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Abstract— CiteSeer is a scientific literature digital library
and search engine which automatically crawls and indexes
scientific documents in the fields of computer and information
science. Since it’s inception in 1997 CiteSeer has grown to
index over 730,000 documents and serves over 800,000 requests
daily, pushing the limits of the current system’s capabilities.
In addition, CiteSeer’s monolithic architecture inconveniences
system maintenance and reduces the flexibility of the system
in terms of new feature development, algorithm updates, and
system interoperability. In this paper, we discuss the problems of
the current CiteSeer architecture and propose a new architecture
for a next generation CiteSeer application. The new architecture
is based on modular web services and pluggable service compo-
nents. Preliminary results based on a prototype system showthe
new architecture enhances flexibility, scalability, and performance
for CiteSeer. In addition, new services in development for the next
generation CiteSeer system are discussed.

I. I NTRODUCTION

CiteSeer has arisen as a web-based scientific literature
digital library and search engine that focuses primarily onthe
literature in the fields of computer and information science.
The hallmark feature of CiteSeer is Autonomous Citation
Indexing (ACI) [1], which focuses on extracting citation in-
formation from scholarly publications in electronic format.
CiteSeer automatically discovers and retrieves online scientific
documents. Upon the acquisition of new contents, the new
documents are parsed in order to extract citations information
and other document metadata (such as titles, authors, abstracts,
etc.). Documents and citations are indexed, and a standard
search engine query interface is provided to receive incoming
requests for system content.

From its birth in 1997 until now, CiteSeer has grown
into a collection of over730, 000 documents with over8
million citations. CiteSeer receives over 800,000 hits daily,
is accessed by over100, 000 unique users monthly, and
serves approximately30 gigabytes of data daily. However,
rising demands from system use and the increasing size of
CiteSeer’s archive are causing query latencies to rise as well
as significant degradation of system stability. CiteSeer suffers
from design deficiencies. The most obvious problems are its
lack of scalable storage and transaction-safe updates, which

bring down the system’s performance as well as its stability
significantly. These problems motivate our research interest in
pursuing a new architecture which naturally provides scalable
storage and transaction-safe processes.

Current internal design problems also increase the system’s
maintenance cost. CiteSeer is monolithic, making the system
hard to administer, configure, and modify. Not only does
CiteSeer serve as a large digital library application, but as
anautomaticlibrary it also provides an excellent platform for
relevant research (such as data mining, information retrieval,
etc). With the support of CiteSeer’s architecture as well as
its resources, algorithms and techniques can be developed and
tested in a real-world digital library application. However, the
current system architecture discourages such use since incor-
poration of new modules and algorithms requires significant
labor.

The introduction of a modular CiteSeer architecture offersa
great opportunity to exploit newly emerged web technologies
to improve the system’s performance and configurability. Ac-
cordingly, the system will become more powerful and robust:
more simultaneous transactions can be supported; tasks like
system monitoring and logging will be more convenient. The
next generation CiteSeer is far more than a debugged version
of CiteSeer. It is a system with new elements: new services,
new resources, and new data models, all working in a new
framework.

Generally speaking, our goal is the development of a new
CiteSeer architecture, in which current services and modules
will be selectively integrated. In summary, we design the
system to be:

Scalable, in terms of the amount of processed content as
well as the number of simultaneous transactions the system
can handle.

Flexible, or easily reconfigurable, making it a good platform
for conducting research and maintaining the system.

Self-adaptive, which can proactively detect and fix system
errors, automatically balance server loads and autonomously
improve the quality of services.

Service-based, which provides application-level service
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APIs as well as web interfaces.
User-oriented, in order to better serve the research com-

munity and offer a more open environment for academic use.
In this paper, we present our efforts to construct the next

generation CiteSeer -CiteSeerX . Our contribution can be
summarized as four-fold:

1) We propose a new data model, which is fundamentally
different from that of the old CiteSeer. The new model
meets our requirement of data flexibility. We also pro-
vide solutions to make our storage strategy both scalable
and efficient.

2) Based on the new data model, we present a new CiteSeer
architecture, which aims to overcome current system
design drawbacks.

3) Some features and services of the new system are intro-
duced, which gives an overview of the next generation
academic digital library.

4) A prototype system is setup and related experiments are
performed. Evaluation results suggest the new architec-
ture works well under various settings, providing both
good scalability and query efficiency.

