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ABSTRACT
The increasing amount of communication between indi-
viduals in e-formats (e.g. email, Instant messaging and
the Web) has motivated computational research in social
network analysis (SNA). Previous work in SNA has em-
phasized the social network (SN) topology measured by
communication frequencies while ignoring the semantic in-
formation in SNs. In this paper, we propose two generative
Bayesian models for semantic community discovery in SNs,
combining probabilistic modeling with community detec-
tion in SNs. To simulate the generative models, an EnF-
Gibbs sampling algorithm is proposed to address the effi-
ciency and performance problems of traditional methods.
Experimental studies on Enron email corpus show that our
approach successfully detects the communities of individ-
uals and in addition provides semantic topic descriptions
of these communities.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
G.3 [Probability and Statistics]: Models; J.4 [Social
and Behavioral Sciences]

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Social Network, Data Mining, Clustering, Email, Gibbs
sampling, Statistical Modeling

1. INTRODUCTION
Social network analysis is an established field in soci-

ology [23]. The increasing availability of social network
data has led to more computational research in social net-
work analysis (SNA), e.g., discovering interpersonal re-
lationships based on various modes of information carri-
ers, such as emails [22, 27], message boards [10] and the
Web [3]. Analysis of social networks (SNs) can be applied
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to many domains including viral marketing [4, 17] and the
evaluation of importance of social actors [24].

Figure 1: A social network with two communities.

An important characteristic of all SNs is the community
graph structure: how social actors gather into groups such
that they are intra-group close and inter-group loose [13].
An illustration of a simple two-community SN is sketched
in Fig. 1. Here each node represents a social actor in the SN
and different node shapes represent different communities.
Two nodes share an edge if and only if a relationship exists
between them according to social definitions such as their
role or participation in the social network. Connections in
this case are binary.

Discovering community structures from general networks
is of obvious interest. Early methods include graph par-
titioning [8] and hierarchical clustering [19, 25]. Recent
algorithms [6, 14, 2] addressed several problems related to
prior knowledge of community size, the precise definition
of inter-vertices similarity measure and improved compu-
tational efficiency [13]. They have been applied success-
fully to various areas such as email networks [22] and the
Web [5]. Semantic similarity between Web pages can be
measured using human-generated topical directories [9]. In
general, semantic similarity in SNs is the meaning or rea-
son behind the network connections.

For the extraction of community structures from email
corpora [22, 3], the social network is usually constructed
measuring the intensity of contacts between email users.
In this setting, every email user is a social actor, modeled
as a node in the SN. An edge between two nodes indicates
that the existing email communication between them is
higher than certain frequency threshold.

However, discovering a community simply based purely
on communication intensity becomes problematic in some
scenarios. (1) Consider a spammer in an email system who
sends out a large number of messages. There will be edges
between every user and the spammer, in theory presenting
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a problem to all community discovery methods which are
topology based. (2) Aside from the possible bias in network
topology due to unwanted communication, existing meth-
ods also suffer from the lack of semantic interpretation.
Given a group of email users discovered as a community,
a natural question is why these users form a community?
Pure graphical methods based on network topology, with-
out the consideration of semantics, fall short in answering
to such questions.

B

A

Figure 2: Semantic relationships and hidden com-
munities.

Consider other ways a community can be established,
e.g. Fig. 2. From the preset communication intensity, per-
son A and person B belong to two different communities,
denoted by squares and circles, based on a simple graph
partitioning. However, ignoring the document semantics
in their communications, their common interests (denoted
by the dashed line) are not considered in traditional com-
munity discovery.

In this paper, we examine the inner community property
within SNs by analyzing the semantically rich information,
such as emails or documents. We approach the problem of
community detection using a generative Bayesian network
that models the generation of communication in an SN.
As suggested in established social science theory [23], we
consider the formation of communities as resulting from
the similarity among social actors. The generative models
we propose introduce such similarity as a hidden layer in
the probabilistic model.

As a parallel study in social network with the sociolog-
ical approaches, our method advances existing algorithms
by not exclusively relying the intensity of contacts. Our
approach provides topic tags for every community and cor-
responding users, giving a semantic description to each
community. We test our method on the newly disclosed
email corpora benchmark – the Enron email dataset and
compare with an existing method.

