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Abstract. It is well known that connectivity analysis of linked documents pro-
vides significant information about the structure of the document space for un-
supervised learning tasks. However, the ability to identify distinct clusters of
documents based on link graph analysis is proportional to the density of the graph
and depends on the availability of the linking and/or linked documents in the col-
lection. In this paper, we present an information theoretic approach towards mea-
suring the significance of individual words based on the underlying link structure
of the document collection. This enables us to generate a non-uniform weight
distribution of the feature space which is used to augment the original corpus-
based document similarities. The experimental results on the collection of scien-
tific literature show that our method achieves better separation of distinct groups
of documents, yielding improved clustering solutions.

1 Introduction

Document clustering refers to the task of extracting latent groupings in text databases.
In broad terms, clustering is an optimization problem that attempts to find a partition
of the document collection such that the items belonging to the same cluster are as
similar as possible (cluster compactness) and the discovered clusters as separate as pos-
sible (cluster distinctness) based on a specified (dis)similarity metric within the high
dimensional space that the document objects exist. In document collections where the
only measure of similarity is textual content of documents, the traditional approach is
the identification of meaningful features from documents and selection of the subset
of features from the text corpus that yield better separation of distinct groups of docu-
ments. The clustering algorithm is then applied to this lower dimensional input space
to discover distinct clusters.

The rapidly growing world wide web and the increasing volume of scientific litera-
ture available in digital format on the web has stimulated supervised and unsupervised
data mining research to focus on linked documents. For linked documents, in addi-
tion to the textual content similarity, which can be thought of as an implicit similarity,
we now have the link graph of the documents that depicts the relatedness information
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conveyed by the authors of the digital content. Conventional clustering algorithms use
attribute information to group documents under the assumption that two documents are
related to each other if they have similar attribute values. However, relational data are
richer in structure, hence provide more information available to disambiguate group-
ings. Therefore, link structure analysis has been studied extensively and has shown to
be a significant aid for both supervised and unsupervised data analysis tasks. In this
paper, we focus on clustering in the collection of scientific literature to discover topi-
cal groupings of papers using the textual content of papers combined with the citation
graph of the collection. In a citation graph, papers are represented as vertices of the
graph and citations as directed edges between citing and cited documents. The papers
and citation graph have been obtained from CiteSeer’s1 repository.

CiteSeer [6] is a scientific literature digital library that has grown to index over
740.000 academic publications in Computer Science and related fields. Citations of the
papers are extracted and linked to cited papers by Autonomous Citation Indexing [16].
The citation graph that is constructed through this process provides wealth of informa-
tion since citations in research publications represent an important knowledge source
regarding the context of scientific work. The citation relationships have been shown to
be a valuable resource for a number of tasks such as ranking search results, identifica-
tion of related research documents, trend analysis and social network analysis. Besides
topical relevance, there have been identified multiple factors influencing citations, in-
cluding the desire to publicize own research [10] and promoting own field, author’s
ability to access the document [15] and to read the language that it is written in [24].
Regardless of the reason for citations, comparatively, citation relationships between sci-
entific documents convey a more valuable information than a collection of linked web
documents. However, the citation graph itself can have limited clustering performance
in digital libraries due to the following issues:

1) Cited Document Availability. CiteSeer collects the papers by crawling the web. Thus,
the citations of a paper (i.e. target papers) may not be locally available in CiteSeer’s
repository due to several reasons: a) the citations may not be available on the web, b)
they may just not have been crawled, or c) they may not be related to Computer Science
or a similar field and may not be indexed. If any of these cases is true, the citations
point to virtual metadata records that is identified by the extracted fields of the citation,
including title, authors, publication venue, etc. However, the unavailability of the textual
content of the cited papers prevents detailed analysis on the semantic similarity between
the citing and cited papers.
2) Identity Uncertainty. Citations are references to unique documents, but their repre-
sentations may vary, and finding the best matches for citations is a problem known as
identity uncertainty [19]. The task of ACI is to uncover the identity of the paper that a
citation refers to in order to group together similar citations to the same document, and
to link citations to real documents – those that exist inside the ACI system and those
that are yet to be crawled. Although ACI has been highly effective, it is still possible
that distinct representations of the same citation may be mapped to different documents,
or two citations to different papers be linked to the same target paper.

