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Abstract

CiteSeerX is a digital library search engine that pro-
vides access to more than 4 million academic docu-
ments with nearly a million users and millions of hits
per day. Artificial intelligence (AI) technologies are
used in many components of CiteSeerX e.g. to accu-
rately extract metadata, intelligently crawl the web, and
ingest documents. We present key AI technologies used
in the following components: document classification
and deduplication, document and citation clustering, au-
tomatic metadata extraction and indexing, and author
disambiguation. These AI technologies have been de-
veloped by CiteSeerX group members over the past 5–6
years. We also show the usage status, payoff, develop-
ment challenges, main design concepts, and deployment
and maintenance requirements. While it is challenging
to rebuild a system like CiteSeerX from scratch, many
of these AI technologies are transferable to other digital
libraries and/or search engines.

Introduction
CiteSeerX is a digital library search engine that provides
access to over 4 million academic documents. In 1997 its
predecessor, CiteSeer, was developed at the NEC Research
Institute, Princeton, NJ. The service transitioned to the Col-
lege of Information Sciences and Technology at the Penn-
sylvania State University in 2003. Since then, the project
has been directed by C. Lee Giles. CiteSeer was the first
digital library search engine to provide autonomous cita-
tion indexing (Giles, Bollacker, and Lawrence 1998). Af-
ter serving as a public search engine for nearly eight years,
CiteSeer began to grow beyond the capabilities of its orig-
inal architecture. With new features developed, such as au-
thor and table search, CiteSeer was redesigned with a new
functional architecture1 that had enhanced searching capa-
bilities and a new name, CiteSeerXĊiteSeerX also provides
academic paper metadata, which has been used for many re-
search projects on data mining, machine learning, recom-
mendation systems, social networks, etc.

CiteSeerX is in many ways unique compared to other
academic digital libraries and search engines. It is an open

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Isaac Councill played a crucial role.

access digital library because all documents are harvested
from the public Web. This is different from arXiv, Harvard
ADS and PubMed where papers are submitted by authors or
pushed by publishers. Unlike Google Scholar and Microsoft
Academic Search where a significant portion of documents
only have metadata available, users have full text access to
all papers searchable in CiteSeerX. Instead of simply listing
papers, CiteSeerX provides automatically extracted paper
metadata and citation context, which enables users to locate
the relevant paragraphs and sentences. CiteSeerX provides
all metadata through an OAI2 service interface and on Ama-
zon S33, which is not available from Google Scholar and
only recently available from Microsoft Academic Search.
Finally, CiteSeerX performs automatic extraction and index-
ing on paper components such as tables and figures, which
is rarely seen in other academic search engines.

In addition to providing data services, CiteSeerX also pro-
vides a digital library search engine framework that can be
deployed on similar sites. This framework, called SeerSuite
(Teregowda et al. 2010), has been under active development
and applied to other digital libraries. Some components are
also available online via an API service, such as text extrac-
tion (Williams et al. 2014a).

AI techniques are used in many CiteSeerX components,
including document classification, de-duplication, automatic
metadata extraction, author disambiguation and more. Here,
we describe the AI techniques used in these components and
their performance. We also briefly discuss some AI tech-
niques that are under active development.

CiteSeerX Overview
As shown in Figure 1, CiteSeerX can be divided into a fron-
tend and a backend.

Inside the frontend, all query traffic enters through the
load balancer and is processed by the web servers. The
search index, paper metadata, and downloadable files are
hosted by the index, database, and repository servers, re-
spectively. Inside the backend, the web crawl cluster har-
vests PDF files across the Web. These files are passed to
the extraction module where text contents are extracted and
classified. Academic documents are then parsed and meta-

2Open Archive Initiative.
3Amazon charges based on usage
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Figure 1: CiteSeerX architecture.

data are extracted, such as titles, and authors. The ingestion
module writes all metadata into the database. The PDF files
are renamed under a document ID (csxDOI) and saved to
the production repository with XML metadata files. Finally,
the index data are updated. This architecture was recently
migrated from a physical cluster to a private cloud using vir-
tualization techniques (Wu et al. 2014).

CiteSeerX extensively leverages open source software
(OSS) which significantly reduces development effort. Red
Hat Enterprise Linux (RHEL) 5 and 6 are the operation sys-
tems for all servers. heartbeat-directord provides virtual IP
and load balancing services. Tomcat 7 is used for web ser-
vice deployment and on indexing servers as a servlet con-
tainer. MySQL is used as the database management system
to store metadata. Apache Solr is used for the index and the
Spring framework is extensively used by the CiteSeerX core
codebase.

