How Communication Can Improve the Performance of
Multi-Agent Systems *

Kam-Chuen JimT
NEC Research Institute, Inc.
4 Independence Way
Princeton, NJ, 08540

kamjim@research.nj.nec.com

ABSTRACT

We analyze a general model of multi-agent communication
in which all agents learn to communicate simultaneously to
a message board. We show that the communicating multi-
agent system is equivalent to a Mealy finite state machine
whose states are determined by the agents’ usage of the
learned language. Increasing the language size increases the
number of possible states in the Mealy machine, and can
improve the performance of the multi-agent system. We de-
scribe a method for incrementally increasing the language
size which results in an efficient coarse-to-fine search that
significantly reduces the time required to learn an effective
language. We introduce the term semantic density to de-
scribe the average number of meanings assigned to each word
of a language. Using semantic density, a simple rule is pre-
sented that provides a pessimistic estimate of the minimum
language size that should be used for any multi-agent prob-
lem in which the agents communicate simultaneously. Sim-
ulations on a version of the predator-prey pursuit problem,
a simplified version of problems seen in warfare scenarios,
validate these predictions. The communicating predators
evolved using a genetic algorithm perform significantly bet-
ter than all previous work on similar preys.

Keywords

multi-agent communication/collaboration, agent communi-
cation languages, multi-agent simulation, evolution of agents

*A much longer version of this manuscript has been accepted
in Artificial Life, MIT Press.

JrAlso with Physiome Sciences, Inc., 307 College Road East,
Princeton, NJ, 08540

iAlso with NEC Research Institute, Inc., Princeton, NJ
08540

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

C. Lee Gilesi
School of Information Sciences & Technology
and Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16801

giles@ist.psu.edu

1. INTRODUCTION

Allowing agents to communicate and to learn what to
communicate can significantly improve the flexibility and
adaptiveness of a multi-agent system. This paper studies
an ideal case where each agent has access to a small set
of local information and through experience learns to com-
municate only the additional information that is important.
While many researchers have shown the emergence of bene-
ficial communication in multi-agent systems, very few have
looked into how communication effects the behavior or rep-
resentational power of the multi-agent system. The results
of this paper contribute further to this area by looking at
the relationship between the communication behavior of a
multi-agent system and the finite state machine that com-
pletely describes this behavior. With this knowledge we can
better understand how communication increases the repre-
sentational power of a multi-agent system.

1.1 Previous Work

The role of communication in multi-agent systems remains
one of the most important open issues in multi-agent sys-
tem design. Previous work has shown that beneficial com-
munication can emerge in a multi-agent system. Ackley and
Littman [1] show that agents can evolve to communicate
altruistically in a track world even when doing so provides
no immediate benefit to the individual. MacLennan and
Burghardt [10] use genetic algorithms to evolve finite state
machines that cooperate by communicating in a simple ab-
stract world. Walker and Wooldridge [15] study the emer-
gence of conventions in multi-agent systems as a function
of various hard-coded strategy update functions, including
update functions where agents communicate to exchange
memories of observed strategies by other agents. Luc Steels
[12] show that vocabulary can evolve through the princi-
ple of self-organization. A set of agents create their own
vocabulary in a random manner, yet self-organization oc-
curs because the agents are coupled in the sense that they
must conform to a common vocabulary in order to cooper-
ate through communication. Saunders and Pollack [11] al-
low agents to communicate real-valued signals through con-
tinuous communication channels and show it was possible
to evolve agents that communicate the presence of food in
a food trail-following task. Balch and Arkin [2] assigned
robot agents to 3 tasks (foraging, consuming, and grazing)
and showed that communication significantly improves per-

formance on tasks with little environmental communication,
and that more complex communication strategies provide
little or no benefit over low-level communication.

While many researchers have shown the emergence of ben-
eficial communication, very few have analyzed the nature
of the communication and how communication effects the
behavior or representational power of the multi-agent sys-
tem. Gmytrasiewicz and Durfee developed a “Recursive
Modeling Method” to represent an agent’s state of knowl-
edge about the world and the other agents in the world [4].
Furthermore, Gmytrasiewicz, Durfee, and Rosenchein used
this framework to compute the expected utility of various
speech acts by looking at the transformation the speech act
induces on the agents’ state of knowledge. Hasida et. al. [6]
show that with certain assumptions, communication can be
treated as an n-person game, and the optimal encoding of
content by messages is obtained as an equilibrium maximiz-
ing the sum of the receiver’s and speaker’s expected utilities.