The outline of this paper is as follows: in Section 2, we
introduce the previous work which our models are built
on. The community detection problem following the line of
probabilistic modeling is explained. Section 3 describes our
community-user-topic (CUT) models. In Section 4 we in-
troduce the algorithms of Gibbs sampling and EnF-Gibbs
sampling (Gibbs sampling with Entropy Filtering). Ex-
perimental results are presented in Section 5. We conclude
and discuss future work in Section 6.

2. RELATED WORK AND CONTRIBUTIONS
In the first part of this section, we introduce the re-

lated work on document modeling. Three related gen-
erative models based on which our models are built are
described: Topic-Word model, Author-Word model and

Author-Topic model. In the second part of this section,
we model the generation of SN communications, enabling
us to propose a solution to the problem of semantic com-
munity identification.

2.1 Related work
Related work on document content characterization [1,

7, 11, 21] introduces a set of probabilistic models to simu-
late the generation of a document. Several factors in pro-
ducing a document, either observable (e.g. author [11]) or
latent (e.g. topic [7, 1]), are modeled as variables in the
generative Bayesian network and have been shown to work
well for document content characterization.

Given a set of documents D, each consisting of a se-
quence of words wd of size Nd, the generation of each word
wdi ∈ wd for a specific document d can be modeled from
the perspective of either author or topic, or the combina-
tion of both. Fig. 3 illustrates the three possibilities using
plate notations. Let ω denote a specific word observed in
document d; T and A represent the number of topics and
authors; ad is the observed set of authors for d. Note that
the latent variables are light-colored while the observed
ones are shadowed. Fig. 3(a) models documents as gen-
erated by a mixture of topics [1]. The prior distributions
of topics and words follow Dirichlets parameterized respec-
tively by α and β. Each topic is a probabilistic multinomial
distribution over words. Let φ denote the topic’s distribu-
tions over words while θ the document’s distribution over
topics1.

In the Topic-Word model, a document is considered as a
mixture of topics. Each topic corresponds to a multinomial
distribution over the vocabulary. The existence of observed
word ω in document d is considered to be drawn from the
word distribution φz, which is specific to topic z. Similarly
the topic z was drawn from the document-specific topic
distribution θd, usually a row in the matrix θ2.

Similar to the Topic-Word model, an Author-Word model
prioritizes the author interest as the origin of a word [11].
In Fig. 3(b), ad is the author set that composes document
d. Each word in this d is chosen from the author-specific
distribution over words. Note that in this Author-Word
model, the author responsible for a certain word is chosen
at random from ad.

An influential work following this model [21] introduces
the Author-Topic model combined with the Topic-Word
and Author-Word models and regards the generation of a
document as affected by both factors in a hierarchical man-
ner. Fig. 3(c) presents the hierarchical Bayesian structure.

According to the Author-Topic model in Fig. 3(c), for
each observed word ω in document d, an author x is drawn
uniformly from the corresponding author group ad. Then
with the probability distribution of topics conditioned on
x, θx·, a topic z is generated. Finally the z produces ω as
observed in document d.

The Author-Topic model has been shown to perform well
for document content characterization because it involves
two essential factors in producing a general document: the

1Usually the φ is represented using T × V matrix, where
T and V are the number of topics and size of vocabulary.
Similarly is θ modeled as D × T matrix.
2The Topic-Word model was firstly introduced with name
Latent Dirichlet Allocation (LDA). In consistency with the
line of research, we use the alternative name.
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Figure 3: Three Bayesian network models for document content generation

author and the topic. Modeling both factors as variables in
the Bayesian network provides the model with capacity to
group the words used in a document corpus into semantic
topics. Based on the posterior probability obtained after
the network is set up, a document can be denoted as a
mixture of topic distributions. In addition, each author’s
preference of using words and involvement in topics can be
discovered.

The estimation of the Bayesian network in the afore-
mentioned models typically reply on the observed pairs of
author and words in documents. Each word is treated as
an instance generated following the probabilistic hierarchy
in the models. Some layers in the Bayesian hierarchy are
observed, such as authors and words. Other layers are
hidden that is to be estimated, such as topics.

2.2 Contributions
We address the problem of identifying social actors based

on the semantics of the communications, in particular the
semantics as they are related to their communication doc-
uments.

Much communication in SNs usually occurs by exchang-
ing documents, such as emails, instant messages or posts
on message boards [15]. Such content rich documents nat-
urally serve as an indicator of the innate semantics in the
communication among an SN. Consider an information
scenario where all communications rely on email. Such
email documents usually reflect nearly every aspect of and
reasons for this communication. For example, the recipi-
ent list records the social actors that are associated with
this email and the message body stores the topics they are
interested in.