Highlights of AI Technologies
Document Classification
Textual contents extracted from crawled documents are
checked by a binary filter which identifies whether they are
academic or not. The current filter uses a rule-based model,
which looks for keywords such as “references”, “bibliogra-
phy” and their variants. While this appears simple, it yields
surprisingly well with 80–90% precision and 70–80% re-
call on a manually labeled document set. The relatively
low recall is caused by academic documents not containing
any of the keywords/key-phrases, e.g., invited talks, slides,
posters etc. In some papers, such sections are called “litera-
ture cited” or “notes”. The 10–20% of false positives are due
to non-academic documents such as government reports, re-
sumes, newsletters and simply some PDF files containing
these keywords/key-phrases in their text body.

We are developing a sophisticated approach to increase
the classification recall and precision (Caragea et al. 2014b).
The approach utilizes structural features in documents to
train a model which is then used to classify documents.
We considered four types of structural features. File spe-
cific features include file size and page count. Text specific
features include document length in terms of characters,
words, lines, the average number of words/lines per page,
the reference ratio (the number of references and reference
mentions divided by the total number of tokens in a docu-
ment), the space ratio (the percentage of space characters),

the symbol ratio (the percentage of words that start with non-
alphanumeric characters), the length ratio (the length of the
shortest line divided by the longest line), the number of lines
that start with uppercase letters and with non-alphanumeric
characters. Section specific features include whether the doc-
ument has section headings such as “abstract”, “introduc-
tion” or “motivation”, “conclusions”, “acknowledgements”,
“references” or ”bibliography” and “chapter”. Containment
features are self references such as “this paper”, “this book”,
“this report”, “this thesis”, “this manual”, etc.

An evaluation of the classifier was performed using two
independently selected samples from the web crawl reposi-
tory and from the CiteSeerX production repository. The first
sample has more diverse document types than the second.
The gold standard was generated by manually labeling doc-
uments in each of the two samples, The performance was
evaluated with multiple classifiers. The results on the first
sample indicate that the Support Vector Machine (Cortes
and Vapnik 1995) achieves the highest precision (88.9%),
F-measure (85.4%) and accuracy (88.11%), followed by
the Logistic Regression classifier (Bishop 2006), which
achieves a slightly lower precision (88.0%), F-measure
(81.3%) and accuracy (87.39%). The Naı̈ve Bayes (NB)
classifier achieves the highest recall (88.6%) at the sacri-
fice of a low precision (70.3%). The second sample yields
similar results. In either sample, the classifiers based on the
structural features significantly outperform the baseline in
terms of precision, recall and accuracy4. Using Information
Gain (Mitchell 1997), we rank the most informative features.
The top three for the first sample are reference ratio, appear-
ance of “reference” or “bibliography”, and document length;
the top three for the second sample are page count, num-
ber of words, and number of characters. We are working
towards extending this binary classifier such that it is able
to classify academic documents in multiple categories such
as papers, reports, books, slides, and posters. Documents in
these categories can be aligned on topics and integrated on
the same page, which helps users retrieve information more
efficiently.

Document De-duplication and Citation Graph
In submission-based digital libraries, such as arXiv and
DBLP, duplication is rare. For a crawl-based digital li-
brary, such as CiteSeerX, document duplication is inevitable
and can be handled intelligently. Two types of duplica-
tion are considered: bitwise- and near-duplication. Bitwise-
duplicates occur in web crawling and ingestion. They are
detected by matching SHA-15 values of new documents
against the existing ones in the database. Once detected,
these documents are immediately removed.

Near-duplication (ND) refers to documents with similar
content but minor differences. A common case is authors up-
dating their downloadable PDF papers on their homepages

4An exception is the recall of the second sample. The “refer-
ence”/“bibliography” learner achieves a high recall of 94.2% sim-
ply because its parent sample was originally generated in that way.

5SHA-1 is a cryptographic hash function whose value is typi-
cally rendered as a 40 digits hexadecimal number.



with newer versions. In CiteSeerX, ND documents are not
deleted but merged into a document cluster6. In most cases,
the papers do not contain publication information, i.e., jour-
nal name, year, and page numbers, so we have to rely on title
and author information, which are seen in almost all papers.
Intuitively, ND documents can be detected if two papers
have the same title and author names. However, matching
title/author strings directly is inefficient because it is very
sensitive to the parsing results, which are often noisy.