The rest of the paper is organized as follows. In Section
II, we briefly review some related research in ACI systems
and digital libraries. An analysis of the old CiteSeer system,
including the implemented architecture and problems, is pre-
sented in Section III. We give the description of the new
data model in Section IV. After that, system architecture of
CiteSeerX is presented in Section V. Some implementation
details are given in Section VI. We present a prototype system
and analyze our experimental results in Section VII. Section
VIII shows features and services of the new system. Finally,
we present our concluding remarks and future plans in Section
IX.

II. RELATED WORK

Since the introduction of CiteSeer [2] as the pioneer in
the field of Autonomous Citation Indexing and one of the
most popular digital libraries in computer science, the amount
of scientific papers on the web has increased significantly,
creating the need for an efficient and scalable system archi-
tecture. Namely, it is highly desired to construct large-scale
digital library systems, which can provide interoperability,
extensibility, high performance and security under a distributed
and heterogeneous environment. A number of specialized [3],
[4], [5], [6] and generic [7], [8], [9] public search engines
and digital libraries has emerged to facilitate the access to
scientific publications, including Arxiv, ScienceDirect and
Corr. Whether centralized [3], [7], [10] or de-centralized[11],
[12], every digital library architecture employs modularization
of their services to achieve scalability.

The attempts to organize heterogenous systems or distrib-
uted resources using a specific protocol can be taken as first
efforts in designing an open architecture. The Simple Digital
Library Interoperability Protocol (SDLIP) [13] supports search
queries to be performed over multiple information sources.
The results can be returned synchronously or streamed when

they are available. In traditional library literature, Z39.50 1 is
a widely-used protocol which supports queries on distributed
metadata repositories. Recently, the emerging OAI-PMH pro-
tocol 2 is adopted in many digital libraries as well as some
search engines to improve the system-level interoperability.
Remote metadata can be harvested and queried as if they were
locally stored. Additionally, in [11], [14], [15], solutions to
distributed digital collection integration are proposed.

Meanwhile, a lot of efforts have been performed to find
a systematic solution for an open digital library architecture.
UC Berkeley Library’s GenDL (Generic Digital Library) [16]
provides a modular object management environment, which
includes a web-based content management system, a preser-
vation repository and an access system. Greenstone [17] and
DSpace [18] are outstanding digital library systems which
offers users much freedom in customizing digital resources.
Greenstone provides users a quick process to distribute digital
documents online. The document formats can be extended us-
ing plug-ins. Also, classifiers can be added to build indicesfor
customized file formats. DSpace can meet a variety of digital
archiving needs. It supports all forms of digital materialsand
manages related metadata.

Fedora [19], [20] is another open-source digital reposi-
tory management system, which demonstrates how distributed
digital library architecture can be deployed using web-based
technologies, including XML and web services. Fedora is
more like a reusable middleware than a complete digital library
system because the services are published in the format of
APIs, which make it easier to be integrated into a digital library
application.

In the literature of ACI study, Google recently introduced
The Google Scholar3 that incorporates ACI to index over
560 million documents and citation records4. Microsoft’s Libra
system [21] contains one million papers, 650,000 authors
and over 2,000 publication venues. Collectively, their dataset
contains 7 million links representing cited-by, authored-by and
published-by relationships. SMEALSearch – a niche search
engine based on the CiteSeer technology – utilizes ACI for
the documents primarily in the fields of business, e-business
and related areas. Rosetta [10] is a digital library that indexes
publications in the field of computer science. Instead of using
the content of documents for indexing, it uses the anchortext
from the citing documents to represent each document.

III. C URRENT CITESEER SYSTEM

CiteSeer has proven its usefulness to the computer science
community as a digital archive for research publications and
through its autonomous citation indexing feature. However,
CiteSeer currently faces significant challenges of interoperabil-
ity and scalability that must be overcome in order to improve
the quality of the services provided and to guarantee that
CiteSeer will continue to be a valuable, up-to-date resource

1http://www.niso.org/z39.50/z3950.html
2http://www.openarchives.org/OAI/openarchivesprotocol.htm
3http://scholar.google.com
4This estimate was obtained by using ”the” as the search term



well into the foreseeable future. The CiteSeer service is
currently being made more available to the world community
through the advent of several mirrors. At the time of this
writing there are CiteSeer mirrors hosted in MIT, Switzerland,
Canada, England, Italy, and Singapore in various stages of
completion.

CiteSeer consists of three basic components: a focused
crawler or harvester, the document archive and related indices,
and the query interface [22]. The focused spider or harvester
crawls the web for relevant documents in PDF and Post-
script formats. After filtering crawled documents for academic
documents, these are then indexed using autonomous citation
indexing [2], which automatically links references in research
articles to facilitate navigation and evaluation. Automatic
extraction of the context of citations allows researchers to
determine the contributions of a given research article quickly
and easily [23]; and several advanced methods are employed
to locate related research based on citations, text, and usage
information. CiteSeer is a full text search engine with an
interface that permits search by document or by numbers
of citations or fielded searching, not currently possible on
general-purpose web search engines.