We define such a document carrier of communication as
a communication document. Our main contribution is re-
solving the SN communication modeling problem into the
modeling of generation of the communication documents,
based on whose features the social actors associate with
each other.

Modeling communication based on communication doc-
ument takes into consideration the semantic information
of the document as well as the interactions among social
actors. Many features of the SN can be revealed from
the parameterized models such as the leader-follower rela-
tion [12]. Using such models, we can avoid the effect of

meaningless communication documents, such as those gen-
erated by a network spammer, in producing communities.

Our models accentuate the impact of community on the
SN communications by introducing community as a latent
variable in the generative models for communication doc-
uments. One direct application of the models is semantic
community detection from SNs. Rather than studying net-
work topology, we address the problem of community ex-
ploration and generation in SNs following the line of afore-
mentioned research in probabilistic modeling.

3. COMMUNITY-USER-TOPIC MODELS
Our definition for a semantic community in a social net-

work is:

Definition 1. A semantic community in a social net-
work includes users with similar communication interests
and topics that are associated with their communications.

We study the community structure of an SN by model-
ing the communication documents among its social actors
and the format of communication documents we model is
email because emails embody valuable information regard-
ing shared knowledge and the SN infrastructure [22].

Our Community-User-Topic (CUT) model3 builds on
the Author-Topic model. However, the modeling of a com-
munication document includes more factors than the com-
bination of authors and topics.

Serving as an information carrier for communication,
a communication document is usually generated to share
some information within a group of individuals. But unlike
publication documents such as technical reports, journal
papers, etc., the communication documents are inaccessi-
ble for people who are not in the recipient list. The issue
of a communication document indicates the activities of
and is also conditioned on the community structure within
an SN. Therefore we consider the community as an ex-
tra latent variable in the Bayesian network in addition to
the author and topic variables. By doing so, we guarantee

3In order to fit our model literally to the social network
built on email communication, we change the name ”Au-
thor” to ”User”. An alternative name of our model is
Community-Author-Topic Model: CAT.
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that the issue of a communication document is purposeful
in terms of the existing communities. As a result, the com-
munities in an SN can be revealed and also semantically
explanable.

We will use generative Bayesian networks to simulate
the generation of emails in SNs. Differing in weighting the
impact of a community on users and topics, two versions
of CUT are proposed.

3.1 CUT1: Modeling community with users
Given the impact of community in the generation of com-

munication, the first step is to determine the interrelation-
ships among this latent variable, the email users and the
topics, i.e. the structure of the Bayesian network.

We first consider an SN community as no more than a
group of users. This is a notion similar to that assumed
in a topology-based method. For a specific topology-based
graph partitioning algorithm such as Modularity [13], the
connection between two users can be simply weighted by
the frequency of their communications. In our first model
CUT1, we treat each community as a multinomial distri-
bution over users. Each user u is associated with a condi-
tional probability P (u|c) which measures the degree that
u belongs to community c. The goal is therefore to find
out the conditional probability of a user given each com-
munity. Then users can be tagged with a set of topics,
each of which is a distribution over words. A community
discovered by CUT1 is typically in the structure as shown
in Fig. 8.

Fig. 4 presents the hierarchy of the Bayesian network
for CUT1. Let us use the same notations in Author-Topic
model: α and β parameterizing the prior Dirichlets for top-
ics and words. Let ψ denote the multinomial distribution
over users for each community c, each marginal of which
is a Dirichlet parameterized by γ. Let the prior probabil-
ities for c be uniform. Let C, U , T denote the number of
community, users and topics.
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Figure 4: Modeling community with users

Typically, an email message d is generated by four steps:
(1) there is a need for a community c to issue an act of com-
munication by sending an email d; (2) a user u is chosen
from c as observed in the recipient list in d; (3) u presents
to read d since a topic z is concerned, which is drawn from
the conditional probability on u over topics; (4) given topic
z, a word ω is created in d. By iterating the same proce-
dure, an email message d is composed word by word.

Note that the u is not necessarily the composer of the
message in our models. This differs from existing liter-

atures which assume α as the author of document. The
assumption is that a user is concerned with any word in
a communication document as long as the user is on the
recipient list.