In CiteSeerX, the ND is detected using a key mapping
algorithm. A set of keys are generated for a new docu-
ment when it is ingested. These document keys are built
by concatenating normalized author last names and normal-
ized titles. For example, for a paper with the title Focused
Crawling Optimization by Jian Wu, two keys are generated:
wu focuscrawloptimize, and wu crawloptimize. The
first key is matched against all keys in the keymap table. If
it is not found, a new cluster is created with the above two
keys, and the metadata of this paper is used as the meta-
data of the new cluster. If it matches an existing key in the
table, this paper is merged into the cluster that owns that
key. In either case, the two keys above are written into the
keymap table as cluster keys. If a paper contains multiple
authors, additional keys are generated using the second au-
thor’s last name. Note that an offset title is used in key gen-
eration, i.e., crawloptimize, in which the first word is re-
moved. These keys are used when an error in text or header
extraction causes the first word in a title to be missed. When
a citation is parsed from a paper, it is merged into a cluster
in a similar way as a document. Thus, a cluster may contain
documents, citations, or both.

An alternative to key based clustering would be a full-text
approach. In an experiment, we compared the performance
of our clustering method to a state of the art full-text based
method (Charikar 2002) that has been shown to work well
for academic documents (Williams and Giles 2013). We ran-
domly selected 12,928 clusters having two or more full text
papers. We found that only 6,766 (∼ 52%) of these clus-
ters passed the full-text based similarity filter. In many of
the failed clusters, the papers are similar but have different
lengths. On the other hand, the key mapping algorithm relies
on title and author strings. It fails when the first few words
in titles and authors are changed. Thus, full-text based meth-
ods for near duplicate detection of documents with different
lengths seem to be required.

Document clusters are modified when a user correction
occurs. When a user corrects paper metadata, it is removed
from its existing cluster and assigned to a new cluster based
on the new metadata. Should the cluster it previously be-
longed to become empty, then that cluster is deleted. The
citation graph is generated when papers are ingested. The
nodes are document clusters and each directional edge repre-
sents a citation relationship. The concept of document clus-
ter integrates papers and citations, making it more conve-
nient to perform statistical calculations, ranking and network
analysis.

6This is different from the clustering concept in data mining.

Metadata Extraction
Document metadata is extracted from textual content after
it is extracted from the PDF files. This metadata is then au-
tomatically indexed for searching, clustering and other pur-
poses. The metadata include three types: header, body and
citation. The header includes 15 fields: titles, authors, affilia-
tion, address, note, email, date, abstract, introduction, phone,
keyword, web, degree, publication number and page infor-
mation. The citation basically contains the same fields as the
header, but it has to be located and parsed by a different al-
gorithm due to its different format.

Header Extraction Header extraction is performed using
SVMHeaderParse (Han et al. 2003), which is an SVM-based
header extractor. Although regular expressions and rule-
based systems do not require any training and are in gen-
eral faster, they are largely depend on the application domain
and a set of rules or regular expressions that can only be set
by domain experts. SVMs are well known for their gener-
alization performance in handling high dimentional data. In
SVMHeaderParse, the traditional binary SVM is extended
to a multi-class classifier in the “One class versus all others”
approach. We summarize the approach below.

SVMHeaderParse first extracts features from a text file
extracted from a PDF document. The extraction is per-
formed using a rule-based, context-dependent word cluster-
ing method for word-specific feature generation, with the
rules extracted from various domain databases and text or-
thographic properties of words, e.g., capitalization. The do-
main databases include the standard Linux dictionary, Bob
Baldwin’s collection of 8441 first names and 19613 last
names, Chinese last names, US state names and Canada
province names, USA city names, country names and month
names. Additional domain databases are generated from
training data. Words and bigrams are then clustered based
on their domain database properties. Line-specific features
are also extracted including the number of words the line
contains (see Table 1).

The line classification algorithm includes two steps: in-
dependent line classification and contextual line classifica-
tion. In the Step 1, 15 classifiers (corresponding to 15 header
fields above) are trained on 15 labeled feature vector sets,
each of which is generated by collecting all feature vectors
labeled as a certain class. The goal is to classify text lines
into a single class or multiple classes. In the second step, the
classification is improved by taking advantage of the context
around a line. Specifically, the class labels of the N lines be-
fore and after the current line L are encoded as binary fea-
tures and concatenated to the feature vector of line L formed
in Step 1. A line classifier for each metatag is then trained
based on these labeled feature vectors with additional con-
textual information. Test lines are then re-classified by the
contextual classifiers, which is repeated such that, in each
iteration, the feature vector of each line is extended by in-
corporating the neighborhood label information predicted in
the previous iteration, and converges when the percentage of
lines with new class labels is lower than a threshold

We extract metadata from the classified lines. The key
is to identify information chunk boundaries. Here, we fo-
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Table 1: Word- and line-specific features.