1 http://citeseer.ist.psu.edu
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The aforementioned reasons lead us to use only the citations where both the cited
and citing documents are available in the collection, which sparsifies the link graph sig-
nificantly. In this paper, we show that taking an information theoretic approach towards
textual content analysis of pairs of documents with citation relationships provides a sig-
nificant improvement in the discovery of document clusters. Further, we believe that the
methodology presented here is applicable to web document collections where similar
link constraints can be observed. One example is hierarchical clustering of documents
where lower level taxonomies may not exhibit strong connectivity. Another application
domain is search engine result clustering [9], an often employed technique to facilitate
users’ quick browsing through search results. Both applications suffer from the lack
of sufficient links between the documents in a given subspace of the entire collection,
which can be addressed by the algorithm proposed here.

2 Related Work

Document Clustering algorithms can be broadly categorized as text-based [20,2,21],
link-based [22,11] and hybrid [23,18,14] approaches. In the domain of linked docu-
ments, link analysis for clustering and classification purposes has generally been stud-
ied in the context of web documents. PageRank [1] and HITS [13] are two of the most
popular algorithms showing the importance of link structure for analyzing associations
between documents.

For merging text-based and link-based information, [5] and [3] use generative prob-
abilistic models of document content and connectivity. He et al. [23] use the hyper-
link structure to cluster web pages using spectral graph partitioning. In their work,
the link graph is used as the dominant source of similarity between documents, and
the link-based similarity measures are augmented by textual content similarity and co-
citation similarity. [14] propose a probabilistic model of link structure based on the
cluster membership. The model is optimized based on observed data where the at-
tributes determine the group membership and group membership determines the link
structure. Modha et al. [17] propose an algorithm for clustering hypertext documents
by using both the document contents and link structure. The algorithm uses an extended
version of the classical Euclidean K-means clustering algorithm that performs cluster-
ing based on word similarity, in-link similarity and out-link similarity. The effect of
each similarity is controlled by a parameter, which needs to be explicitly set by the
user.

A number of algorithms have been proposed for link prediction, which is the task of
identifying the missing entity or entities of a partially observed link by using the exist-
ing observation of the data sample available in the domain. [4] uses directed graphical
models (Bayesian Networks and Probabilistic Relational Models) to represent a proba-
bilistic model of both links and data object attributes. A comparison of various machine
learning approaches for link prediction/completion is given in [8]. One major draw-
back of model-based link prediction is the dependence on the training data. That is, the
learner’s builds a probabilistic model on the training data, it will lack confidence in the
probabilities of the entities that have not been included in the training set.
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3 Problem Description

Documents on similar topics exhibit specific characteristics that separate them from
non-relevant documents. Similar documents cite each other and they contain some level
of textual similarity, measured by the amount of overlapping words/phrases. Some of
those terms are very general and are not useful for clustering purposes. Some, on the
other hand, are highly correlated with the topics of the papers and they are very valuable
for identifying topical clusters in the collection. Although both textual content and link
structure can be used independently for topical clustering, an algorithm that merges both
sources of heterogeneous data has the potential of yielding better clustering solutions
than using either data source alone. If the link structure of the documents are dense
enough, then link based clustering, augmented by textual content, will generally yield
well separated clusters. On the other hand, in situations where link graph is sparse,
access to linking and/or linked documents is limited, or there is some sort of ambiguity
in the link structure itself, the link graph can not be used as the dominant source of
clustering. Thus, it is crucial to find a text-based clustering solution that incorporates
information from the available link structure as well. Our work addresses this problem
and provides an algorithm that bridges the disconnect between text and citations of
papers by discovering the set of words that are most informative in terms of identifying
citation relationships. We then place higher emphasis on such words in the clustering
stage, and discover topical clusters in the citation-augmented feature space.

4 Algorithm

In this section, di � �
n denotes the m documents in the collection and C denotes the

non-symmetric citation matrix where Ci j � 1 if di cites d j, and zero otherwise. Each
document is represented as a vector in the feature space. Following L2 normalization of
the document vectors so that each ��di�� � 1, we generate a similarity matrix S from the
cosine similarities of each document pair:

S i j � cos(di� d j) �
dT

i
� d j

��di�� � ��d j��
(1)

We then calculate, for each citing document, the average distance of its citations using
the similarity matrix S and the citation graph as follows:

�i �

�n
j�1 S i j � Ci j

ki
(2)

where �i represents the average citation distance(ACD) of document di, and ki is the
total number of citations of document di that is present in the collection. In this defini-
tion, only the citations in the collection can affect the distance metric, since, for missing
citations, we do not have the text of the document and hence, S i j will be zero. We are
interested in evaluating the significance of each word by comparing its popularity both
in document pairs with and without citations. To achieve this goal, the ACDs enable us
to view the document space from these two perspectives by populating the following
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Fig. 1. Schematical view of the algorithm. The ACDs are used to find the expected citations and
the given link structure is split into Actual Citation Graph GA and Expected Citation Graph GE

(Steps 1 & 2). The set of words appearing in both in citing and cited documents in GAare inserted
in the Citation Text Corpus T (Step 3). For each word in T, we use the link and word co-occurence
information from GA and GE to calculate the expected entropy loss scores (Step 4).

two sets: The first set, GA is the Actual Citation Graph and is populated with the citing
papers and their citations. This set is the collection of documents that form the citation
graph. The second set, GE , is the Expected Citation Graph and it is populated using the
�i’s in the following fashion. For each document di having ki citations (i.e. the citing
documents in GA), we select ki documents that are not cited by di and is separated from
di by a distance closest to a radius �i. That is, for each citing document di, we find
ki documents such that their content-wise similarity to di suggests that di should also
be citing these documents, but no such citation exists in the graph for di. This set of
documents is called Expected Citation Graph since we would expect these citations to
exist based on the textual content of the papers.

Algorithm. Non-uniform Feature Weighting
1. Populate GA with the documents in the citation graph
2. Initialize GE � �, T � �ti j for Ci j � 1
3. for each citing document di in GA with ki citations do
4. GE � GE� {ki not-cited documents of di closest to �i}
5. end
6. for each tp � T do
7. Ep = Entropy loss calculated from equation 5.
8. w̄(di� tp) � (1 � �) � w(di� tp) � � � Ep��di � 	d1� d2� � � � � dm


9. end
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Fig. 2. Effect of integrating entropy scores of citation corpus. Documents are mapped to 3D space
by Singular Value Decomposition (SVD).

After populating GE with the citing documents in GA and their respective expected
citations, the sets GA and GE have exactly the same number of edges, since we restrict
GE to contain the same linking vertices as GA and insert exactly the same number of
(expected) citations to it. This way, we enable each vertex (i.e. citing document) to be
equally represented both in GA and GE . We then collect the common words between
citing and cited documents in GA. We do not consider the shared terms in the document
pairs that are in GE , since our aim is to identify the importance of the terms that appear
in actual citation relationships.

We use expected entropy loss measure [7] to calculate the amount of information
that each term in T conveys about citations. Our intuition is to find a numerical rep-
resentation of the importance of each feature that is shared by the documents linked
together. This also enables us to learn what makes document A cite document B and
not cite C, although B and C may also be similar based on textual content. Clearly, it
is not possible for a paper about, say, data mining to cite all the literature about this
topic. Due to this fact, since lack of a citation can’t be regarded as irrelevance, if we can
identify the terms that influence citations, we can reflect the information obtained from
the citations to better utilize the textual information of the documents for clustering
purposes. If a word occurs frequently between citing and cited documents in GA, but
not in the expected citations in GE , this word is regarded as a good candidate for being
a topical word and is emphasized in the clustering algorithm. This approach serves as a
means of eliminating one shortcoming of clustering algorithms; that is, each feature is
weighted based on some corpus statistics and almost all clustering algorithms treat the
attributes of data objects uniformly. We break this uniformity by reflecting the informa-
tion obtained from the citation graph by scoring the shared terms of the citations using
expected entropy loss.

4.1 Expected Entropy Loss

Given a text corpus comprising of n distinct features and k categories, expected entropy
loss measures amount of categorical discriminative power of each feature in the dataset.
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In formal definition, let CA and CE be the events of a sample being a member of the
specified class, where the superscripts A and E refer to the actual and expected citation
graphs, respectively. A sample in our case is the shared term between citing and cited
documents. The prior entropy of the class distribution is

e � �P(CA)lgP(CA) � P(CE)lgP(CE) (3)

The posterior entropy of the class distribution when feature f is present in the citation
text corpus is

e f � �P(CA� f )lgP(CA� f ) � P(CE � f )lgP(CE � f ) (4)

The posterior entropy of the class distribution when feature f is absent in the corpus
is denoted as e f̄ and can be found in a similar manner. Thus, the posterior expected
entropy is e f P( f ) � e f̄ P( f̄ ) and expected entropy loss is defined as

Ent�Loss( f ) � e � (e f P( f ) � e f̄ P( f̄ )) (5)

which is always positive for every feature f .

