify each Document, Citation and Group
resource. The Document, Citation, and Group internal identifiers
are simple long integers in the range [1..ND], [1..NC] and [1..NG]
respectively. Note that there exists no relation between these three
identifiers. As an example, the actual URI identifying Document
#4999 on the CiteSeer.IST server at PennState University would
be : http://citeseer.ist.psu.edu/document/no-encoding:4999.

Alternatively we propose a resource URI scheme that uses digital
signatures encoding in order to build system independent resource
URIs. In the rest of this section we discuss the creation of such
resource URIs and their relevance towards interoperation with
arbitrary agents and digital library systems.

3.3. Digital Signature based Identifiers
In order for digital libraries to be able to cooperate, the choice of
document indices / document pointers should be made in a way
such that two DLs can independently compute the exact same
index value for the same document [7].

The CiteSeer software package makes use of the SHA [26]
algorithm in order to prevent additions of exact file duplicates in
the system. Upon completion of the download phase, a 32 bit
string is computed from the binary file and used as a lookup key in
CiteSeer’s checksums database. If the exact digital resource has
been submitted before, there will be an entry associated with that
key so that the new submission can be discarded safely.

Here we choose to adopt the SHA algorithm in order to generate
the URIs advertised at the API level: this is consistent with the
internals of the CiteSeer software and allows for a readily
availability of checksums inside CiteSeer-API. Using this
checksum-based approach and according to Table 1 and Table 2,
the URIs will now take the following form :
http://<server>/document/SHA1:<doc-sha1-checksum>.

Citation and Group resources, on the other hand, are by-products
of the information extraction process. As such it is unlikely that
two heterogeneous systems will generate identical objects from a
binary representation point of view. While it makes sense to
compute a checksum for a document file and assign it to the
corresponding Document resource, Citation resources are parsed
out - with more or less accuracy – from the document text and are
thus artifacts from the CiteSeer software. Citation resources are
therefore objects that are not shared by heterogeneous systems, if
only because the parsed data is candidate for community
correction. It makes more sense to consider Citation resources
under a different approach, that is as directed edges from one
document to another. So far our scheme assigns a checksum to
each document in the collection. We therefore extend this scheme
by assigning to each Citation resource an ordered pair of
checksums (C1, C2) that indicate respectively the fact that the
document with checksum C1 cites the document with – class
representative - checksum C2. Note that this scheme does not
assume any particular medium or electronic format and therefore
can readily be applied to any digital library system. Of course the

document being cited is not always available in the CiteSeer
collections, and therefore we create a semantic object called
“UnknownDocument” that will serve as a placeholder in these
situations. As can be seen in Table 2 our URL formatting supports
the use of different checksum algorithms for the source and the
sink of the citation relationship, which can be necessary in the
situation where heterogeneous digital library systems – e.g.
CiteSeer-like service with non-CiteSeer service - need to
interoperate.

As explained in 3.1, each Group resource regroups Citations to a
given Document. As formulated above, each Citation in this
Group is an ordered pair of Document checksums. While the
sources of these Citations can be any Document, the sink is a
single document for which this Group holds the Citations.
Therefore a Group identifier should in effect be no different than
the identifier for the Document for which it stands. With this in
mind we simply define group-ids to be actual document-ids (Table
2). Note that CiteSeer internals do not follow this approach, the
reason for this being that arbitrary index values are used instead of
checksums in order to identify documents, citations and groups.

3.4. Problematic of Duplicate Documents
The issue of duplicate documents has a direct impact on the use of
a scheme for resource identifiers based on digital signatures.
Duplicate documents can take two forms : (1) exact file – or
binary representation - duplicates and (2) exact content duplicates.
The first case is actually a false problem as exact file duplicates
will, by definition, have identical digital signatures. In the second
case however we have to deal with the issue of having non-
identical files that contain the exact same content. The CiteSeer
software deals with this situation by performing a comparison at
the sentence level of all the documents it indexes: when the
threshold of 99% sentence co-occurrence is reached for a pair of
documents, then these are considered exact (content) duplicates.
For non-textual content it is arguably also possible to design
analogous algorithms that can, based on specific
similarity/identity criteria, identify exact content duplicates.