Word-specific

email, introduction, single cap letter, postal code
abstract, keywords, URL, month name, preposition, degree

Line-specific

word#, line position, dictionary words%, date words%
non-dictionary words%, page number words%

Pairs

Word-specific Line-specific

publication number publication number%
note note words%
affiliation affiliation words%
address address words%
first cap dict. words first cap dict. words%
non dict. words first cap non dict. words%
three digit number numbers%

% are percentages of certain type of words in a line.

cus on author name extraction. While identifying chunks in
punctuation-separated multi-author lines is relatively easy,
it is challenging to identify chunks in space-separated multi-
author lines. We first generates all potential name sequences
based on some pre-defined name patterns; second, each
name sequence is then manually labeled; third, an SVM
name classifier is trained based on the labeled sample; fi-
nally, the test potential name sequences are classified and the
one with the highest score is predicted as the correct name
sequence.

Evaluations are performed using the dataset (S99) pro-
vided by Seymore et al. 1999, which contains 935 labeled
headers of computer science papers. The SVM parameters
are chosen using ten-fold cross-validation on 500 training
headers and 435 test headers. The overall accuracy is 92.9%,
which is better than the 90% reported by S99. The SVM-
based approach achieves better performances in most of the
classes compared to the Hidden Markov Model. Specifically,
the accuracies of author, affiliation, address, and publication
number classes are improved by 7%, 9%, 15%, and 35%,
respectively. Note that the evaluation above was based on
a set of high-quality extracted text files. In real situations,
the extracted metadata may be noisy if the input text files
are poorly extracted from the original PDF files. In addition,
the design of the current classifier is optimized for computer
science papers. It does not necessarily perform equally well
for other subject domains such as medical science. A gen-
eral classifier or a domain dependent multi-classifier model
is desired.

Citation Extraction CiteSeerX uses ParsCit (Councill,
Giles, and Kan 2008) for citation extraction, which is an
implementation of a reference string parsing package. The
core of ParsCit is a conditional random field (CRF7; Laf-
ferty et al. 2001) model used to label the token sequences in

7https://code.google.com/p/crfpp/

the reference strings. This core was wrapped by a heuristic
model with added functionality to identify reference strings
from plain text files and to retrieve the citation contexts. We
summarize the learning model of ParsCit below.

In the reference section of a paper, each reference string
R can be viewed as a set of fields (e.g., author, title, year)
with punctuations or spaces as delimiters. We break down
R into a sequence of tokens r1, · · · , rn, each of which is
assigned a label from a set of classes c1, · · · , cm. To classify
a token ri, we can make use of any information derived from
R including previous classification results for r1, · · · , ri−1.
Example training features are listed in Table 2.

Table 2: Examples of features in ParsCit training.

Token identity: lowercased, lowercased without punctuation

N-gram prefix/suffix: first 1–4 characters, last 1–4 characters
last character (upper/lower/numeric)

Orthographic case: InitialCaps, MixedCaps, ALLCAPS

Punctuation: leadingQuotes, endingQuotes,
multipleHyphens, continuingPunctuation,
stopPunctuation, pairedBraces, possibleVolume

Number: year, possiblePageRange, possibleVolume,
ordinal, hasDigit, noDigits etc.

Dictionary: publisher, surnames, female/male names, months

Token Location: Token position within the reference string

Possible editor: Whether a token such as “eds.” is present

ParsCit attempts to find the reference section before pars-
ing the reference string. For generality, ParsCit is designed
to be independent of specific formatting and finds reference
strings using a set of heuristics given a plain UTF-8 text file.
It first searches for sections labeled “references”, “bibliog-
raphy” or common variations of these keyphrases. If a label
is found too early in the document, subsequent matches are
sought. The final match is considered the starting point of the
reference section. The ending point is found by searching for
subsequent section labels such as appendices, acknowledg-
ments or the document end.

The next phase is to segment individual reference strings.
This is done by constructing a number of regular expres-
sions matching common marker styles, e.g.,, “[1]” or “1”,
then counting the number of matches to each expression in
the reference string text. The regular expression with the
greatest number of matches is indicated. If no reference
string markers are found, several heuristics are used to de-
cide where individual reference starts and ends based on
the length of previous lines, strings that appear to be author
name lists, and ending punctuation. The CRF model above
is applied to the list of individual reference strings. After the
CRF modeling, each tagged field is normalized into a stan-
dard representation. This makes the structure of metadata
more uniform and easy for future analysis.