2. THE PREDATOR PREY PROBLEM

The predator-prey pursuit problem is used in this paper
because it is a general and well-studied multi-agent problem
that still has not been solved, and it is a simplied version
of problems seen in numerous applications such as warfare
scenarios and computer games. The predator-prey pursuit
problem was introduced by Benda et. al. [3] and comprised
four predator agents whose goal is to capture a prey agent
by surrounding it on four sides in a grid-world. Haynes
and Sen [7] used genetic programming to evolve predator
strategies and showed that a linear prey (pick a random di-
rection and continue in that direction for the rest of the
trial) was impossible to capture reliably in their experi-
ments because the linear prey avoids locality of movement.
Korf [9] studied a version of the predator prey problem in
which the predators were allowed to move diagonally as well
as orthogonally and the prey moved randomly. Tan [14]
used reinforcement learning and showed that cooperating
agents that share sensations and learned policies amongst
each other significantly outperforms non-cooperating agents
in a version of the predator-prey problem. Stephens and
Merx [13] study a simple non-communicating predator strat-
egy in which predators move to the closest capture position,
and show that this strategy is not very successful because
predators can block each other by trying to move to the same
capture position. Stephens and Merx also present another
strategy in which 3 predators transmit all their sensory in-
formation to one central predator agent who decides where
all predators should move. This central single-agent strat-
egy succeeds for 30 test cases, but perhaps the success rate
would be much lower if the agents were to move simultane-
ously instead of taking turns.

This paper uses an implementation which is probably more
difficult for the predators than in all previous work:

1. In our configuration, all agents are allowed to move in
only four orthogonal directions. The predators cannot
take shortcuts by moving diagonally to the prey, as
they do in [9].

2. All agents have the same speed. The predators do
not move faster than the prey, nor do they move more
often than the prey, as they do in [7].

3. All agents move simultaneously. Because the agents

do not take turns moving (e.g. [13]) there is some
uncertainty in anticipating the result of each move. In
addition, moving the agents concurrently introduces
many potential conflicts, e.g. two or more agents may
try to move to the same square.

4. The predators cannot see each other and do not know
each other’s location. If this information is essential
then the predators will have to evolve a language that
can represent such information.

The world is a two dimensional torus discretized into a
30x30 grid. If an agent runs off the left edge of the grid it
would reappear on the right edge of the grid, and a similar
behavior would be observed vertically. No two agents are
allowed to occupy the same cell at the same time, and agents
cannot move through each other. If two or more agents try
to move to the same square they are blocked and remain in
their current positions. At the beginning of each scenario
the agents are randomly placed on different squares. Each
scenario continues until either the prey is captured, or until
5000 time steps have occurred without a capture.

Two prey strategies are used in the simulations. The Ran-
dom Prey chooses it’s next action at each time step from the
set N, S, E; W using a uniform random distribution. The
Linear Prey picks a random direction at the beginning of
a trial and continues in that direction for the duration of
the scenario. It has been shown that the Linear Prey can
be a difficult prey to capture [12], [7] because it does not
stay localized in an area. In our simulations this is an even
more difficult prey to capture because the prey and preda-
tors move at the same speed.

3. COMMUNICATION

This paper studies a simple framework in which all preda-
tor agents communicate simultaneously to a message board.
See Figure 1. At every iteration, each predator agent speaks
a string of symbols from a binary alphabet {0,1}. The com-
municated symbols are placed on the message board. Each
agent then reads all the strings communicated by all the
predator agents and determines the next move and what to
say next. The strings are restricted to have equal length [.
We vary the length [of the strings and study the effect on
performance.

3.1 Equivalence to a Finite State Machine

This type of communication may be represented as shown
in Figure 1, where {A,,} is the set of homogenous predator
agents, {On, } are the actions of the predators, and {Inn} is
the set of environmental inputs, where n is the number of
inputs and m is the number of communicating agents. The
message board can be interpreted as a set of state nodes.