The architecture of CiteSeer is depicted in Figure 1. Docu-
ments are ingested into the system directly into a file system
repository. The raw files are processed and associated data is
stored in relevant databases and indices. These storage and
index containers are queried through a web application thatis
integrated with each system component, and obtains document
files directly from the local file system. Database and indices
can be locked at the table or index level through a centralized
lock server during updates. Reads into locked resources are
failed.

Fig. 1. Current CiteSeer architecture.

A. Deployment

The main installation of CiteSeer at Pennsylvania State
University is currently deployed using three Dell PowerEdge

servers, each with two processors and 4-6 GB of RAM. Two of
the machines serve public CiteSeer traffic and one machine is
used for development and data acquisition. Additionally, two
low-end single processor machines are used to provide fault-
tolerant load balancing between the two public servers. Storage
is handled via three Dell PowerVault SCSI disk arrays, each
with 2 TB of available storage. Each disk array is connected to
a single PowerEdge server and each carries a fully redundant
copy of the CiteSeer data.

Figure 2 illustrates the current deployment of CiteSeer.
Linux Virtual Server [24] is used to provide fault toleranceand
load balancing between the two public servers. All incoming
traffic is routed through a single active director node, which
hands off the connection to the least loaded real server. The
real server responds directly back to the client, avoiding a
bottleneck that could occur if both incoming and outgoing
traffic were routed through the director. The public machine
group is transparent to users as users must only know a
single IP address to gain access to the cluster, as is typical
in large-scale search engines. Real servers are monitored by
the director nodes and are removed from the routing tables if
a failure occurs. If the active director fails, the backup director
is prepared to immediately take over routing.

Fig. 2. Deployment of CiteSeer using Linux Virtual Server.

IV. DATA MODEL

As discussed in Section III, the core component of Cite-
Seer’s storage is the document repository, in which the primary
digital objects are documents, citations, and citation groups.
Each document is assigned a document ID, each citation a
citation ID and each citation group is assigned a group ID.
These objects are stored in separate index spaces. This ID
system brings unnecessary overhead in terms of storage, sys-
tem efficiency, and data integration. CiteSeerX , in accordance
with our design goals and emerging requirements, employs a
new data model.



A. Extended Storage Scope

The current CiteSeer system can be viewed as a document-
centric digital library, which crawls, stores, and indexestext
documents. Processing and data modeling flows from these
documents as the core system objects. In the new system, the
focus is on digital object records rather than text documents.
Each harvested document is associated with a document
record, and each citation is associated with an individual
citation record as well as a related document record, even
if the real document referenced by a citation is not present in
the repository. Additionally, authors and publication venues are
no longer considered as metadata ”belonging to” a document,
but as peer digital objects that are linked to documents as
well as to each other. Figure 3 illustrates the new storage
structure in simplified form. Other digital objects that cross
the boundaries of individual documents, such as institutional
affiliations or acknowledged entities, are stored with the same
model of functional separation. Only data that is specific toa
single document, such as titles, abstracts, and keywords, are
stored within document records.

Researchers

Documents

Venues

MetadataCitationsPapers

MetadataPaper List MetadataPaper List

Fig. 3. Community-Centric Storage.

B. New ID System and Virtual Documents

In CiteSeerX , the ID system is simplified for documents.
Previously, we maintain citation IDs and citation group IDsfor
offline citation clustering and matching algorithms. Citations
and documents are treated differently in the old CiteSeer
system, ignoring the fact that the cited objects are themselves
documents. Hence, we only keep document IDs in the new
document repository. The citation relationship is kept using
links between document records, which we call thecitation
graph. For author and venue repositories, we also employ the
one ID per record principle, respectively. This approach has
the benefit of separating record matching and linking routines
from the storage model. Name and document disambiguation
as well as record linkage services can be plugged into the
system as fully separate modules.

Two problems arise with the new ID system for the docu-
ment repository:

1) It is possible that a matching document record for a
new citation cannot be found in CiteSeer’s document
repository. It is thus necessary to create a temporary

document record as a placeholder for a ”real” document
record, that is, a record for a document that is known
within the system.

2) The existing offline algorithm for matching citations to
document records depends on the prior clustering of
citations into groups that reference a single document. A
new solution is needed to build and maintain the citation
graph.