ParsCit also extracts citation context based on the refer-
ence marker discovered above by scanning the body text and
locating citations matching a particular reference string. Ci-
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tation context allows a user to quickly and easily see what
other researchers say about an article of interest. For marked
citation lists, the expression can be a square bracket or other
parenthetical expressions. For unmarked citation lists (such
as APA style), the expression is constructed using the author
last names.

The evaluations were performed on three datasets: Cora
(S99), CiteSeerX, and FLUX-CiM (Cortez et al. 2007). The
results show that the core module of ParsCit that performs
reference string segmentation performs satisfactorily and is
comparable to the original CRF based system in Peng & Mc-
Callum (2004). ParsCit outperforms FLUX-CiM, which is
an unsupervised reference string parsing system, on the key
common fields of “author” and “title”. However, it makes
some errors in not segmenting “volume”, “number” and
“pages”, as ParsCit currently does not further tokenize be-
yond white spaces (e.g., “11(4):11-22” versus “11 (4) 11
- 22”). It is desirable to incorporate some preprocessing
heuristics to ParsCit to correct for such errors.

Author Disambiguation
In addition to document search, another important function-
ality of CiteSeerX is author search, which enables users to
find an author’s basic information and previous publications.
Author search is also the foundation of several other services
we provide, such as collaborator search (Chen et al. 2011)
and expert search (Chen et al. 2013).

To search for an author, a typical query string is the au-
thor’s name. However, processing a name-based query is
complex. First, different authors may share the same name.
It is not straightforward to decide if “John Smith” of one
paper is the same as the one in another paper. Second, one
author may have several name variations. For instance, Dr.
W. Bruce Croft could be recorded as “W. B. Croft” or “Bruce
Croft”. The ambiguity of names is a common issue for most
digital libraries.

To disambiguate authors, one could define a distance
function between two authors and identify the similarity be-
tween a pair of authors based on this distance function. How-
ever, a digital library usually contains millions of papers and
tens of millions of un-disambiguated authors. Comparing
every pair of authors requires O(n2) time complexity, which
is intractable for a large n. To reduce the number of compar-
isons, CiteSeerX groups names into small blocks and claims
that an author can only have different name variations within
the same block. Thus, we only need to check every pair of
names within the same block. CiteSeerX groups two names
into one block if the last names are the same and the first
initials are the same.

In many cases, name information alone is insufficient for
author disambiguation. Other information related to authors
is used including, but not limited to, their affiliations, emails,
collaborators (coauthors), and contextual information, such
as the key phrases and topics of their published papers. Cite-
SeerX relies on this additional information for author disam-
biguation. For example, if we found “John Smith” of paper
1 and “J. Smith” of paper 2 belong to different affiliations
then the two Smiths are less likely to be the same person.
On the other hand, if both papers discuss similar topics and

have a similar set of authors, the two names are very likely
to refer to the same person. Specifically, CiteSeerX selects
12 features for two target authors (a and b) of two different
papers (p and q), including the similarity between a and b’s
first names, the similarity between their middle names, the
relationship between the authoring order of a in p and the
order of b in q, the similarity between the emails of the first
author in p and the first author in q, the similarity between
the terms in the affiliations of the first author in p and the
first author in q, the similarity between the names of the au-
thors of p and the authors of q, the similarity between the
title of p and the title of q, and few other features.

While we can classify authors by applying a supervised
learning approach on the above features, such a classifica-
tion may output results that violate transitivity principle. For
example, even if authors a and b are classified as one per-
son, and b and c are also classified as one person, authors
a and c may be classified as two different persons. By ap-
plying DBSCAN, a clustering algorithm based on the den-
sity reachability of data points, CiteSeerX resolves most of
these inconsistent cases (Huang, Ertekin, and Giles 2006).
The remaining small portion of ambiguous cases are those
located at the boundaries of clusters. These authors are dif-
ficult to disambiguate even manually due to insufficient or
incorrectly parsed author information.

We have compared the accuracy of the author disambigua-
tion problem using several supervised learning approaches,
including Random Forest, Support Vector Machine, Logistic
Regression, Naı̈ve Bayesian, and decision trees. We found
that the accuracy achieved by the Random Forest signif-
icantly outperforms the other learning methods, based on
the analysis of variance (ANOVA) (Treeratpituk and Giles
2009). In addition, the Random Forest model can be trained
within a reasonable period. Thus, CiteSeerX applies Ran-
dom Forest on the 12 features for author disambiguation.