To address this issue, digital library services should maintain, for
each document, the list of digital signatures that this document is
known to have. By doing so digital libraries can account for the
existence of a given document in various digital formats and
encodings. A potential application to supporting such feature is
that of versioning control (section 6.4).

The implication for the resource URIs presented above is that
digital signatures that represent distinct files with identical content
should be treated as equivalent when writing or reading these
URIs. We aim to extend CiteSeer-API in order to support a
protocol that allows cross-DL negotiations in order to identify
alternative identifiers for a given content.

The URIs that have been described in this section are used as both
return values for the search methods and as input parameters for
the resource access methods of CiteSeer-API.

4. CITESEER-API STANDARD
METHODS

Following is a detailed description of the methods supported by
CiteSeer-API. A comprehensive reference is also available at [3].

556

4.1. Search Methods
The Search methods of CiteSeer-API provide a natural entry point
to the system, similar to the Web-based search form. CiteSeer-API
supports both document and citation full text search, each method
returning respectively a list of matching document URIs and
citation URIs.

 findDocumentsByText: document full text search;
equivalent to the Web-based document search; the
search can be modulated using a specific restriction
scheme - document body (default), header or title – and
ranking scheme – citation count, date, hub, authority.
This method returns a list of matching document URIs
along with the documents’ scores, titles, and query
matching context.

 findCitationsByText: citation text search; equivalent to
the Web-based citation search; the search can be
modulated using a specific restriction scheme – full
citation text (default), title or authors – and ranking
scheme – citation count, date. This method returns a list
of matching citation URIs along with the citations’
scores and texts.

These resources URIs returned by both methods can be used as
handlers for the Object-Access methods and bibliography methods
described below in order to access related document/citations, just
as through CiteSeer’s Web interface.

4.2. Object Access Methods
Object access methods return the full metadata records for a
resource given its resource URI.

 getDocument: retrieve a Document object; properties of
the Document resource include: title, author(s), date of
addition, document abstract, URL of original file, URL
of cached PDF file, URL of cached PS file, URL of
CiteSeer page for this document, associated Group URI
if any. Compare with getDocumentAsDC (4.4).

 getCitation: retrieve a Citation object; properties of the
Citation resource include: title, author(s), publication
date and associated Group URI.

 getGroup: retrieve a Group object; properties of the
Group resource include: size and list of Citation URIs.

4.3. Bibliography-Oriented Methods
The following methods are all relative to a specific Document D
in the collection and allow to identify documents related to D
using one of the four citation-based relationships. Each of the
bibliography-oriented methods returns basic information on the
Document (or Citation depending on availability) along with their
Document (respectively Citation) URIs for access to extended
information.

 getCitations: get Citations made by D, i.e. the list of
Citations (as identified by their Citation URIs) that
comprise the bibliography of D. Upon availability cited
documents can be located by determining the associated
citation Group URI and the associated Document URI.

 getCitedBy: get Documents citing D, i.e. the list of
Documents (as identified by their Document URIs) that

have a citation to D in their bibliography. All the
Documents listed are themselves available from the
CiteSeer service.

 getCoCitation: get D’s co-citation set, i.e. the list of
Citations (as identified by their Citation URIs) made by
documents that cite D. Upon availability the Document
URIs of those documents are also returned.

 getActiveBibliography: get D’s active bibliography set,
i.e. the list of Documents (as identified by their
Document URIs) bibliography of which overlaps with
D’s bibliography. All the Documents listed are
themselves available from the CiteSeer service.

Note that these four methods provide the information usually
displayed on a document’s page through CiteSeer Web-interface.