To compute P (c, u, z|ω), the posterior probability of as-
signing each word ω to a certain community c, user u and
topic z, consider the joint distribution of all variables in
the model:

P (c, u, z, ω) =P (ω|z)P (c, u, z)

=P (ω|z)P (z|u)P (c, u)

=P (ω|z)P (z|u)P (u|c)P (c) (1)

Theoretically, the conditional probability P (c, u, z|ω) can
be computed using the joint distribution P (c, u, z, ω).

A possible side-effect of CUT1, which considers a com-
munity c solely as a multinomial distribution over users, is
it relaxes the community’s impact on the generated topics.
Intrinsically, a community forms because its users commu-
nicate frequently and in addition they share common top-
ics in discussions as well. In CUT1 where community only
generates users and the topics are generated conditioned
on users, the relaxation is propagated, leading to a loose
connection between community and topic. We will see in
the experiments that the communities discovered by CUT1

is similar to the topology-based algorithm Modularity pro-
posed in [13].

3.2 CUT2: Modeling community with topics
In contrast to CUT1, our second model introduces the

notion that an SN community consists of a set of topics,
which are of concern to respective user groups.

As illustrated in Fig. 5, each word ω observed in email
d is finally chosen from the multinomial distribution of a
user αdi, which is from the recipient list of d. Before that,
αdi is sampled from another multinomial of topic z and z
is drawn from community c’s distribution over topics.

Analogously, the products of CUT2 are a set of condi-
tional probability P (z|c) that determines which of the top-
ics are most likely to be discussed in community c. Given
a topic group that c associates for each topic z, the users
who refer to z can be discovered by measuring P (u|z).

CUT2 differs from CUT1 in strengthing the relation be-
tween community and topic. In CUT2, semantics play a
more important role in the discovery of communities. Sim-
ilar to CUT1, the side-effect of advancing topic z in the
generative process might lead to loose ties between com-
munity and users. An obvious phenomena of using CUT2

is that some users are grouped to the same community
when they share common topics even if they correspond
rarely, leading to the different scenarios for which the CUT
models are most appropriate. For CUT1, users often tend
to be grouped to the same communities while CUT2 ac-
centuates the topic similarities between users even if their
communication seem less frequent.

Derived from Fig. 5, define in CUT2 the joint distribu-
tion of community c, user u, topic t and word ω:

P (c, u, z, ω) =P (ω|u)P (u|z)P (z|c)P (c) (2)

Let us see how these models can be used to discover
the communities that consist of users and topics. Con-
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Figure 5: Modeling community with topics

sider the conditional probability P (c, u, z|ω), a word ω as-
sociates three variables: community, user and topic. Our
interpretation of the semantic meaning of P (c, u, z|ω) is
the probability that word ω is generated by user u under
topic z, in community c.

Unfortunately, this conditional probability cannot be com-
puted directly. To get P (c, u, z|ω) ,we have:

P (c, u, z|ω) =
P (c, u, z, ω)

Σc,u,zP (c, u, z, ω)
(3)

Consider the denominator in Eq. 3, summing over all c,
u and z makes the computation impractical in terms of ef-
ficiency. In addition, as shown in [7], the summing doesn’t
factorize, which makes the manipulation of denominator
difficult. In the following section, we will show how an
approximate approach of Gibbs sampling will provide so-
lutions to such problems. A faster algorithm EnF-Gibbs
sampling will also be introduced.

4. SEMANTIC COMMUNITY DISCOVERY:
THE ALGORITHMS

In this section, we first introduce the Gibbs sampling
algorithm. Then we address the problem of semantic com-
munity discovery by adapting Gibbs sampling framework
to our models. Finally, we combine two powerful ideas:
Gibbs sampling and entropy filtering to improve efficiency
and performance, yielding a new algorithm: EnF-Gibbs
sampling.

4.1 Gibbs sampling
Gibbs sampling is an algorithm to approximate the joint

distribution of multiple variables by drawing a sequence
of samples. As a special case of the Metropolis-Hastings
algorithm [18], Gibbs sampling is a Markov chain Monte
Carlo algorithm and usually applies when the conditional
probability distribution of each variable can be evaluated.
Rather than explicitly parameterizing the distributions for
variables, Gibbs sampling integrates out the parameters
and estimates the corresponding posterior probability.