To solve the first problem, we introduce the notion ofvirtual
document recordsinto our system. Once a new citation is
ingested into the repository, the system queries the existing
repository in order to identify a document record that matches
the citation. If a match is found, an edge is added to the citation
graph. Otherwise, the system creates a virtual document record
based on the citation metadata. The record is calledvirtual
because the cited document has not been located and stored
by CiteSeer. Once the document is crawled and downloaded,
another query into the system is performed in order to match
the document with any existing virtual document records.
If a match is found, the corresponding virtual record is
updated with a pointer to the document file, making it areal
document record. This new organization makes the CiteSeer
repository more unified and complete. There are no citation
edges pointing to an external unknown resources. All edges are
internal in the document database. Real and virtual documents
can be searched in the same index space. Virtual document
records need not be created by citations alone. There are some
other sources for virtual document information, such as the
proceeding list of a conference and metadata obtained from
other digital libraries. As long as a document record contains
only metadata without the corresponding document file, the
record is marked as virtual.

An online process has been developed to match citations
with documents [25]. In realistic cases, there are often ab-
breviations and typos in the observed citation metadata. Our
algorithm is capable of handling some data inaccuracy. The
Lucene indexer5 is used to match records based on fuzzy
queries over the metadata fields in records. If a result is
returned whose similarity (based on Levenshtein Distance
[26]) reaches a predefined threshold, our algorithm indicates a
match between a document and a citation record and creates
a new entry in the citation graph. Otherwise, the algorithm
determines that no record in the repository matches the new
citation. A virtual document record is then created.

C. Canonical Metadata

In CiteSeer, the identity of a document, author, or venue can
be defined as its perfect metadata record. Even in situations
where human-generated metadata is available, the data can be
incomplete or incorrect. This problem is exacerbated by digital
libraries such as CiteSeer, in which the system is responsible
for building its own collection without the aid of human-
produced metadata. Records in CiteSeer enter the system with
information identified by automatic parsing algorithms. For

5http://jakarta.apache.org/lucene/



documents, the information is usually restricted to the title,
author names, and any other metadata typically available in
document headers. The parsed information is often noisy or
incorrect, and almost always incomplete. Citation information
can be used to fill in missing information of document records
and to correct erroneous data. When citations to a document
record are found, the document’s metadata can be updated with
information from citations. Information from multiple citations
can be fused to form a best guess as to the correct metadata
values for the document. This process will be referred to
subsequently as the process of building thecanonicalmetadata
for a document. Similarly, document records can be gradually
refined from an online proceeding list of a venue or a publica-
tion list of an author. In return, canonical metadata for venue
or author records can be inferred from a document’s canonical
metadata or a citation. The process of refining document
canonical metadata with citations is illustrated in Figure4.

Metadata
Matching
Algorithm

Is There an
Existing Doc?

Y

N

Get DID

Generate a
Virtual Doc

Ingest a
Record

Y
More Citations?

Extract
Citation

Metadata

Canonical
Metadata
Update

Did the Canonical
Metadata Change?

YN

Update
Relationship

N

Document
Metadata

Fig. 4. Online Citation Matching Workflow.

Due to the page limitation, the detailed discussion of our
canonical record construction will not be presented in this
paper.

D. Digital Objects

In the current CiteSeer system, data storage is explicitly
exposed to services and algorithms. This approach is prob-
lematic in that there is no uniform interface to the underlying
objects. The relationship between functional modules and data
repositories is tight-coupled. Therefore, if the data definition
is changed or extended, for example, a new media type should
be managed by the system, the services cannot work properly
without significant revision. Accordingly, if it is desirable to
install new services into the system, the new modules must be
interfaced through custom routines into the system data model.

To make CiteSeerX more flexible and extensible in terms
of storage types and service types, a new virtual storage
layer is introduced into the system, separating physical storage
from service access. With the assistance of this layer, a level
of abstraction can be defined on top of physical storage.
Any modification from the applications will not affect the
underlying physical storage, as long as the uniform access
interface is followed. Also, actual physical storage can be
distributed across multiple machines and sites. Tasks suchas

query routing and load balancing can be performed in this
layer.