The entire set of agents can be viewed as one finite state
machine (FSM) with the set of possible states specified by
the state nodes {S,.}. The whole multi-agent system is
equivalent to a finite state automaton with output, other-
wise known as a finite state transducer. One type of finite
state transducer is the Mealy finite state machine, in which
the output depends on both the state of the machine and its
inputs. A Mealy machine can be characterized by a quin-
tuple M = (3,Q, Z,06,\), where X is a finite non-empty set
of input symbols, () is a finite non-empty set of states, Z
is a finite non-empty set of output symbols, § is a “next-

Actions (N, 8, E, W)

0 0 0, 0

bk,

Message Board Environment Input

Figure 1: Multi-Agent Communication as a single
Finite State Machine. [is the length of the commu-
nication strings.

state” function which maps @) x X — @), and A is an output
function which maps Q x ¥ — Z.

It is easy to show that the multi-agent system is a Mealy
machine by describing the multi-agent system in terms of
the quintuple M. The input set X is obtained from the set
{IooLo1... JonI10011...I;mpn } of all possible concatenated sen-
sor readings for the predator agents (for all possible val-
ues of I). A description of the sensor readings is provided
later in this paper. The states) are represented by con-
catenation of all symbols in the message board. Since the
communication strings comprise binary symbols {0, 1}, the
maximum number of states Nsiqtes in the Mealy machine
is therefore determined by the number of communicating
agents m and by the length [of the communication strings:
Nitates = 2!™. The output set Z is obtained from the set
{000001..00p010011...Omp } of all possible concatenated ac-
tions for all the communicating agents, where p is the num-
ber of bits required to encode the possible actions for each
agent (for all possible values of O). In the general case
where the actions do not have to be encoded as binary bits,
the output set is simply the set {O0O;1...0n } of all possible
concatenated actions for the m communicating agents. The
next state function ¢ and output function A\ are determined
by the agents’ action and communication policies. The poli-
cies themselves may be FSMs or something with even more
representational power, in such a case the multi-agent FSM
is a hierarchical FSM.

3.2 Communication Can Help in Partially Ob-
servable Environments

When an agent’s next optimal action depends on infor-
mation that is hidden from an agent’s sensors it suffers from
the hidden state problem. Figure 2 shows an example of
a typical hidden state problem that is very common in our
predator-prey simulations. In this figure, predator 1 sees the
same sensory information for two different scenarios due to
the fact that predators cannot sense each other directly. In
scenario a, predator 1 attempts to move South but is blocked
by predator O in its path, while in scenario b predator 1 is

ld 1,
O

P P
a b

Figure 2: An example hidden state problem. Preda-
tor 1 sees the same sensory information for both sce-
narios a and b because the predators cannot sense
each others’ locations.

attempting to move South and is not blocked.

Communication allows agents to “tell” each other envi-
ronmental information that may have been observable only
to a subset of the agents. Obviously, communication will be
of little use in this respect in the limit when the same set of
information is observable to all agents, but this is probably
not the usual case; e.g. an individual agent will usually have
its own internal state that is not observable by other agents.
If an agent’s state helps determine its behavior, communica-
tion may be instrumental in allowing the agents to converge
on an optimal plan of action.

4. EXPERIMENTAL SETUP

A genetic algorithm is used to evolve predators that com-
municate. A set of experiments is performed with communi-
cation strings of varying length I. As the length [increases,
the number of strings that are available for communicative
acts increases exponentially.

In the sections that follow, GA predators are labeled as
“GaPredator(l)”, where [is the length of the communica-
tion strings. A communication string of length zero means
the predators are not communicating. The performance of
grown predators (see Section 4.2 below) is also compared.
These predators are labeled as “GaPredator(lo — [1)”, where
lo is the string length before the agent is grown, and [; is
the length it was grown to.

Separate populations of GaPredator(0), GaPredator(1),
GaPredator(2), GaPredator(0 — 1), and GaPredator(l —
2) predators are matched against the Random and Linear
preys. The initial GaPredator(0 — 1) population is grown
from the GaPredator(0) population with the best average
fitness, and similarly the initial GaPredator(1 — 2) popula-
tion is grown from the GaPredator(0 — 1) population with
the best average fitness.