4.4. Miscellaneous Methods
CiteSeer-API supports additional utility methods that are not
provided by the traditional Web-interface of CiteSeer services.

 getNewDocumentAdditions: list most recent additions
to the document collection maintained by the CiteSeer
service. New documents are listed as Document URIs.
The user has the ability to constrain the returned list by
size – up to a 1000 documents limit - and oldest addition
date. This functionality is intended for agents that need
to monitor a CiteSeer collection.

 getDocumentText: get full ASCII text of a document.
In order to perform autonomous citation indexing,
CiteSeer servers convert document from their original
electronic format to plain text, this functionality gives
access to the full text of a document as converted by the
CiteSeer server.

 getDocumentAsDC: returns RDF [25] statement
describing a document, the statement featuring relevant
Dublin Core properties.

4.5. Registration and Administrative
Methods

In the perspective of enabling access to CiteSeer-like services on
the Semantic Web, the action of registering with the API service is
also part of the API.

 register: allows agents to register with CiteSeer-API,
the authentication key required by each method call is
then sent to the specified e-mail address.

 getUserProperty: get user property; allow users to get
their profile and preferences information.

 setUserProperty: set user property; allow users to
update their profile and preferences.

4.6. Accessing CiteSeer-API
As illustrated in Figure 1, CiteSeer-API offers a new interface to
CiteSeer servers which is complementary to the regular Web-
interface and the OAI-PMH interface. The CiteSeer-API service,
which is also HTTP based, is advertised through its WSDL
description. The WSDL schema was intentionally kept simple to
ensure compatibility with most WSDL toolkits and users are

557

expected to generate access stubs based on the current WSDL
description.

Figure 1: Protocols Stack for CiteSeer servers

5. CITESEER-API SUPPORT FOR
INTERLINKING

As motivated in section 2, CiteSeer-API needs additional
functionalities than the standard ones for search and retrieval
presented in the previous section in order to facilitate the location
of its resources and therefore to allow interoperation and
interlinking with heterogeneous distributed services. In this
section we focus on the API functionalities that allow for dynamic
lightweight interlinking of DL systems with CiteSeer services.
The interlinking functionalities provided through the API allow to
determine document URIs based on either a reference entry for the
document or a checksum of the actual document files. We discuss
how such functionalities can be taken advantage of by third-party
digital library systems and CiteSeer services themselves in order
to achieve higher – autonomous – interlinkage between those
services.

5.1. Bibliography Lookup Service
We introduce a bibliography lookup method for CiteSeer-API that
extends the range of services provided by CiteSeer servers. The
bibliography lookup method provides access to CiteSeer’s
functionality for citation parsing and corresponding paper
identification. If so far this functionality has been exclusively used
internally by the CiteSeer software to process bibliographical
entries, and identify cited papers, we believe that, as Web-
services, this is an extremely relevant functionality to be provided
by CiteSeer servers since this is the elementary feature on which
they rely. By turning the citation analysis into a service we seek to
allow online use of CiteSeer’s algorithms, hence enabling
arbitrary clients to integrate CiteSeer functionalities into their own
applications.

The bibliography lookup method is named lookupBibliography
and works as follows. Client agents send a raw bibliographical
entry (simple string) to the service (Figure 2). In response the
service returns a flag indicating whether the bibliographical entry
is known, and if it is, an RDF statement with Dublin Core
properties for the corresponding document (as identified by its
Document Resource URI, c.f. section 3.2).

Figure 2: CiteSeer-API's bibliography lookup service
Future versions of this functionality will allow users to specify
which citation parsing algorithm they want the CiteSeer service to
use. Currently only the standard parsing algorithm used by
CiteSeer [16] is available. We are also considering extensions to
this functionality that would allow clients to obtain the canonical
form of the bibliographical entry they lookup.

5.2. Digital Signature Lookup Service
In line with our attempt to create resource URIs that are system
independent (Section 3.3) we introduce a digital signature lookup
method for CiteSeer-API that allows for direct interoperation
between heterogeneous digital library systems. Using this
functionality, an arbitrary agent can locate a digital resource based
on its digital signature(s). Based on our previous discussion
(Section 2), we consider such functionality a basic block for
seamless interoperation and interlinking between digital library
systems.