4.2 Feature Weight Adjustment

The citation text corpus T contains the shared words between citing and cited docu-
ments in GA (which is a subset of the original feature space) and we use this subset
to realign the document vectors. Expected entropy loss based ranking of the most and
least informative words in the corpus T is given in Table 1. It can be noted that more
meaningful and topic bearing terms rank higher than less informative terms. Hence, by
integrating the entropy loss information into the document vector representations, it is
possible to achieve better separation of the distinct clusters. For each word in T , we
update each document vector containing that feature as follows:

w̄(di� f j) � (1 � �) � w(di� f j) � � � Ent�Loss( f j) (6)

for i � [1 � � �n], � f j � di. w(di� f j) represents the original Term Frequency-Inverse
Document Frequency (TF-IDF) score of feature f j in document di and � is a param-
eter that adjusts the effect of the information gain of the feature on the final weight,
which can also be thought of as relative bias of that term in the document. � � 0
refers to the original weighting scheme and � � 1 corresponds to purely entropy score
based weighting. Hence, � has the effect of proportionally reducing the significance
of the features that don’t exist in the citation corpus. Following the weight updates
of the features of all documents, the document vectors are re-normalized to unit length.
We then perform clustering on the updated document vectors. A visual representation of
the effects of the weight readjustment is shown in Figure 2 for categories 1 and 4 of our
dataset, which are the two clusters most difficult clusters to separate. It can be seen that
comparably cleaner separation of the clusters can be achieved by entropy based weight
readjustment of the features for these most overlapping categories. Computationally,
given a dataset with N documents, C citations and a text corpus of T , the complexity of
generating the similarity matrix and formation of the expected citation graph is O(T N2)
and the calculation of the expected entropy losses is bounded by O(CT ). So the overall
complexity of the algorithm is O(T (N2

�C)).
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Table 1. Features ranked by decreasing expected entropy loss

Rank Feature

1. automata
2. radio
3. collapse
4. realtime
5. switchboard
6. tcp
7. molecular
8. fluctuate
9. grayscale
10. dendogram
... ...
... ...
... ...
5547. statement
5548. quinlan
5549. roth

5 Experiments

We used a selection of 7227 papers from CiteSeer’s repository as our dataset. The papers
are split into 5 groups based on their publication venues. The categorical distribution
of the publication venues is shown in Table 2. We selected the first 1000 words of each
paper, resulting in a text corpus of 9601 distinct features after preprocessing the text by
stemming, stop word and infrequent word removal. The clustering is performed both
using the original TF-IDF scores of words and the scores augmented by the entropies
of the words. A total of 4404 citation relationships exist between the papers in the
dataset. The text corpus T of the citation relationships consists of distinct 5449 words.
We used the Cluto [12] clustering toolkit in our experiments. Cluto implements some of
the most widely used clustering algorithms in the literature, including agglomerative,
divisive and graph-based techniques and hence, provides good baseline comparisons.

5.1 Evaluation Metric

The clustering performance is evaluated by comparing the predicted cluster of each
document with the categorical labels (venues) from the document corpus. We used the
standard F1 and entropy measures as our evaluation criteria. F1 measure combines pre-
cision (p) and recall (r) with equal weight in the form of F1(p� r) � 2�p�r

p�r . We report
results both on Macro-averaged F1 and Micro-averaged F1 scores. The key difference
between those two F1 measures is that macro-averaging gives equal weight to each
cluster, whereas micro-averaging equally weights each document. The cluster entropy
measure shows the distribution of various classes of documents within each cluster. For
each cluster Ci of size ni, the entropy of this cluster is defined as

E(Ci) � �
1

log k

k�

j�1

n j
i

ni
log

n j
i

ni
(7)
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Table 2. Dataset Venue Distribution

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Venue Samples Venue Samples Venue Samples Venue Samples Venue Samples
AAAI 662 POPL 599 ICCV 682 ICML 990 VLDB 1049
IJCAI 599 PLDI 664 CVPR 830 ECML 211
ICTAI 232 ML 80

KDD 629

total 1493 total 1263 total 1512 total 1910 total 1049

where k is the number of classes in the dataset and n j
i is the number of documents of

the ith class that were assigned to the jth cluster.
The entropy of the entire clustering solution is the average of the cluster entropies

adjusted by their respective sizes, given by
�k

i�1
ni
n E(Ci). A smaller entropy score indi-

cates better clustering solution over the entire dataset.