4.1 Encoding Predator Strategies

The behavior of each evolved predator is represented by a
binary chromosome string. The length ¢ of the chromosome
string is a function of the number of possible states Ngtqtes
observable by the predator based on its sensory information,
and the number of actions buctions-

The sensory information available to the predators com-
prise the range and bearing of the prey, and the contents of
the message board. The range and bearing are discretized
into Nrange = 4 and Npcaring = 8 sectors. The predators
can detect when the prey is 0, 1, 2, and 3+ cells away, mea-
sured in terms of Manhattan distance. Note that ranges

of 3 or more cells away are lumped under the same sector.
The bearing of the prey from the predator is discretized
into 8 equal sectors similar to the slices of a pizza pie. The
number of symbols on the message board is ml, where m
is the number of predator agents. The message board can
have Nyessages = g possible messages. The total num-
ber of states that can be sensed by a predator is therefore
Nstates = rangerearingNmessages~ The actions Comprise
the moves {N, S, E,W}, and speaking a string of length [
at each iteration.. The number of binary bits required to
represent the 4 moves are by,,0ves = 2. Thus, the total num-
ber of action bits is bactions = bmoves + 1 . We arrive at
the following equation for the chromosome length ¢y, of a
GA predator that communicates with strings of length [in
a team of m predators:

Cml = bactionsttthes
Cml = (bmoves + Z)Nrangerearing2ml (1)

so the chromosome length increases exponentially with com-
munication string length ! and number of agents m.

4.2 Growing GA Predators - Coarse to fine
search

To improve efficiency, it would be useful to grow the preda-
tors. Growing means taking a population of predators that
have already evolved a language from a set of possible strings,
and evolving them further after increasing the set of possi-
ble strings they are allowed to communicate. This re-uses
the knowledge acquired by predators that were limited to a
smaller language. This is effectively a coarse-to-fine search;
as we increase the search space by increasing the number
of possible strings, the agents can refine the language and
communicate other useful, but possibly less critical, infor-
mation.

By growing the language in these experiments we are mak-
ing it adaptive. Luc Steels [12] defines an adaptive language
as one that “expands or changes in order to cope with new
meanings that have to be expressed.”

When a population of GA predators with chromosome
length c,,; is grown to a length of ¢,,(;41), each new chromo-
some is encoded such that the behavior of the new predator
is initially identical to that of the chromosome it was grown
from. The portions of the larger chromosome that are new
are not visited initially because the predator is making ex-
actly the same decisions as before and will therefore see the
same set of sensory states. During the evolutionary process
new sensory states will be visited and the agent will evolve
accordingly.

In addition, the population size of the grown ¢, ;1) preda-
tors is always twice the population size of the ¢,,; predators
they were grown from. Half of the population of cp,41)
predators are grown from the c,,; predators, the other half
are generated randomly. In this manner the grown predators
don’t rely solely on mutation for introducing new genetic
material to the genes that were copied from the predators
with chromosome length c,,;. They can obtain new genetic
material through crossover with the randomly generated in-
dividuals.

4.3 tEvaluating the Fitness of Evolved Preda-
ors

The fitness of each evolved strategy is determined by test-
ing it on 100 randomly generated scenarios with different

starting locations for the predator and prey agents. The
maximum number of cycles per scenario is 5000, after which
the predators are considered to have failed. Since the initial
population is randomly generated, it is very unlikely that
the first few generations will be able to capture the prey.
We attempt to speed up the evolution of fit strategies by re-
warding those strategies that at least stay near the prey and
are able to block the prey’s path. The fitness f; of individ-
ual 7 is computed at the end of each generation as follows,
where Npmax = 5000 is the maximum number of cycles per
scenario, T' = 100 is the total number of scenarios for each
individual, and n. is the number of captures:
oIfnc=0,f¢=m
erage distance of the all 4 predators from the prey
during the scenarios, and ny is the cumulative number
of cycles that the prey’s movement was blocked by an
adjacent predator during 7' scenarios. The fitness of
non-capture strategies can never be greater than 1.

where dgvg is the av-

e If0<n.<T, fi =me.

e Ifn. =T, fi =T + %% where ¢; is the number of
2ty
j=0

cycles required to capture the prey at scenario j.