The digital signature lookup method is named
lookupDigitalSignature and works as follows. Client agents send
a digital signature string (encoded as proposed in Table 2) to the
service (Figure 3). In response the service returns, similarly to the
bibliography lookup method, a flag indicating whether the digital
object is known, and if it is, an RDF statement with Dublin Core
properties for the corresponding resource (as identified by its
Document/Citation Resource URI, c.f. section 3.2).

Figure 3: CiteSeer-API's digital signature lookup
service

558

5.3. A Simple Semantic Framework
We finally provide a simple semantic framework for digital
objects, digital signatures and citation relationships between
digital objects. This framework demontrates the possibility of
addressing the semantic description of digital library services
using a bottom-up approach, which we believe is the well suited
for a “machine friendly “ integration of these services. We
envision this framework as the corner stone for the introduction of
digital library systems into the Semantic Web.

We declare three fundamental OWL classes [21] that allow us to
manipulate the concepts discussed in the previous sections.

<owl:Class rdf:ID="DigitalEntity"/>
<owl:Class rdf:ID="DigitalSignature"/>
<owl:Class rdf:ID="DigitalSignatureAlgorithm"/>
The DigitalSignature class presents two properties for defining
which DigitalSignatureAlgorithm is used and the actual value
taken for that algorithm.

<owl:ObjectProperty
 rdf:ID="forDigitalSignatureAlgorithm">
 <rdfs:domain
 rdf:resource="#DigitalSignature"/>
 <rdfs:range
 rdf:resource="#DigitalSignatureAlgorithm"/>
</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="value">
 <rdfs:range rdf:resource=
 "http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain
 rdf:resource="#DigitalSignature"/>
</owl:DatatypeProperty>

The relationship between a digital entity and one of its digital
signatures is expressed below.

<owl:ObjectProperty rdf:ID="hasSignature">
 <rdfs:range
 rdf:resource="#DigitalSignature"/>
 <rdfs:domain
 rdf:resource="#DigitalEntity"/>
</owl:ObjectProperty>
Finally the relationship induced by citations is expressed as:

<owl:ObjectProperty rdf:ID="references">
 <rdfs:domain
 rdf:resource="#DigitalSignature"/>
 <rdfs:range
 rdf:resource="#DigitalSignature"/>
 <owl:inverseOf
 rdf:resource="#referencedBy"/>
</owl:ObjectProperty>
This semantic layer is intended to be further integrated with
OWL-S [22] service description in order to enable seamless
discovery and activation of CiteSeer-API.

6. USAGE SCENARIOS
In this section we envision the range of applications that can take
advantage of the functionalities offered by CiteSeer-API.

6.1. Alternative User Interfaces to CiteSeer
Since its release, many research projects have created alternative
interfaces to the CiteSeer.org Web-site in order to gain access to

its document and metadata database or to provide alternative
visualization of the citation-based relationships it maintains
[2,6,11,18,24]. These projects all have in common the fact that
wrappers around the traditional Web-interface had to be
developed in order to make use of the data available from the
CiteSeer server. We believe that CiteSeer-API will simplify such
tasks by facilitating the integration of CiteSeer services in third
party applications. CiteSeer-API is also a valuable tool towards
the fast prototyping of new features for CiteSeer’s Web-interface.