Development and Deployment
Although CiteSeerX utilizes many open source software
packages, many of the core components are not directly
available from open source repositories and require exten-
sive programming and testing. The current CiteSeerX code-
base inherited little from its predecessor’s (CiteSeer) code-
base due to stability and consistency considerations. The
core part of the main web apps were written by Dr. Isaac
Councill and Juan Pablo Fernández Ramı́rez and many com-
ponents were developed by other graduate students, post-
docs and software engineers, some which took at least 3-4
years.

Usage and Payoff
CiteSeer started running in 1998 and its successor CiteSeerX
has been running since 2008. Since then, the document col-
lection has steadily increased (see Table 3). The goal of Cite-
SeerX is to improve the dissemination of and access to aca-
demic and scientific literature. Currently, CiteSeerX has reg-
istered users from around the world and is hit more than 2
million times a day according to web server logs. The down-
load rate is on average 10 PDF files per second (Teregowda,
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Urgaonkar, and Giles 2010). Besides the web search, Cite-
SeerX also provides an OAI Protocol for metadata harvest-
ing in order to facilitate content dissemination. By program-
matically accessing the CiteSeerX OAI harvest URL, it is
possible to download the metadata for all papers that exist
in CiteSeerX with an average of about 5,000 requests per
month. Researchers are interested in more than just Cite-
SeerX metadata. For example, CiteSeerX usually receives a
dozen or so data requests per month via the contact form
on the CiteSeerX website (Williams et al. 2014b). Those re-
quests include graduate students seeking project data sets
and researchers that are looking for large datasets for exper-
iments. For these requests, dumps of our database are avail-
able on Amazon S3. This alleviates our cost distributing the
data since users pay for downloads.

The CiteSeerX (and CiteSeer) data have been used in
much novel research work. For example, the CiteSeer data
was used to predict the ranking of computer scientists (Feit-
elson and Yovel 2004). In terms of algorithm design, Coun-
cill et al. used CiteSeerX data along with another two
datasets to test the performance of the ParsCit software.
Madadhain et al. (2005) used CiteSeerX as a motivating ex-
ample for JUNG, which is a language to manipulate, ana-
lyze, and visualize data that can be represented as a graph or
network. Pham et al. (2011) studied the knowledge network
created at the journal/conference level using citation link-
age to identify the development of sub-disciplines based on
the combination of DBLP and CiteSeerX datasets. Recently,
Caragea et al. (2014) generated a large cleaned dataset by
matching and merging CiteSeerX and DBLP metadata. This
dataset contains cleaned metadata of papers in both Cite-
SeerX and DBLP including citation context, which is useful
for studying ranking and recommendation systems (Chen et
al. 2011). Other data sets have also been created (Bhatia et
al. 2012).

Previously, the majority of CiteSeerX indexed documents
were from computer and information sciences. Recently, a
large number of papers have been crawled and ingested from
mathematics, physics and medical science. We are increas-
ing our document collection by actively crawling the web us-
ing new policies and seeds in order to include new domains.
We expect this to encourage users from multiple disciplines
to search and download academic papers from CiteSeerX
and to be useful for studying cross discipline citation and
social networks.

In addition to increasing the collection volume, CiteSeerX
also strives to increase the quality of metadata. For example,
we are using multiple data cleaning techniques to sanitize
and correct wrong metadata. In addition, we are developing
new algorithms to improve the quality of text and metadata
extraction. Users will soon see cleaner and accurate descrip-
tions and more reliable statistics.

Besides data services, CiteSeerX has also made the dig-
ital library search engine framework, SeerSuite (Teregowda
et al. 2010), available. This framework allows research in-
stitutions or individuals to build personalized digital library
search engines using their own collection of PDF docu-
ments. Most of time, the CiteSeerX group can provide free
technical support. As far as we know, at least five other Seer-

Suite instances are running across the world.

Table 3: Six year document collection growth.

Year 2008 2009 2010 2011 2012 2013

Crawled 1.89 2.90 5.62 6.15 7.93 13.02
Ingested 0.61 1.38 1.66 1.93 2.35 3.80

Index 0.48 0.83 1.02 1.22 1.54 2.89

Numbers are in millions and are counted as all documents by
the end of each calendar year. Only cluster metadata are in-
dexed, so the number reflect the unique documents after near-
duplication filtering.