4.4 GA Setup

The following GA parameters were found experimentally
to be most effective. We use 2-point crossover with a crossover
probability of 0.4. The idea behind multi-point crossover is
that parts of the chromosome that contribute to the fit be-
havior of an individual may not be in adjacent substrings.
Also, the disruptive nature of multi-point crossover may re-
sult in a more robust search by encouraging exploration of
the search space rather than early convergence to highly fit
individuals. For a discussion of 2-point crossover and gener-
alized multi-point crossover schemes see [8]. A Tournament
selection scheme [5] with a tournament size Tour of 5 is used
to select the parents at each generation. In Tournament se-
lection, T'our individuals are chosen randomly from the pop-
ulation and the best individual from this group is selected as
a parent. This is repeated until enough parents have been
chosen to produce the required number of offsprings for the
next generation. The larger the tournament size, the greater
the selection pressure, which is the probability of the best
individual being selected compared to the average probabil-
ity of selection of all individuals. The population size p and
mutation rate depends on the length of the communication
string because the search space increases exponentially with
the communication string length. The larger search space
translates into longer chromosome lengths. As a general
rule, longer chromosome lengths warrant a larger popula-
tion size and smaller mutation rate. The population sizes
and mutation rates used in the experiments are listed in
Table 1.

10 trials are performed, with the population initialized
randomly at the beginning of each trial. The following is a
brief description of the algorithm:

1. Repeat the following for 10 trials on selected prey:

(a) Randomly generate a population of p individuals.

(b) Repeat until there is no improvement after 200
generations:

Predator Population Size | Mutation Rate
GaPredator(0) 100 0.01
GaPredator(0 — 1) | 200 0.001
GaPredator(1) 200 0.001
GaPredator(1 — 2) | 800 0.0005
GaPredator(2) 800 0.0005

Table 1: Population Size and Mutation Rate GA
parameters used in the simulations.

i. Simulate each predator strategy on 100 sce-
narios and evaluate its fitness based on the
performance on those scenarios.

ii. Select p individuals from the current popu-
lation using Tournament selection, pair them
up, and create a new population by using 2-
point crossover with mutation.

(c) The best strategy found over all generations is
used as the solution of this trial. The fitness of
this strategy is then recomputed by testing on
1000 new randomly generated scenarios.

2. The strategy that performed best over all 10 trials is
used as the solution.

5. RESULTS

Figure 3 shows the best average capture times (over 1000
randomly generated scenarios) and the cumulative number
of evolutionary generations that were needed to achieve such
capture times. If G(l) is the number of generations that a
GaPredator(l) population was evolved, and G(lg — [1) is the
number of generations that a GaPredator(lp — 1) popula-
tion was further evolved after it was grown from Iy to l1, then
the cumulative generations for the best GaPredator(0 — 1)
and GaPredator(1 — 2) populations are computed as fol-
lows:

Geumulative (0 — 1) = G(O) + G(O — 1)
chmulati’ue(l — 2) = chmulative(o —]-) + G(]- — 2)

Below is a summary of the performance and convergence
results:

e As the length of the communication string increases,
the capture time decreases. However, the best cap-
ture performance of GaPredator(1l) against the Ran-
dom prey is comparable to the best performance of
GaPredator(2) and GaPredator(l1 — 2), which indi-
cates that a communication string of length 1 was suf-
ficient against the Random prey.

e The evolutionary generations required increases with
the length of the communication string.

e The capture performance of grown predators is compa-
rable to the performance of the equivalent non-grown
predators, but requires significantly less evolution time.
Thus, incrementally increasing the language size is an
effective coarse-to-fine method which reduces the search
time.

e The evolved communicating predators perform better
than all previously published work to our knowledge.

™~

Figure 4: Finite State Machine of non-
communicating GA predators. When the predators
don’t communicate they act like a FSM with only
one state.

A previous work whose experimental setup is most
similar to our work is perhaps Haynes and Sen [7],
although their setup makes the predators’ job easier
because they are allowed to move more frequently than
the prey. Haynes and Sen and other previous work [9]
on similar preys report results as a percentage of tri-
als that lead to capture, whereas the results reported
here show 100% capture rate when the predators are
allowed to communicate.

5.1 Evolved Mealy Machines

The Mealy machines were obtained by “listening” to the
predators talking during actual trials, as opposed to analyz-
ing the predators’ GA string to determine what they would
say for each possible sensory permutation. This way we only
account for states and links on the multi-agent Mealy ma-
chine that are ever visited, and ignore states and links that
do not contribute to the behavior of the predators because
they are never visited anyway.

After obtaining the communication activity of the preda-
tors, the states of the Mealy machine are constructed by
concatenating the words spoken by all predators on the mes-
sage board. A different multi-agent state is associated with
each unique concatenation. The links represent transitions
between multi-agent states (i.e. transitions in the content
of the message board) at each time step as a result of the
inputs sensed from the environment.