6.2. Interlinking Heterogeneous Digital Libraries
With OAI-PMH, heterogeneous DL systems are brought into
cooperation via higher-level aggregators that make abstraction of
the fundamental incompatibilities between those systems. Using
CiteSeer-API and its functionalities for bibliography lookup and
digital signature lookup, arbitrary clients can now directly
determine a link to a specific resource hosted by a given CiteSeer-
service. A direct application to such functionalities is the
interlinking of digital library systems. In the specific case of
interlinking CiteSeer-servers, each server can, using the CiteSeer-
API interface to the server it wishes to interlink to, perform a
lookup for each bibliographical entry known to it but for which
the actual document is unavailable. Upon availability of the
corresponding document, an external link to the document on the
hosting server can be dynamically generated and incorporated in
the response to a user query, hence overcoming the inherent
incompatibility of indexing between any pair of CiteSeer servers.
A practical example of this functionality is for eBizSearch - a
niche search engine for e-Business publications - [12, 23] to
attempt to link to CiteSeer.org [4, 5] for each reference to a pure
Computer Science publication. Similarly eBizSearch would
attempt to link to SMEALSearch [27] for each reference to a pure
Business publication. We currently work on an extension of the
Web-interfaces for CiteSeer servers that would take advantage of
these functionalities. In the case of interlinking arbitrary
heterogeneous digital library systems the bibliography lookup
service of CiteSeer-API can be used in a similar fashion to
accurately locate resources on any given CiteSeer server.
Alternatively, the digital signature lookup functionality of
CiteSeer-API can be used to achieve cross-DL compatibility, and
allow digital library systems that don’t use textual citation
information to interlink with CiteSeer servers.

6.3. Soft-Mirroring of Digital Libraries
A current issue with CiteSeer is that of its expansion and
synchronization with its mirrors. CiteSeer is currently mirrored at
the School of Information Science and Technology at the
Pennsylvania State University, and it is expected that mirrors will
be maintained at several other research institutions, raising the
issue of dealing with management variations from one mirror to
another and with the main CiteSeer server itself. A possible
variation from one mirror to another is the use of different
software versions of the CiteSeer package that will in essence
results in variations in the automatically generated metadata
database. Another plausible variation is in the crawling policy of
each institution towards the extension of their document
collection, which ultimately results in different document
collections being maintained at each mirror location. In this
context it is desirable to come up with a mirroring policy that
preserves the software and/or policy differences between mirrors
while maintaining the document collections – i.e. documents

559

repositories, but not necessarily the metadata databases -
synchronized. We call this approach soft-mirroring by opposition
to mirroring in the traditional sense where databases are
synchronized regardless of the data/metadata distinction. Note
however that a special case is the synchronization of user-
corrected metadata items. CiteSeer-API enables the use of digital
signatures to identify CiteSeer hosted resources, hence based on
CiteSeer-API it is possible to compute the difference between any
two document collections and to update a slave collection on a
document-by-document basis. Whether documents are to be fully
reprocessed on the slave mirror or whether pregenerated metadata
is acceptable is however dependent on the mirror update policy.

6.4. Versioning Control
The digital signature functionalities introduced in CiteSeer-API
could be used in versioning control applications for digital
libraries. Certain digital library systems have the capacity of
identifying resource duplicates even when these are not exact
binary/file duplicates. For instance the CiteSeer software manages
document duplicates not only on the basis of identical digital
signatures but also using a sentence-based text-similarity approach
[17] that allows it to discard alternative version of the same
document with content similar beyond 99%. Based on this
capacity, classes of equivalent digital signatures can be maintained
by digital libraries. The class representative(s) of each class can
then be set to be the resource “official” version, which becomes
the only version allowed for dissemination. This scheme is
extremely relevant in digital library systems that collect
unauthenticated materials and where copyright infringement
issues must be addressed.

7. RELATED AND FUTURE WORK
The OAI-PMH protocols for metadata harvesting, although
providing a standard set of properties for describing digital library
resources, do not address the practical issue of digital libraries
resource location. SRW, the Search/Retrieve Web Service
standard [29], supports functionalities that resemble that of
CiteSeer-API however SRW is geared toward standard access to –
arbitrary – databases, and therefore does not take into account the
specific task of digital libraries which is to manage actual digital
entities that are best represented and manipulated using intrinsic
digital signatures.