Gibbs sampling was first introduced to estimate the Topic-
Word model in [7]. In Gibbs sampling, a Markov chain is
formed, the transition between successive states of which
is simulated by repeatedly drawing a topic for each ob-
served word from its conditional probability on all other
variables. In the Author-Topic model, the algorithm goes
over all documents word by word. For each word ωi, the

topic zi and the author xi responsible for this word are
assigned based on the posterior probability conditioned on
all other variables: P (zi, xi|ωi, z−i,x−i,w−i, ad). zi and
xi denote the topic and author assigned to ωi, while z−i

and x−i are all other assignments of topic and author ex-
cluding current instance. w−i represents other observed
words in the document set and ad is the observed author
set for this document.

A key issue in using Gibbs sampling for distribution
approximation is the evaluation of conditional posterior
probability. In Author-Topic model, given T topics and V
words, P (zi, xi|ωi, z−i,x−i,w−i, ad) is estimated by:

P (zi = j, xi = k|ωi = m, z−i,x−i,w−i, ad) ∝ (4)

P (ωi = m|xi = k)P (xi = k|zi = j) ∝ (5)

CWT
mj + β

Σm′CWT
m′j

+ V β

CAT
kj + α

Σj′C
AT
kj′

+ Tα
(6)

where m′ 6= m and j′ 6= j, α and β are prior parameters
for word and topic Dirichlets, CWT

mj represents the number
of times that word ωi = m is assigned to topic zi = j,
CAT

kj represents the number of times that author xi = k is
assigned to topic j.

The transformation from Eq. 4 to Eq. 5 drops the vari-
ables, z−i, x−i, w−i, ad, because each instance of ωi is
assumed independent of the other words in a message.

4.2 Semantic community discovery
By applying the Gibbs sampling, we can discover the se-

mantic communities by using the CUT models. Consider
the conditional probability P (c, u, z|ω), where three vari-
ables in the model, community, user4 and topic, are asso-
ciated by a word ω. The semantic meaning of P (c, u, z|ω)
is the probability that ω belongs to user u under topic z,
in community c. By estimation of P (c, u, z|ω), we can la-
bel a community with semantic tags (topics) in addition to
the affiliated users. The problem of semantic community
discovery is thus reduced to the estimation of P (c, u, z|ω).

(1) /* Initialization */
(2) for each email d
(3) for each word ωi in d
(4) assign ωi to random community, topic and user;
(5) /* user in the list observed from d */
(6) /* Markov chain convergence */
(7) i← 0;
(8) I ← desired number of iterations;
(9) while i < I
(10) for each email d
(11) for each ωi ∈ d
(12) estimate P (ci, ui, zi|ωi), u ∈ αd;
(13) (p, q, r)← argmax(P (cp, uq , zr|ωi));
(14) /*assign community p,user q, topic r to ωi*/
(15) record assignment τ (cp, uq , zr, ωi);
(16) i + +;

Figure 6: Gibbs sampling for CUT models

4Note we denote user with u in our models instead of x as
in previous work.
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The framework of Gibbs sampling is illustrated in Fig. 6.
Given the set of users U , set of email documents D, the
number of desired topic |T |, number of desired commu-
nity |C| are input, the algorithm starts with randomly as-
signing words to a community, user and topic. A Markov
chain is constructed to converge to the target distribution.
In each trial of this Monte Carlo simulation, a block of
(community, user, topic) is assigned to the observed word
ωi. After a number of states in the chain, the joint distri-
bution P (c, u, z|ω) approximates the targeted distribution.

To adapt Gibbs sampling for CUT models, the key step
is estimation of P (ci, ui, zi|wi). For the two CUT models,
we describe the estimation methods respectively.

Let P (ci = p, ui = q, zi = r|ωi = m, z−i,x−i,w−i) be
the probability that ωi is generated by community p, user
q on topic r, which is conditioned on all the assignments
of words excluding the current observation of ωi. z−i, x−i

and w−i represent all the assignments of topic, user and
word not including current assignment of word ωi.

In CUT1, combining Eq. 1 and Eq. 3, assuming uniform
prior probabilities on community c, we can compute P (c =
p, u = q, z = r|ωi = m, z−i,x−i,w−i) for CUT1 by:

P (ci = p, ui = q, zi = r|ωi = m, z−i,x−i,w−i) ∝

P (ωi = m|zi = r)P (zi = r|ui = q)P (ui = q|ci = p) ∝

CWT
mr + β

Σm′CWT
m′r

+ V β

CTU
rq + α

Σr′CTU
r′q

+ Tα

CUC
qp + γ

Σq′C
UC
q′p

+ Uγ

(7)

where P (ωi = m|z = r), P (zi = r|ui = q) and P (ui =
q|ci = p) are estimated via:

P (ωi = m|zi = r) ∝
CWT

mr + β

Σm′CWT
m′r

+ V β
(8)

P (zi = r|ui = q) ∝
CTU

rq + α

Σr′CTU
r′q

+ Tα
(9)

P (ui = q|ci = p) ∝
CUC

qp + γ

Σq′C
UC
q′p

+ Uγ
. (10)

In the equations above, CWT
mr is the number of times that

word ωi = m is assigned to topic zi = r, not including the
current instance. CTU

rq is the number of times that topic

z = r is associated with user u = q and CUC
qp is the number

of times that user u = q belongs to community c = p, both
not including the current instance. C is the number of
communities in the social network given as an argument.

The computation for Eq. 8 requires keeping a W × T
matrix CWT , each entry CWT

ij of which records the number
of times that word i is assigned to topic j. Similarly, a
T × U matrix CTU and a U × C matrix CUC are needed
for computation in Eq. 9 and Eq. 10.

Similarly, P (ci = p, ui = q, zi = r|ωi = m, z−i,x−i,w−i)
is estimated based on the Bayesian structure in CUT2:

P (c = p, u = q, z = r|ωi = m, z−i,x−i,w−i) ∝

CWU
mq + β

Σm′CWU
m′q

+ V β

CUT
qr + γ

Σq′C
UT
q′r

+ Uγ

CTC
rp + α

Σr′CTC
r′p

+ Tα
(11)

Hence the computation of CUT2 demands the storage of
three 2-D matrices: CWU , CUT and CTC .

With the set of matrices obtained after successive states
in the Markov chain, the semantic communities can be
discovered and tagged with semantic labels. For example,
in CUT1, the users belonging to each community c can be
discovered by maximizing P (u|c) in CUC . Then the topics
that these users concern are similarly obtained from CTU

and explanation for each topic can be retrieved from CWT .

4.3 Gibbs sampling with entropy filtering
In this section, we further develop Gibbs sampling to

improve computational efficiency and performance.
Consider two problems with Gibbs sampling illustrated

in Fig. 6: (1) efficiency: Gibbs sampling has been known to
suffer from high computational complexity. Given a tex-
tual corpus with N = 106 words. Let there be U = 150
users, C = 10 communities and T = 20 topics. An I =
1000 iteration Gibbs sampling has the worst time com-
plexity O(I ∗N ∗ (U ∗ C ∗ T )), which in this case is about
3 ∗ 1013 computations. (2) performance: unless performed
explicitly before Gibbs sampling, the algorithm may yield
poor performance by including many nondescriptive words.
For Gibbs sampling, some common words like ’the’, ’you’,
’and’ must be cleaned before Gibbs sampling. However,
the EnF-Gibbs sampling saves such overhead by automati-
cally removing the non-informative words based on entropy
measure.

(1) /* Initialization */
(2) assign each ωi to random topic, user and community;
(3)
(4) /* Markov chain convergence */
(5) i← 0; TrashCan← φ;
(6) I ← desired number of iterations;
(7) while i < I
(8) for each observed ωi

(9) if i < A /* in early iterations */
(10) estimate P (c, u, z|ωi), u ∈ αd;
(11) (p, q, r)← argmax(P (cp, uq , zr|ωi));
(12) record assignment τ (cp, uq , zr, ωi);
(13) else /* removing non-informative words */
(14) if ωi /∈ TrashCan
(15) if Entropy(ωi) ≤ θ
(16) (p, q, r)← argmax(P (cp, uq , zr|ωi));
(17) record assignment τ (cp, uq , zr, ωi);
(18) else
(19) TrashCan← TrashCan ∪ {ωi};
(20) i + +;

Figure 7: EnF-Gibbs sampling

Fig. 7 illustrates the EnF-Gibbs sampling algorithm we
propose. We incorporate the idea of entropy filtering into
Gibbs sampling. During the interactions of EnF-Gibbs
sampling, the algorithm keeps in TrashCan an index of
words that are not informative. After A times of iterations,
we start to ignore the words that are either already in the
TrashCan or are non-informative. In Step 15 of Fig. 7, we
quantify the informativeness of a word ωi by the entropy
of this word over another variable. For example, in CUT1
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where CWT keeps the numbers of times ωi is assigned to
all topics, we calculate the entropy on the ith row of the
matrix.