Figures 4, 6, 5 and 7 show the best evolved Mealy ma-
chines for non-communicating and communicating predators
that were evolved against the Linear prey. The Mealy ma-
chines are depicted using what we call Scaled Finite State
Diagrams (SFSD). SFSDs provide more information than
standard finite state diagrams by representing the relative
importance of links and nodes in a visual manner. A Scaled
Finite State Diagram is described as follows:

e Links are combined to meta-links. A meta-link is an
aggregate of all links that connect the same two nodes
together, irrespective of their input/output pairs. This
simplifies the figures because otherwise the individual
links are so numerous that they would completely fill
all the space.

e The thickness of a meta-link indicates the number of
individual links that were combined to form the meta-
link.

o The size of a node indicates its attractiveness and sig-
nificance. This is measured by the number of incoming
links that are connected to that node. A large state
node indicates that many environmental input com-
binations from various states would move the multi-
agent system to this state.

160 700+
140 500 4
120 4 a0 4
100 4
Average Capture a0 4 Number of Al
Time Generations 300 4
G0
a0 200 4
W= =
0 : 0
Random Linear Random Linear
O GaPradaton) 10 no captures B GaPredator(d) 50 na captures
B GaPredator(1) BB 1585 B GaPredator(1) 85 310
O GaPredator(0-=1) 69 94 O GaPredator(-=1) 70 250
O GaPredator(2) 66 g2 O GaPredator(2) 460 700
B GaPredator(1-->2) B7 80 B GaPredator(]-->2) 220 405

Figure 3: Best capture times and the corresponding number of evolutionary generations required to evolve
the communicating predators against Random and Linear preys, at communication string lengths 0, 1, 2.

Figure 5: Finite State Machine of best communicat-
ing GAPredator(1) evolved against the Linear prey.
All 16 possible states are used. States 0, 2, 4, 5, 6,
and 8 are more significant than the other states.

Each node is labeled by a number, which is computed by
concatenating all the communicated words on the message
board and using the language size as the base power. The
start node is labeled “0” because at the start of each scenario
the message board is initialized to all zeroes.

Observation of the evolved Mealy machines indicate the
following:

e The start state is always very significant in the evolved
Mealy machines.

e Growing a language results in a Mealy machine with
fewer states than an evolved language that was not
grown. For example, the average number of states in
the evolved GaPredator(2) machines was 252, while for
the grown predators GaPredator(l — 2) the average
was only 87.

e The size of the Mealy machine appears to increase with
the difficulty of the problem. See Table 2. For ex-

Figure 6: Finite State Machine of best communicat-
ing GAPredator(2) evolved against the Linear prey.
All 256 possible states are used.

ample, the Mealy machines evolved against the Ran-
dom prey are smaller than the Mealy machines evolved
against the more difficult Linear prey. Also, note that
the Mealy machine for GaPredator(1 — 2) (see Figure
7) only uses 87 out of 256 possible states, which indi-
cates that increasing the language size (and thus the
number of possible states) would not improve results.

5.2 Evolved Languages

Table 3 shows an excerpt of the language evolved by the
best GaPredator(0 — 1) agents. This excerpt was obtained
by clustering the observed communication activity using the
Minimal Spanning Tree algorithm and displaying some of
the larger clusters. As an example, the first line is inter-
preted as follows: “If the prey is to the far north of me
(range of 2, bearing 2) and the message board consists of the
symbols (0,0,0,0), speak the symbol “0” and move North.”

An important observation from the evolved languages is
that it is very difficult, if not impossible, to explain the
evolved languages. Looking at Table 3, one would be hard-

Figure 7: Finite State Machine of best communicat-
ing GAPredator(l — 2) evolved against the Linear
prey. Only 87 out of 256 possible states are used,
but the start state (state 0) is much more significant.

Predator PREY

Random | Linear
GaPredator(0) 0 0
GaPredator(0 — 1) | 8 16
GaPredator(1) 12 16
GaPredator(1 — 2) | 8 87
GaPredator(2) 12 252

Table 2: Average number of states in best preda-
tors’ multi-agent Mealy machine over ten trials as a
function of prey and communication size.

pressed to say, for example, what the symbol “0” means to
the predators since there does not appear to be a pattern
to its usage. However, the evolved languages are obviously
very suitable because it allows the predators to outperform
all previous work on similar preys. We thus conclude that
allowing the agents to evolve their own communication lan-
guage is very useful, since it would have been very difficult
for a human designer to construct a similar language that
can perform as well.