While several Web sites currently provide access to
bibliographical databases [1,8,9], we are not aware of any efforts
towards enabling machine-based access to these databases.
Several closely related efforts currently attempt to establish a
standard Digital Library and Information Retrieval platform on the
World Wide Web. The most active efforts in this domain are
certainly those from DSpace Federation [31] and Fedora [32].
Both support the OAI-PMH protocols for metadata distribution.
Although Fedora provides management and access APIs, these
systems have limited support for seamless interoperability and
seamless integration with heterogeneous systems. With specific
functionalities for bibliographical entry lookup, CiteSeer-API lets
arbitrary clients and digital library systems locate CiteSeer-hosted
resources and interlink with these resources.

To fully leverage the functionalities of CiteSeer-API, it is
desirable to bring it into the context of the Semantic Web.
CiteSeer-API is described using WSDL. Although this allows for
the automatic generation of code stubs to programmatically access

the CiteSeer services, the WSDL description does not carry the
semantics of the underlying service. In Section 5.3 we presented a
simple OWL-based semantic framework that constitute the first
step toward the semantic integration of CiteSeer-API’s
functionalities for cross-DL interoperation. We want to pursue the
integration of CiteSeer-API by further developing Web ontologies
that further describe digital content, digital signatures, and
associated applications. As discussed earlier, such ontologies are
potentially a good common basis for natural interaction and
interlinking between digital library systems. Finally in order to
allow the seamless discovery and integration of CiteSeer-API
services on the Semantic Web, the creation of OWL-S [22] service
descriptions is necessary. These service descriptions will exploit
the OWL ontologies for digital resources that have been discussed
in Section 5.3.

8. CONCLUSIONS
We introduced CiteSeer-API, a SOAP/WSDL-based API to
CiteSeer-like services. CiteSeer-API was designed not only to
allow interactions between CiteSeer-like services but also with
other DL systems. In this regard, the choice of resource identifiers
that stem from the resources themselves is fundamental to ensure
the interoperability of CiteSeer services with arbitrary
heterogeneous DL systems. CiteSeer-API uses digital signatures
as resource handlers. By doing so the internal complexity of
CiteSeer servers is hidden from client agents. While CiteSeer-API
turns CiteSeer-like niche search engines into actual Web-services,
it still requires developers to have an understanding of the service
in order to make use of it. We presented a simple semantic
framework that readily allows for the description of CiteSeer-
API’s functionalities on the Semantic Web. The addition of
semantic service description to CiteSeer-API using OWL-S will
enable automated agents to discover, register and seamlessly
exploit CiteSeer-like services. We encourage research groups to
take advantage in their own projects of the functionalities and data
available through CiteSeer-API.

9. ACKNOWLEDGEMENTS
We acknowledge partial support from NSF and from the
eBusiness Research Center at the Pennsylvania State University.
We also wish to thank Dr. Steve Lawrence and Isaac Councill for
their contributions to this work.

10. REFERENCES
[1]: ACM Portal, http://portal.acm.org/portal.cfm

[2]: M. Bawa, G.S. Manku, P. Raghavan, “SETS: search enhanced
by topic segmentation”, in Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2003), pp 306-313,
2003.

[3]: CiteSeer-API, http://citeseer.ist.psu.edu/api/

[4]: CiteSeer.IST, http://citeseer.ist.psu.edu/

[5]: CiteSeer, http://www.citeseer.org.

[6]: CiteSeer Relator, http://www.pmbrowser.info/citeseer.php

[7]: Crespo, A.; Garcia-Molina, H.. “Archival Storage for Digital
Libraries”, in Proceeding of the 3rd ACM Conference on Digital

560

Libraries (DL’98), pp. 69-78, Pittsburgh, PA, USA, June 23-26,
1998.

[8]: The Collection of Computer Science Bibliographies,
http://liinwww.ira.uka.de/bibliography/index.html

[9]: DBLP, http://dblp.uni-trier.de/

[10]: Dublin Core Metada Initiative, http://dublincore.org/

[11]: A. Doan, Y. Lu, Y. Lee, and J. Han, “Object Matching for
Data Integration: A Profile-Based Approach”, in Proceedings of
the IJCAI-03 Workshop on Information Integration on the Web,
pp. 53-58, Acapulco, Mexico, August 9-10, 2003.