5.2 Results on Four Criterion Functions

We evaluated our algorithm using the following four different similarity criterion func-
tions. Each criterion function represents the objective that we try to optimize for dis-
covering clusters. The first criterion, Isim, is an internal similarity metric that tries to
maximize the similarity between each document and the centroid of its assigned clus-
ter. The second criterion function, Esim, is an external approach that tries to separate the
documents of each cluster from the entire collection. The hybrid approach, Hsim, tries
to find a clustering solution by optimizing the inter-cluster (Isim) and intra-cluster (Esim)
similarity metrics simultaneously. The final criterion, Gsim, uses the similarity graph
of the documents and tries to find the optimum cuts of the graph using MinMaxCut
algorithm.

maximize Isim(S ) �
k�

r�1

�

di�S r

cos(di�Cr) (8)

minimize Esim(S ) �
k�

i�1

ni

�
v�S i�u�S cos(v� u)
��

v�u�S i
cos(v� u)

(9)

maximize Hsim(S ) �
Isim

Esim
(10)

minimize Gsim(S ) �
k�

m�1

n2
m

cut(S m� S � S m)�
di�dj�S m

cos(di� d j)
(11)

The results of the clustering solutions using the four criterion functions are given in
Table 3 for � � 0 and � � 0�15. S and � refer to the original and updated document
similarities, respectively.

In all four criterions, we were able to achieve better clustering solutions using the
entropy-based weight adjustments of the features. The most benefit can be observed
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Table 3. Results on four different clustering criterion functions

Internal Similarity External Similarity Hybrid Graph-based
Isim(S ) Isim(�) Esim(S ) Esim(�) Hsim(S ) Hsim(�) Gsim(S ) Gsim(�)

F1(Micro) 80.7% 85.7% 80.8% 81.9% 76.1% 82.5% 81.5% 84.4%
F1(Macro) 81.5% 86.7% 81.4% 82.3% 76.8% 83.2% 81.8% 84.8%

Entropy 36.7% 28.7% 37.5% 33.5% 41.8% 32.8% 36.3% 34.3%
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for Isim and Hsim similarity metrics, indicating that similar documents are grouped into
much compact clusters. This behavior is expected since the citations we used were
mostly to the papers that are in the same category, hence we boosted the weights of the
terms that collectively define their respective categories, hence maximizing the inter-
nal similarity of the documents of the same cluster. In Figures 3 and 4, we show the
effect of varying � on F1 and entropy scores of the clustering solution for all criterion
functions. Even for the � � 0�05 case which indicates only a slight support from the
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entropies on the feature values, all four criterion functions achieve significant accuracy
improvement. Further increasing � over 0.25 either has no, or negative effect on the
clustering solution.

Since the entropy values are needed for the bias effect on feature weights, increasing
� beyond a certain point starts to cause a dominating effect on the document vectors.
In that case, the documents containing just a couple of common words (i.e. ”database”,
”collection”, ”learning”) tend to group together, causing an adverse effect. It is therefore
desirable to keep � at values that is sufficient enough to contribute to the weights without
significantly modifying them.

6 Conclusions

Most clustering algorithms assume that the components of data objects are independent
and identically distributed. This assumption has led to the design of numerous super-
vised and unsupervised learning algorithms to work on such ”flat” data, where each
data instance is a fixed length vector of attribute values. For data sets where the data set
has richer structure, such as hyperlinks in web documents and citations in scientific lit-
erature, an efficient and effective solution to incorporate the connectivity information in
the clustering solution yields better clustering performance. In this paper, we presented
an algorithm that incorporates the citation graph of a collection of scientific literature
to the clustering solution to better identify distinct groups of documents. The existence
and non-existence of citation relationships of papers are used to identify the most im-
portant topic-bearing words in the papers, based on expected entropy loss measure. We
have shown that a feature weighting scheme incorporating the citation-based extraction
of topically significant words and applying partial bias for those terms can effectively
discover clusters of similar papers.
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