Also, the evolved languages are tightly coupled with the
learning problem and cannot be re-used on a different prob-
lem. The languages are integrated with the strategies and
available actions of the agents in their environment. There-
fore, the portability of the evolved languages is dependent
on the portability of the evolved multi-agent strategies.

Input(Range/Bearing) | MessageBoard | Say | Move
2/2 0000 0 North
2/3 0010 0 West
571 0001 0 | East
1/6 1001 1 | South
1/1 1111 1 South
1/6 0111 1 West

Table 3: Excerpt of the language evolved by best

GaPredator(0 — 1) agents

5.21 Semantic Density

Let us define the semantic density of a language as the
average number of meanings assigned to each word of the
language. The semantic density J can be computed as

o=1
K

)

where «y is the total number of meanings represented by the
language, and « is the number of words in the language.
We can compute an upper bound yy on the number of
possible useful meanings that the predator agents can com-
municate by assuming that the space of useful meanings
that a predator can possibly communicate includes only the
agent’s sensory information and its next move. This as-
sumption is justified in our simulations because the agents
do not have any internal state information that need to be
communicated, and the agents’ plan of action applies only
to the current time step. Accounting for the environmen-
tal information observable for each agent and the 4 actions
(N,S,E,W) that an agent can take, we get the following equa-
tion for the upper bound on the number of useful meanings:

YU = 4NTangerearing = 128.

Yu represents the maximum number of unique meanings
that a predator agent can possibly communicate regarding
its sensory information and its next action.

Assuming that the agents use all the words available to
them, an upper bound on the semantic density of the evolved
languages in our simulations is simply

where [is the length of the binary communication string.
Effectively, 6y is the maximum average number of meanings
that need to be assigned to each word to allow for an optimal
multi-agent strategy that has access to all available local
information.

However, a tighter bound can be obtained by observing
traces of the sensory input and movements of all the preda-
tors during actual runs. We observed that in all runs the
number of words used is still k = 2!, however the number of
possible meanings vy is less than the limit 4N;ange Nocaring
because not all combinations of sensory input and actions
are experienced by the agents. In other words, the observed
upper bound on the density d;; appears to be much less than
the theoretical upper bound éy. This is illustrated in Ta-
ble 4, which shows the theoretical upper bound density du
and the average observed 47, for the best predators at each
communication string length. The interpretation of d7; is
slightly different from the interpretation of dy: whereas dy
is an upper bound that allows for an optimal strategy using
all available local information, d;; is an upper bound that
allows for the best evolved strategy observed, which may or
may not be the optimal strategy.

Our simulations verify that there is indeed heavy re-use
of symbols (or words) in the evolved languages. A sym-
bol is used differently depending on the state of the message
board. For example, the symbol “1” is used differently when
the state of the message board is 1001 versus 0111 in Table
3. Thus the evolved languages are compact and are able to
represent more concepts than the 2! possible symbols avail-
able to each agent. This re-use of words is also observed in

Predator 5U 6ZILWL6‘" 5l»=JRandom N*
GaPredator (0) 128 1

GaPredator (0 - 1) | 64 | 38 10 16
GaPredator (1) 64 | 38.5 16 16
GaPredator (1 —2) | 32 | 19.75 10 87
GaPredator (2) 32 |20 20 252

Table 4: The theoretical upper bound éy on the
meaning density and the average observed upper
bound J§;; against the Linear and Random preys. N~
is the average number of states in the evolved multi-
agent Mealy machines.

natural languages, where the same word can have different
meanings depending on the contezt in which it is used.

In the communication framework studied in this paper,
the content of the message board, or equivalently the state
of the Mealy machine; determines the context for the spo-
ken symbols. Therefore, the maximum number of contexts
per word is equivalent to the number of states in the evolved
Mealy machine, and this places a structural upper bound on
the semantic density that can be represented by the multi-
agent system. Table 4 shows that for most cases the evolved
Mealy machines can more than accommodate the upper
bounds on semantic density because the average number of
states in the Mealy machines are greater than the semantic
density upper bounds. In fact, the cases where the observed
upper bound on semantic density d;; is greater than the
number of states are exactly the cases where a larger lan-
guage improved performance in our simulations. For exam-
ple, 0;; against the Linear prey with communication strings
of length 1 is greater than the number of possible states, and
in our simulations increasing the communication length to
2 improved capture performance.