The idea ofdigital objects is proposed in [27], in which
a universal container for various resource types and meta-
data formats is presented. Typically, digital resources are
represented according to their media type in most resource
repositories. A movie is no more than a movie and a PDF file
is simply a PDF file. When a digital resource is obtained,
its identity and format can be recognized instantaneously.
This approach is convenient in terms of data retrieval and
representation. However, it may be desirable to have more
flexibility in terms of unified object retrieval or the construc-
tion of complex data structures. A direct resource mapping can
make such processes and representations impractical due tothe
necessity of codifying appropriate resource handlers according
to media types. The idea of digital object is somewhat similar
with the object-oriented idea in programming languages. A
digital object is a group of tightly-related digital resources
wrapped within a common container, along with the associated
distribution methods[19], [20], [27]. Commonly, a description
file (written in XML) is used to explain what is included in
the object. Conceptually, a digital object is comprised of three
parts:

1) Data: Multiple streams of data can be stored and inter-
related. This feature is powerful for expressing complex
data types such as books and papers, which may contain
information in various media formats (e.g. text versus
image data).

2) Methods: Methods define a set of behaviors that can be
used for external systems to access or manage the data
objects.

3) Metadata: Metadata can be viewed as another portion of
data. It is special because often in digital libraries users
may query metadata attributes stored in separate index
slices.

The heterogeneity between different resource types are hid-
den behind the wall of digital objects. From external systems,
all digital objects are identical in character. In summary,the
digital object model offers the strengths and advantages of:

Abstraction: The object model is identical from outside the
system, and various data objects such as papers, authors, or
venues can be retrieved via the same access methods.

Flexibility : Data access methods and data composition can
be designed to best represent the system requirements and
modified without greatly affecting the related applications
when requirements change.

Scalability: Digital Objects do not manage physical storage,
which can be located locally, in distributed repositories,or
remotely on the web.

V. A RCHITECTURE OFCITESEERX

Based on the new data model, CiteSeerX adopts a new
system architecture to overcome the limitations outlined in
the previous sections. This section provides details on the
components of the new architecture and our solution towards
achieving flexibility and scalability within the new system.
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Fig. 5. CiteSeerX Architecture.

A. Architecture Overview

Figure 5 gives an overview of the new architecture. Basi-
cally, the system comprises of the following three layers:

1) Storage Layer:Storage layer handles the management of
and access to locally stored data objects of CiteSeerX . These
objects are maintained by a digital object management system.
Each digital object is accompanied by a description file that
contains the metadata of the object. For efficiency purposes,
some of the data that are generated from the objects (i.e.
citation graph) are stored in databases. The parsed documents
are stored in local disks as raw text files, which are linked by
digital object records.

2) Application Layer:Application layer is the collection of
the following function modules and servers in CiteSeerX :

• Naming Server: The highly distributed architecture of
CiteSeerX enables us to efficiently utilize multiple servers
across the network. A naming server lookup forwards
incoming requests to one of CiteSeerX servers, which
provides to be effective for load balancing among our
servers as well as directing requests to the closest server
node.

• Logging Server: We utilize separate logging services to
aggregate and manage system logs. Logging servers are
where the logs are created and stored. Each working
module of the system has a logging agent which sends
logging event to the logging server.

• Crawling Server: Crawling processes populate the doc-
ument repository. Each document that is identified as a
publication in the field of computer science is forwarded
to the Storage Access and Management Interface for
permanent storage.

• Storage Access and Management Interface: This layer
provides an interface to the storage servers that serves
multiple purposes. First, by intermediating the accesses to
the storage servers, it provides a data access standard for
the methods that directly accesses the repository/index.
Second, an access control mechanism regulates the access
to the stored information. Third, it acts as a resource loca-
tion resolver for mapping internal resource identifications
to actual storage addresses. This gives us the flexibility to
implement distributed storage, which has further benefits
of data migration and load balancing across multiple
servers.

• Application Servers: Application server provides service
access entries for web user interfaces as well as external
applications. Application servers host 3rd-party software
modules and native modules.

3) User Interface Layer:This layer provides an abstraction
for the web interface of CiteSeerX by acting as a gateway
between the user interface and application modules. This gives
us the flexibility to update application logic without worrying
about the user interface as well as providing personalized



services to users.

B. Collection and Scalability Solution

As described in Section IV, CiteSeerX contains three inter-
related repositories: documents, authors and venues. Among
them, documents are considerably much larger than the other
two. Hence, we primarily emphasize on addressing the scala-
bility issues in our document repository in the new architec-
ture.