Main Design Concepts
While the development environment is mostly Linux, com-
ponents are developed with portability in mind with Java
as the main development language. The web application
makes use of a model view controller (MVC) architecture
implemented within the Spring framework, which allows
development to concentrate on application design rather
than designing access method connecting applications. The
application presentation uses a mix of Java server pages
and JavaScript to generate the user interface. The design
of the user interface allows the appearance to be mod-
ified by switching Cascading Style Sheets. The use of
JavaServer Page Standard Tag Library (JSTL) supports tem-
plate based construction. The web pages allow further inter-
action through the use of the JavaScript framework.

The web application is composed of servlets correspond-
ing to user queries. These servlets interact with the index
and database for keyword search and for the database and
index to generate document summaries and the repository to
serve cached files. Servlets use Data Access Objects (DAO)
to interact with databases and the repository. The Web ap-
plication is deployed through a web application archive file
(.war).

The database design partitions the entire data across three
main databases, which contain document metadata and are
focused on transactions and version tracking. The second
database stores the citation graphs. The third database stores
user information, queries, and document portfolios. The
databases are deployed using MySQL and are driven by Inn-
oDB for its ACID compliant and hence fully transactional
features with rollback and commit.

Metadata extraction methods are built using Perl. The
main module needs to connect multiple components such
as copying data from the crawler, text extraction, document
classification, header and citation extraction. It works in
a batch mode that usually runs on a separate machine to
achieve optimal performance. The ingestion system is writ-
ten in Java. It contains methods to interact with the extrac-
tion server, the database, the Solr index and the repository
servers. The crawl document importer middleware is writ-
ten in Python and uses the Django framework. The name
disambiguation module is written in Ruby and uses the Ruby
on Rails framework.
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The current CiteSeerX codebase has been designed to
be modular and portable. Adding new functionality, such
as other databases or repository types is as easy as imple-
menting various DAO classes. Adding other functionality to
the front end is easy as well. One example is implementing
Solr auto-complete, which is very simple as CiteSeerX uses
JSP for its front end functionality. In addition, the use of
Java beans enables CiteSeerX to dynamically load objects
in memory. One can specify which implementation of the
class to use allowing for more flexibility at runtime.

Development Cost
CiteSeerX is not just a digital library that just allows users
to search and download documents from a large database
and repository. It encapsulates and integrates AI technolo-
gies designed to optimize and enhance document acquisi-
tion, extraction, and searching processes. We argue that the
implementation of these AI technologies makes CiteSeerX
unique and more valuable. This makes it difficult to estimate
the cost of rebuilding CiteSeerX. An estimation using the
SLOCcount software suggests that the total cost to rewrite
just the core web app Java code from scratch might be as
high as $1.5 million. By default, SLOCcount uses the ba-
sic COCOMO model, which makes the estimate from the
number of lines of code assuming a water-fall software de-
velopment model. Table 4 lists the estimation of effort, time
and cost in the default configuration.

Table 4: Development effort and cost estimation using the
SLOCcount package.

Description Estimation

Total physical source lines of code 44,756
Development effort (Person-Years) 10.82

Schedule estimate (Years) 1.32
Estimated average number of developers 8.18

Total estimated development cost1 $1,462,297

Estimates are from the basic COCOMO model in which soft-
ware development effort and cost are based on program size.

1 Assumes an average salary of $56,286/year, 2.40 overhead.

While building a prototype for a CiteSeer-like system can
be accomplished with some effort, doing so is simple com-
pared to building a running system. Looking at these chal-
lenges in the context of AI, one would face numerous ob-
stacles. To begin with, all the machine learning algorithms
need to be scalable to support processing tens to hundreds
of thousands of documents per day. For example, the docu-
ment classifier should not be slower than the crawling rate.
Similarly, the information extraction part must not be a bot-
tleneck in the ingestion pipeline. However, having fast ma-
chine learning algorithms should not compromise accuracy.
This also extends to citation matching and clustering, which
compares millions of candidate citations. Therefore, obtain-
ing the best balance between accuracy and scalability is a
major challenge that is addressed by relying on heuristic
based models for certain problems, while relying on algo-
rithms that need to optimize intractable solutions for others.

Recently, CiteSeerX was migrated from a cluster com-
prised of 18 physical machines into a private cloud (Wu et
al. 2014). Six months were required to finally complete this
migration. Our cost analysis indicates that, for now, mov-
ing to a private cloud is more cost-effective compared to
a public cloud solution such as Amazon EC2. The major
challenges include lack of documentation, resource alloca-
tion, system compatibility, a complete and seamless migra-
tion plan, redundancy/data backup, configuration, security
and backward availability. Most of the AI technologies that
we used are compatible with the new environments. This mi-
gration is a milestone for CiteSeerX because the cloud (vir-
tual) environment will benefit the entire system in terms of
scalability, stability, and maintainability.