Thus, one pessimistic estimate for the minimum commu-
nication string length [is the following rule:

Increase [until Ngtqtes > 0v,

where Nytates = 2™ is the number of possible states (se-

mantic contexts) in the Mealy machine that represents the
multi-agent strategy, and m is the number of communicating
agents. The value of dy will be different for each problem,
and indeed it may be difficult to estimate in problems where
one does not know the space of local information available
to each participating agent or when the agents maintain in-
ternal state information.

6. CONCLUSIONS

A multi-agent system in which all the agents communi-
cate simultaneously is equivalent to a Mealy machine whose
states are determined by the concatenation of the strings
in the agents’ communication language. Thus, evolving a
language for this type of communicating multi-agent sys-
tem is equivalent to evolving a finite state machine to solve
the problem tackled by the multi-agent system. The sim-
ulations show that a genetic algorithm can evolve commu-
nicating predators that outperform the best evolved non-
communicating predators, and that increasing the language
size improves performance. A method is introduced for in-
crementally increasing the language size that results in a
coarse-to-fine search that significantly reduces the time re-
quired to find a solution. Furthermore, a simple rule is de-

rived for estimating the minimum language size that should
be used for any multi-agent problem.

7. REFERENCES
[1] David H. Ackley and Michael L. Littman. Altruism in

the evolution of communication. In Artificial Life IV:
Proceedings of the International Workshop on the
Synthesis and Simulation of Living Systems. MIT
Press, 1994.

[2] Tucker Balch and Ronald C. Arkin. Communication in
reactive multiagent robotic systems. Autonomous
Robots, 1(1):27-52, 1994.

[3] M. Benda, V. Jagannathan, and R. Dodhiawalla. On
optimal cooperation of knowledge sources. Technical
Report BCS-G2010-28, Boeing AI Center, Boeing
Computer Services, Bellevue, WA, August 1985.

[4] Piotr J. Gmytrasiewicz, Edmund H. Durfee, and
Jeffrey Rosenschein. Toward rational communicative
behavior. In AAAI Fall Symposium on Embodied
Language. AAAT Press, November 1995.

[5] D.E. Goldberg and K. Deb. A comparative analysis of
selection schemes used in genetic algorithms. In
Foundations of Genetic Algorithms, pages 69-93. 1991.

[6] Koiti Hasida, Katashi Nagao, and Takashi Miyata. A
game-theoretic account of collaboration in
communication. In Proceedings of the First
International Conference on Multi-Agent Systems
(ICMAS), pages 140-147. MIT Press, 1995.

[7] Thomas Haynes and Sandip Sen. Evolving behavioral
strategies in predator and prey. IJCAI-95 Workshop
on Adaptation and Learning in Multiagent Systems,
August 1995.

[8] Kenneth A. De Jong and William M. Spears. A formal
analysis of the role of multi-point crossover in genetic
algorithms. Annals of Mathematics and Artificial
Intelligence Journal, 5(1):1-26, 1992.

[9] Richard E. Korf. A simple solution to pursuit games.
In Working Papers of the 11th International
Workshop on Distributed Artificial Intelligence, pages
183-194, February 1992.

[10] Bruce J. MacLennan and Gordon M. Burghardt.
Synthetic ethology and the evolution of cooperative
communication. Adaptive Behavior, 2(2):161-188,
1993.

[11] Gregory M. Saunders and Jordan B. Pollack. The
evolution of communication schemes over continuous
channels. In From Animals to Animats 4: Proceedings
of the 4th International Conference on Simulation of
Adaptive Behavior. MIT Press, 1996.

[12] Luc Steels. Self-organizing vocabularies. In
Proceedings of Alife V, 1996.

[13] Larry M. Stephens and Matthias B. Merx. The effect
of agent control strategy on the performance of a dai
pursuit problem. In Proceedings of the 10th
International Workshop on DAI 1990.

[14] Ming Tan. Multi-agent reinforcement learning:
Independent vs. cooperative agents. In Proc. of 10th
ICML, pages 330-337, 1993.

[15] Adam Walker and Michael Wooldridge. Understanding
the emergence of conventions in multi-agent systems.
In Proceedings of the First International Conference
on Multi-Agent Systems, 1995.