The documents are distributed across the storage servers
to avoid the bottleneck of directing requests to a single
storage server. A new concept is introduced to improve the
scalability of CiteSeerX . Document records are separated into
collections. Distinct from repositories that represent physical
storage, collections are virtual concepts. In CiteSeerX , one
storage server is specified as theactiveserver, which receives
crawled documents. In this server, a temporary collection (not
serving public traffic) ingests new documents until either a
predefined volume threshold is reached or the system requests
the collection to befinalized. New documents that enter the
collection are assigned a Document ID (DID) by the system,
which includes the collection identification number. Hence,
performing a document identifier lookup returns the DID
along with the identifier of the collection that contains the
document. The new finalized collection, in turn, is transferred
to the migration service in the application layer, which keeps
a configuration of all available storage servers. An entry of
the configuration looks like this:

Server 1: Total Storage: 75G; Used Storage: 40G; Access
Frequency in Last Month: 200,000

The logging service periodically updates access frequencies
in the configuration. Our policy is to ask the migration service
to store the new collection in the least-loaded server which
has enough storage space to accommodate it. Following the
migration of this new collection, the naming server updates
the collection-server mapping registry. The active storage
server creates a temporary collection for subsequently crawled
documents. This process can be illustrated in Figure 6.
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Finalized Collection

Finalized Collection
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Naming Server

Naming
Service
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Fig. 6. Temporary Collection Migration Process.

However, document popularity distributions vary signifi-
cantly over time, presenting a dynamic behavior in user access
patterns. Therefore, despite the fact that each collectionis
deployed optimally in its creation time, the access patternfor

the servers can eventually become unbalanced. To overcome
this problem, the migration service keeps observing the access
status of each storage server and each collection. The load
balancing algorithm and migration policy is presented in
Algorithm 1.

A further level of data distribution is achieved by the fact
that the digital objects arenot the documents, but rather,
descriptors of documents. Hence, we can separate the storage
of digital objects and the corresponding documents as shown
in Figure 5.

Algorithm 1 Load Balancing Algorithm
Input:
fi (i = 0, 1, ..., n): Access count for each deployed storage server

Si in a given time period.
fij (i = 0, 1, ..., n; j = 0, 1, ..., m): Access count for each

collectioncij in a given time period.cij represents the j-th collection
in ServerSi.
α: Overload factor.
1: calculate the mean access count for all storage servers:

f = 1

n

∑n

i=1
fi

2: for each serverSk whosefk is more than(1 + α)f do
3: find collectionckj whosefkj is closest toαf in Sk

4: find serverSl, whosefl is least among all servers that have
enough space to storeckj

5: migrateckj to Sl

6: end for

VI. SYSTEM IMPLEMENTATION

CiteSeerX is supported by J2EE framework6, utilizing a
number of open-source modules and middleware.

This section presents the open-source technologies that have
been successfully integrated into CiteSeerX in the order from
bottom to top, as shown in Figure 5.

Fedora [19], [20] serves as the digital object management
system in the storage layer. It provides a level of abstraction
through well defined access mechanism based on web services.
This feature makes it well suited to CiteSeerX as a storage
middleware, connecting to both the front-end (application
servers) and the back-end (physical storage).

Full-text search is handled by querying Lucene index of the
whole document collection. Relational tuples are stored ina
PostgreSQL7 database.

Application layer contains a number system applications,
exposed as web services that are accessible by the user
interface layer and external applications.

Apache’s Struts8 bridges web requests to appropriate ap-
plication level logics in the user interface layer. Struts takes
the Model 2 approach, which is a variation of the classic
Model-View-Controller (MVC) paradigm. It plays acontroller
role with other technologies providing the model and the
view, providing a clear separation of the web pages and the
applications.

6http://java.sun.com/j2ee/
7http://www.postgresql.org/
8http://struts.apache.org/



VII. PERFORMANCEEVALUATION

A. Experimental Setup

Experiments were conducted in order to evaluate
CiteSeerX ’s scalability in terms of: (1) simultaneous
online requests and (2) the number of stored documents.
Also, various distributed storage deployments were testedin
order to study their influence on system performance.

The experiments were implemented using Java on multiple
workstations (CPU: Pentium 4 2.40GHz, Memory: 1GBytes,
OS: Solaris 10). The raw text and metadata of documents
within the CiteSeer repository were extracted and encoded
for ingestion into CiteSeerX . The records were ingested into
Fedora repositories specified during the migration process.
Meanwhile, Lucene was used to build indices on the metadata
and full texts respectively. Inside Fedora, the metadata was
also indexed for the purpose of comparing Fedora’s native
search capability with Lucene.

Concurrent user transactions were simulated through mock
clients. For the current CiteSeer system, the most common
operations performed by users are document search and docu-
ment retrieval. To better simulate the behavior patterns ofreal
users, CiteSeer’s system logs were analyzed to find the top
10, 000 most popular query terms in a given month. Each time
a client thread was initialized, it was set to randomly choose a
term from the popular term vocabulary. Each thread issued its
query to the system independently of other threads. The mock
clients randomly selectedn (0 ≤ n ≤ 10) records from the
search result list and issued new requests to the storage server
to fetch the selected records.