5. EXPERIMENTS
We present experimental results of our models with the

Enron email corpus. Enron email dataset was made public
by the Federal Energy Regulatory Commission during its
investigations and subsequently made available [20].

In this section, we present examples of discovered seman-
tic communities. Then we compare our communities with
those discovered by the topology-based algorithm Mod-
ularity [2] by comparing groupings of users. Finally we
evaluate the computational complexity of Gibbs sampling
and EnF-Gibbs sampling for our models.

We implemented all algorithms in JAVA and all experi-
ments have been executed on Pentium IV 2.6GHz machines
with 1024MB DDR of main memory and Linux as operat-
ing system.

5.1 Semantic community representation
We preprocessed the Enron email dataset by removing

the common stop words. Each employee in Enron is iden-
tified by an email address. For brevity, we use only the
email ids without organization suffixes hereafter.

In all of our simulations, we fixed the number of com-
munities C at 6 and the number of topics T at 20. The
smoothing hyper-parameters α, β and γ were set at 5/T ,
0.01 and 0.1 respectively. We ran 1000 iterations for both
our Gibbs sampling and EnF-Gibbs sampling with the
MySQL database support. Because the quality of results
produced by Gibbs sampling and our EnF-Gibbs sampling
are very close, we simply present the results of EnF-Gibbs
sampling hereafter.

robert.badeer

richard.shapiro

kevin.hyatt
tracy.geaccone

j..sturm
gerald.nemec

philip.platter

john.griffith
mike.swerzbin

theresa.staab
craig.dean

teb.lokey

richard.ring

stephanie.panus

suan.scott

mark.whitt dana.davis

taylor

k..allen

lindy.donoho

lynn.blair

w..pereira
b..sanders

mike.grigsby

Topic 12

Topic 5

community 3

Figure 8: A Community Discovered by CUT1

The ontologies for both models are illustrated in Fig. 8
and Fig. 11. In both figures, we denote user, topic and
community by square, hexagon and dot respectively. In
CUT1 results, a community connects a group of users and
each user is associated with a set of topics. A probability
threshold can be set to tune the number of users and top-
ics desired for description of a community. In Fig. 8, we
present all the users and two topics of one user for a discov-
ered community. By merging all the topics for the desired

users of a community, we can tag a community with topic
labels.

Topic 3 Topic 5 Topic 12 Topic 14

rate dynegy budget contract
cash gas plan monitor

balance transmission chart litigation
number energy deal agreement
price transco project trade

analysis calpx report cpuc
database power group pressure

deals california meeting utility
letter reliant draft materials
fax electric discussion citizen

Table 1: Topics Discovered by CUT1

Fig. 8 shows that user mike.grigsby is one of the users
in community 3. Two of the topics that is mostly con-
cerned with mike.grigsby are topic 5 and topic 12. Ta-
ble 1 shows explanations for some of the topics discovered
for this community. We obtain the word description for a
topic by choosing 10 from the top 20 words that maximize
P (w|z). We only choose 10 words out of 20 because there
exist some names with large conditional probability on a
topic that for privacy concern we do not want to disclose.

abbreviations organizations

dynegy An electricity, natural gas provider
transco A gas transportation company
calpx California Power Exchange Corp.
cpuc California Public Utilities Commission
ferc Federal Energy Regulatory Commission
epsa Electric Power Supply Association
naruc National Association of

Regulatory Utility Commissioners

Table 2: Abbreviations

We can see from Table 1 that words with similar se-
mantics are nicely grouped to the same topics. For better
understanding of some abbreviate names popularly used in
Enron emails, we list the abbreviations with corresponding
complete names in Table 2.

For a single user, Fig. 9 illustrates its probability dis-
tribution over communities and topics as learned from the
CUT1 model. We can see the multinomial distribution we
assumed was nicely discovered in both figures. The dis-
tribution over topics for all users are presented in Fig. 10.
From Fig. 10, we can see some Enron employees are highly
active to be involved in certain topics while some are rel-
atively inactive, varying in heights of peaks over users.

Fig. 11 illustrates a community discovered by CUT2.
According to the figure, Topic 8 belongs to the semantic
community and this topic concerns a set of users, which
includes rick.buy whose frequently used words are more
or less related to business and risk. Surprisingly enough,
we found the words our CUT2 learned to describe such
users were very appropriate after we checked the original
positions of these employees in Enron. For the four users
presented in Table 3, d..steffes was the vice president of
Enron in charge of government affairs; cara.semperger was
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Figure 10: Distribution over topics for all users

a senior analyst; mike.grigsby was a marketing manager
and rick.buy was the chief risk management officer.