[12]: eBizSearch, http://www.ebizsearch.org.

[13]: C.L. Giles, K. Bollacker, S. Lawrence, “CiteSeer: An
Automatic Citation Indexing System”, in Proceedings of the 3rd
ACM Conference on Digital Libraries (DL’98), pp 89-98,
Pittsburgh, PA, USA, June 23-26, 1998.

[14]: J. Heflin, and J. Hendler, “Searching the Web with SHOE”.
in Artificial Intelligence for Web Search. Papers from the AAAI
Workshop. WS-00-01. AAAI Press, Menlo Park, CA, 2000. pp.
35-40

[15]: HomepageSearch, http://hpsearch.uni-trier.de/

[16]: S. Lawrence, K. Bollacker, C.L. Giles, “Distributed Error
Correction”, in Proceedings of the 4th ACM Conference on Digital
Libraries, pp. 232, Berkeley, CA, USA, August 11-14, 1999.

[17]: S. Lawrence, K. Bollacker and C.L. Giles, "Indexing and
Retrieval of Scientific Literature", in Proceedings of the Eighth
International Conference on Information and Knowledge
Management (CIKM 99), pp 139-146, Kansas City, Missouri,
November 2-6, 1999.

[18]: Q. Lu, L. Getoor, “Link-based Classification”, in
Proceedings of the 20th International Conference of Machine
Learning (ICML 2003), Washington, DC, USA, pp 496-503,
2003.

[19]: F. Lu, T. Johnsten, V. Raghavan and D. Traylor, “Enhancing
Internet Search Engines to Achieve Concept-based Retrieval”, in
Proceeding of Inforum'99, Oakridge, TN, USA, May 1999.

[20]: “The Open Archives Initiative Protocol for Metadata
Harvesting”,
http://www.openarchives.org/OAI/openarchivesprotocol.htm.

[21]: OWL Web Ontology Language Reference,
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

[22]: OWL-S , http://www.daml.org/services/owl-s/1.0/

[23]: Y. Petinot, P.B. Teregowda, H. Han, C.L. Giles, S.
Lawrence, A. Rangaswamy and N. Pal, “eBizSearch: an OAI-
Compliant Digital Library for eBusiness”, in Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries (JCDL 2003),
pp 199-209, Houston (TX), May 2003.

[24]: A. Popescul, L.H. Ungar, S. Lawrence, D.M. Pennock,
“Statistical Relational Learning for Document Mining”, in
Proceedings of the 3rd IEEE International Conference on Data
Mining (ICDM 2003), pp 275-282, 2003.

[25]: Resource Description Framework, http://www.w3.org/RDF/

[26]: FIPS 180-1, “Secure Hash Standard”, NIST, US Department
of Commerce, Washington D.C., Apr. 1995.

[27]: SMEALSearch, http://smealsearch.psu.edu

[28]: Simple Object Access Protocol, http://www.w3.org/TR/soap/

[29]: SRW – Search Retrieve Web Service,
http://lcweb.loc.gov/z3950/agency/zing/srw/

[30]: Web Service Description Language,
http://www.w3.org/TR/wsdl

[31]: DSpace Federation, http://www.dspace.org/

[32]: Fedora, http://www.fedora.info/

[33]: Yves Petinot, C. Lee Giles, Vivek Bhatnagar, Pradeep B.
Teregowda, Hui Han, "Enabling Interoperability For Autonomous
Digital Libraries : An API To CiteSeer Services" , in Proceedings
of the 4th ACM/IEEE Joint Conference on Digital Libraries (JCDL
2004), pp. 372-373, Tucson (AZ), June 2004.

[34]: The Digital Object Identifier System, http://www.doi.org/.

[35]: The OpenURL Framework for Context-Sensitive Services,
http://www.niso.org/committees/committee_ax.html

561