The query handler process was set to capture incoming
queries and forward them to appropriate storage servers. Inside
the prototype, there are three ways to handle a query, for
the purpose of comparison: (1) metadata search with Lucene
index, (2) metadata search with Fedora’s in-built index, and
(3) full text search with Lucene index. System performance
is measured according to query latencies. To minimize the
possible errors, each experiment was performed multiple times
and the mean value of the observations is taken as the final
result. The experimental settings are listed in Table I. In the
following subsections, if not explicitly specified, default values
are chosen in the settings.

System Parameter Range Default
Number of documents in a server 12, 500 − 50, 000 12, 500

Number of distributed servers 1 − 4 4

Number of simultaneous user threads 1, 000 − 5, 000 1, 000

TABLE I

EXPERIMENT SETTINGS

B. Experimental Results

1) Effect of the Size of a Repository:For this experiment,
document content is not distributed among multiple servers.
Within a single server, the number of documents is controlled
and the system’s performance is observed, shown in Figure
7(a).

As expected, query latencies rise according to the number of
documents within the repository. Generally, as the document
repository grows, more hits are returned by the index and more
documents need to be retrieved, requiring more communica-
tion with the index and storage services. Also, it is observed
that querying Lucene’s metadata index is more efficient than
querying Fedora’s in-built metadata index, indicating that a
specialized index service is required.

2) Effect of Simultaneous Requests:Next, the system was
configured with4 repository servers and each was loaded with
12, 500 documents. The number of simultaneous requests was
varied from1, 000 to 5, 000 to study how the system behaves
under different workloads. The results are shown in Figure
7(b).

Generally, the overall performance of the system decreases
with the increase of simultaneous queries, as expected. It
should be noted that as the number of users reaches5, 000,
there is a large increase in the system’s response time. How-
ever, the public CiteSeer service currently does not typically
receive more than50 simultaneous queries at any time. Tracing
the execution of the system revealed that the performance
bottleneck occurred in the query handler, which ran out of
memory at approximately5000 queries and began queuing
queries. If necessary, this problem could be overcome by in-
creasing the RAM available to the query handler or balancing
load across multiple redundant index servers.

3) Effect of Data Distribution:The effect distributing stor-
age across multiple Fedora repositories on dedicated machines
was investigated. The number of documents in the storage
repository was fixed at50, 000 and the number of repository
services was adjusted from1 to 4.

Figure 7(c) shows that data distribution can improve overall
system performance. As the Lucene index is not distributed
across servers, the improvement brought by data distribution
is caused by the document retrieval efficiency from the Fedora
repository services. As more storage servers are deployed,
more server resources (CPU, memory) are allocated to data
retrieval tasks. The performance improvements are most no-
ticeable under heavy workloads, where distributed serverscan
support more concurrent data retrieval operations.

VIII. N EW FEATURES AND SERVICES

A. CiteSeer as Semantic-Enabled Services

Program interfaces for the current CiteSeer are limited
by the lack of clean interfaces into the component system
features. CiteSeer-API [28] allows users to programmatically
access the CiteSeer service similarly to how a human user
would through CiteSeer’s regular web interface. CiteSeer-
API merely presents the CiteSeer service as a search engine
service coupled with a bibliographical database. However,the
service fails to expose the basic functions of the system that
might be of interest to researchers and third-party application
developers. For instance a semantic web agent could simply be
interested in downloading a cached document. In that situation
it is common to locate a document hosted by CiteSeer through
a generic search engine such as Google. Another example is
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that of a semantic web agent that needs to extract citations
from a piece of raw text: here, most of the CiteSeer service is
irrelevant to the task, and unless this agent is willing to submit
the full document to CiteSeer for processing, the task cannot
be performed.

The elementary functionalities of CiteSeer can be divided
into two categories. The first category is that of the function-
alities which are specific to the CiteSeer service and which
therefore are the most valuable regarding their integration on
semantic web. The second category is that of the functionali-
ties currently integrated in the CiteSeer but that are not specific
to the application as they are recurrent to many information
retrieval systems. The most recent service descriptions (WSDL
and OWLS) for each service are available on the web9.

The CiteSeerX architecture is based upon discrete modules
for each fundamental service component, facilitating the devel-
opment of web service interfaces into each module. Mapping
each elementary functionality of CiteSeer to independent web
services, agents on the semantic web will gain access to the
most unique functionalities of CiteSeer service, which are
automated citation analysis and document interlinking based
on citations.