Topic 2

Topic 9

Topic 12

Topic 16

joe.stephenovitch

monique.sanchez
charles.weldon

andrea.ring

john.griffith
kenneth.lay

scott.neal

rick.buy

stacy.dickson

Community 2

Topic 8

Figure 11: A Community Discovered by CUT2

d..steffes cara.s mike.grigsby rick.buy

power number file corp
transmission cash trader loss

epsa ferc report risk
ferc database price activity

generator peak customer validation
government deal meeting off
california bilat market business

cpuc caps sources possible
electric points position increase
naruc analysis project natural

Table 3: Distribution over words of some users

5.2 Semantic community discovery quality
We evaluate the quality of discovered communities against

the topology-based algorithm in [2], a hierarchical agglom-
eration algorithm for community structure detection. The
algorithm is based on Modularity, which is a measurement
of whether a division of a network is a good one, in the
sense that there are many edges within communities and
only a few between them. We employ the clustering com-
parison method in [16] to measure the similarity between
our communities and the clusters of users produced by [2].

Given N data objects, the similarity between two clus-
tering results λ is defined5:

λ =
N00 +N11

N(N − 1)/2

where N00 denotes the count of object pairs that are in
different clusters for both clustering and N11 is the count
of pair that are in the same cluster.

The similarities between three CUT models and Mod-
ularity are illustrated in Fig. 12. We can see that as we
expected the similarity between CUT1 and Modularity is
large while that between CUT2 and Modularity is small.
This is because the CUT1 is more similar to Modularity

5Another recent work on comparing clusterings is defined
introduced in [26]. But for our problem where cluster la-
bels are categorical, both clustering comparison perform
similarly as suggested.
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Figure 12: Community similarity comparisons

than CUT2 by defining a community as no more than a
group of users.

We also test the similarity among topics(users) for the
users(topics) which are discovered as a community by CUT1

(CUT2). Typically the topics(users) associated with the
users(topics) in a community represent high similarities.
For example, in Fig. 8, Topic 5 and Topic 12 that con-
cern mike.grigsby are both contained in the topic set of
lindy.donoho, who is the community companion of user
mike.grigsby.

5.3 Computational complexity and EnF-Gibbs
sampling

We evaluate the computational complexity of Gibbs sam-
pling and EnF-Gibbs sampling for our models. For the two
metrics we measure the computational complexity based
on are total running time and iteration-wise running time.
For overall running time we sampled different scales of
subsets of messages from Enron email corpus. For the
iteration-wise evaluation, we ran both Gibbs sampling and
EnF-Gibbs sampling on complete dataset.

In Fig. 13(a), the running time of both sampling algo-
rithms on two models are illustrated. We can see that
generally learning CUT2 is more efficient than CUT1. It
is a reasonable result considering the matrices for CUT1

are larger in scales than CUT2. Also entropy filtering in
Gibbs sampling leads to 4 to 5 times speedup overall.

The step-wise running time comparison between Gibbs
sampling and EnF-Gibbs sampling is shown in Fig. 13(b).
We perform the entropy filtering removal after 8 iterations
in the Markov chain. We can see the EnF-Gibbs sampling
well outperforms Gibbs sampling in efficiency. Our exper-
imental results also show that the quality of EnF-Gibbs
sampling and Gibbs sampling are almost the same.

6. CONCLUSIONS AND FUTURE WORK
We present two versions of Community-User-Topic mod-

els for semantic community discovery in social networks.
Our models combine the generative probabilistic model-
ing with community detection. To simulate the generative
models, we introduce EnF-Gibbs sampling which extends
Gibbs sampling based on entropy filtering. Experiments
have shown that our method effectively tags communities
with topic semantics with better efficiency than Gibbs sam-
pling.

Future work would consider the possible expansion of
our CUT models as illustrated in Fig. 14. The two CUT
models we proposed either emphasize the relation between
community and users or between community and topics. It
would be interesting to see how the community structure
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Figure 14: Modeling community with topics and
users

changes when both factors are simultaneously considered.
One would expect new communities to emerge. The model
in Fig. 14 constrains the community as a joint distribution
over topic and users. However, such nonlinear generative
models require larger computational resources, asking for
more efficient yet approximate solutions. It would also be
interesting to explore the predictive performance of these
models on new communications between strange social ac-
tors in SNs.
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