Maintenance
CiteSeerX was developed by graduate students, postdocs
and software engineers in a higher education setting. With
limited funding and human resources, it is challenging to
maintain such a system and add new features. CiteSeerX is
currently maintained by one postdoc, two graduate students,
an IT technician and one undergraduate student. However,
this changes as students leave. Only the postdoc is full time.
The maintenance work includes, but is not limited to, pe-
riodically checking system health, testing and implement-
ing new features, fixing bugs and upgrading software, and
adding new documents.

CiteSeerX data is updated regularly. The crawling rate
varies from 50,000 to 100,000 PDF documents per day. Of
the crawled documents, about 40% are eventually identified
as being academic and ingested into the database. Assuming
a document takes 2MB of disk space, the total data growth
rate is about 20GB per day. By analyzing the access logs,
we found that about 10 PDF papers are downloaded per sec-
ond on average. Assuming an average size of a PDF paper
is 1MB, this is an outbound traffic of 25TB per month. Cur-
rently, this is one of the major costs for implementing Cite-
SeerX on a service such as Amazon EC2.

Conclusion
We described CiteSeerX, which is an open access digital li-
brary search engine, focusing on the AI technologies used
in multiple components of the system. CiteSeerX elimi-
nates bitwise duplications using hash functions; it uses a key
matching algorithm to merge documents and citations. The
metadata is automatically extracted using an SVM-based
header extractor, and the citations are parsed by ParsCit,
which is built on top of a CRF model. Author names are dis-
ambiguated to facilitate the author search. CiteSeerX also
has modules to extract tables and index them for search.
These AI technologies make CiteSeerX unique and add
value to its services. CiteSeerX has a large worldwide user
base, with a mean downloading rate of 10 documents per
second. Its data is updated daily and is utilized in much
novel research. CiteSeerX takes advantages of existing open
source software. It contains more than 40,000 lines of code
just in its Java codebase. It could take up to 10 person-years
to rebuild this codebase from scratch. Despite limited fund-
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ing and human resources, CiteSeerX has been maintained
regularly with many features planned for the near future.
Cloud migration is preparation for growth in documents.
New features that could be incorporated into CiteSeerXare
algorithm search (Tuarob et al. 2013), figure search (Choud-
hury et al. 2013) and acknowledgment search (Giles and
Councill 2004; Khabsa, Treeratpituk, and Giles 2012) .

Acknowledgments
We acknowledge partial support from the National Science
Foundation and suggestions from Robert Neches.

References
Bhatia, S.; Caragea, C.; Chen, H.-H.; Wu, J.; Treeratpituk,
P.; Wu, Z.; Khabsa, M.; Mitra, P.; and Giles, C. L. 2012.
Specialized research datasets in the citeseerx digital library.
D-Lib Magazine 18(7/8).
Bishop, C. M. 2006. Pattern Recognition and Machine
Learning (Information Science and Statistics). Secaucus,
NJ, USA: Springer-Verlag New York, Inc.
Caragea, C.; Wu, J.; Ciobanu, A.; Williams, K.; Fernandez-
Ramirez, J.; Chen, H.-H.; Wu, Z.; and Giles, C. L. 2014a.
Citeseerx: A scholarly big dataset. ECIR ’14, 311–322.
Caragea, C.; Wu, J.; Williams, K.; G., S. D.; Khabsa, M.; and
Giles, C. L. 2014b. Automatic Identification of Research
Articles from Crawled Documents. WSDM-WSCBD ’14.
Charikar, M. 2002. Similarity estimation techniques from
rounding algorithms. STOC ’02, 380–388.
Chen, H.-H.; Gou, L.; Zhang, X.; and Giles, C. L. 2011. Col-
labSeer: a search engine for collaboration discovery. JCDL
’11, 231–240.
Chen, H.-H.; Treeratpituk, P.; Mitra, P.; and Giles, C. L.
2013. CSSeer: an expert recommendation system based on
CiteseerX. JCDL ’14, 381–382.
Choudhury, S. R.; Tuarob, S.; Mitra, P.; Rokach, L.; Kirk,
A.; Szep, S.; Pellegrino, D.; Jones, S.; and Giles, C. L. 2013.
A figure search engine architecture for a chemistry digital
library. JCDL ’13, 369–370.
Cortes, C., and Vapnik, V. 1995. Support-vector networks.
Machine Learning 20(3):273–297.
Cortez, E.; da Silva, A. S.; Gonçalves, M. A.; Mesquita, F.;
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