Beyond the benefits of increased system flexibility and
accessibility, modularizing core system components increases
the configurability of the CiteSeerX deployment environment.
If any single service is found to be a bottleneck in a pattern
of system use, the service can be mirrored on an arbitrary
amount of other machines, in a single site or across sites. Load
can then be balanced across the service mirrors as necessary.
This is particularly convenient for stateless services such as
information extraction or document conversion modules, as
no data migration is necessary.

B. OAI Compliance

OAI-PMH enables heterogeneous digital library systems to
cooperate via higher-level aggregations that abstract metadata
records away from the fundamental incompatibilities between
systems. Using APIs into CiteSeerX , arbitrary clients can di-
rectly determine a link to a specific resource hosted by a given
CiteSeerX service. A direct application of such functionalities
is the interlinking of digital library systems. Not only with
this interoperability allow external digital libraries toaccess
CiteSeerX repository content, but it will also allow the direct

9http://citeseer.ist.psu.edu/api

importation of virtual document records (discussed previously)
into CiteSeerX from trusted external sources supporting OAI-
PMH. This will serve to increase confidence in the verity of
virtual document records as well as to provide metadata infor-
mation that can be used to locate missing document content.
For instance, title and author metadata can be employed to
query the web in order to discover textual documents based
upon their metadata.

This concept has been used in the current CiteSeer system
in order to interoperate with sister search engines employing
the same code base. For example, OAI-PMH has been used
to share content among CiteSeer, eBizSearch [29], [30], and
SMEALSearch10. eBizSearch and SMEALSearch are niche
search engines for e-Business and general academic business
publications, respectively. Using OAI-PMH, the three search
engines are able to request overlapping content from each
other. However, due to the inability of the current CiteSeer
architecture to handle metadata records for unavailable doc-
uments, special metadata elements were required within the
OAI framework in order to complete the interoperability. The
virtual record structure of CiteSeerX will enable the system
to ingest OAI records in any common format.

C. Logging Service

As a hybrid search engine and digital library, the logging
service of CiteSeerX must consider logging from multiple
perspectives in order to provide a unified view of system
operations. This is particularly the case given the modular
nature of CiteSeerX service deployment. The perspectives are
as follows:

1) System perspective: Each service within CiteSeerX

must keep usage logs; however, aggregation of those
logs can require significant resources. In addition, most
system use cases will involve multiple working modules,
creating a problem of session and transaction tracking.

2) Data perspective: Heterogeneity of log formats for
individual services can significantly increase overhead
in log aggregation. Due to the lack of a well accepted
self-descriptive log standard, the sharing of usage logs
of web information retrieval systems and has historically
been restricted.

3) Use perspective: Usage mining in search engines is usu-
ally restricted to the query logs. An important problem

10http://smealsearch.psu.edu



with existing logging methods is the lack of logging
for system responses. The lack of response logs has
become an obstacle for applications of data mining to
many web information retrieval systems. In addition,
session and transaction information is lacking in most
web log formats, which is critical in inferring user access
patterns.

An XML based description language for information re-
trieval system usage logs is introduced in CiteSeerX by
modeling a user-system interaction ontology. The language
encompasses rich semantic descriptions of the events being
logged such as dependency between successive actions. In
addition, logs are maintained for both requests and system
responses for the purposes of data mining and system moni-
toring.

The logging service architecture CiteSeerX reflects the con-
cept of detaching the logging service from the target system
[31]. It is no longer the duty of each module in the system
to write document usages. Instead, an independently running
logging service collects and manages logs from every module.
In this way, the standard logging ontology can be applied
without burdening module developers with strict log format
criteria. We follow previously proposed guidelines [31] and
build our logging service based on web services in order to
facilitate logging in a heterogeneous system environment.

IX. CONCLUSION

This paper presents CiteSeerX – the next generation Cite-
Seer architecture that is designed to overcome the challenges
of interoperability, extensibility and scalability of thecurrent
CiteSeer system. Rather than being a debugged version of
CiteSeer, CiteSeerX is a completely new architecture that
is based on modular web services, pluggable service com-
ponents, distributed object repositories and transaction-safe
processes, all utilizing an enriched data model.

The preliminary evaluation shows flexibility, scalabilityand
performance improvements for CiteSeerX compared to its
predecessor design. The new architecture along with new
features such as personalized services and acknowledgement
search will enable CiteSeerX to continue to be a valuable tool
for the computer science research community.
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