
Learning Context-free Grammars: Capabilities andLimitations of a Recurrent Neural Network with anExternal Stack Memory�Sreerupa DasDepartment of Computer ScienceUniversity of ColoradoBoulder, CO 80309rupa@cs.colorado.edu C. Lee GilesNEC Research Institute4 Independence WayPrinceton, NJ 08540giles@research.nec.nj.com Guo-Zheng SunInstitute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742sun@sunext.umiacs.umd.eduAbstractThis work describes an approach for inferring De-terministic Context-free (DCF) Grammars in aConnectionist paradigm using a Recurrent NeuralNetwork Pushdown Automaton (NNPDA). The N-NPDA consists of a recurrent neural network con-nected to an external stack memory through a com-mon error function. We show that the NNPDA isable to learn the dynamics of an underlying push-down automaton from examples of grammaticaland non-grammatical strings. Not only does thenetwork learn the state transitions in the automa-ton, it also learns the actions required to controlthe stack. In order to use continuous optimiza-tion methods, we develop an analog stack whichreverts to a discrete stack by quantization of allactivations, after the network has learned the tran-sition rules and stack actions. We further show anenhancement of the network's learning capabilitiesby providing hints. In addition, an initial compar-ative study of simulations with �rst, second andthird order recurrent networks has shown that theincreased degree of freedom in a higher order net-works improve generalization but not necessarilylearning speed. IntroductionConsiderable interest has been shown in language in-ference using neural networks. (For more traditionalapproaches to inference of grammars see [Miclet 90].)Recurrent networks in particular, with various train-ing algorithms, have proved successful in learning reg-ular languages, the simplest in the Chomsky hierarchy.Work by [Elman 90], [Giles 90], [Mozer 90], [Pollack 91],[Servan-Schreiber 91], [Watrous 92], and [Williams 89]have demonstrated that the recurrent nature of thesenetworks is able to capture the dynamics of the un-derlying computation automaton. [Giles 92a] and [Wa-trous 92] have used higher order (higher dimensional�To be published in the Proceedings of The FourteenthAnnual Conference of The Cognitive Science Society, July29 { August 1, 1992, Indiana University.

weights) recurrent neural networks with no hidden lay-er and showed that such models are capable of learningstate machines and appear to be at least as powerfulas any multilayer network. Using a heuristic clusteringmethod, [Giles 92a] showed that �nite state automatacould be extracted from the neural networks both dur-ing and after training. [Giles 92b] successfully demon-strated a method for learning an unknown grammar.This work is concerned with inference of DCF gram-mars - moving up the Chomsky hierarchy. This re-current neural network model, previously described by[Sun 90] and [Giles 90], has an external stack memoryintegrated through a hybrid error function, hence mak-ing it powerful enough to learn DCF grammars. Previ-ous work by [Williams 89] showed that, given both thetraining set and action information of the read/writehead of a Turing Machine, a recurrent network is capa-ble of learning the �nite state machine part of the Tur-ing Machine that recognizes the training set. The mod-el described here learns both the stack control (pushingand poping of the stack) and the state transitions of theunderlying �nite state automaton of the pushdown au-tomaton. This is performed by extracting informationonly from the training data. The learning capabilitiesof the inferred Pushdown Automaton is enhanced byproviding more information, hints, about the trainingstrings. For other work on the use of recurrent neuralnetworks for DCF inference, see [Allen 90] and [Pollack90].The stack is external and continuous. The reason forusing an external stack, as opposed to an internal one,[Pollack 90], is that the external stack requires lesserresources for training. The continuous part permits theuse of a continuous optimization method, in our casegradient-descent. We present a brief description of themodel, discuss the dynamics of the stack action andgive simulation results of learning performance.Neural Network Pushdown Automaton(NNPDA)The network consists of a set of fully recurrent neu-rons, called State Neurons which represent the statesand permit classi�cation and training of the NNPDA.One of the state neurons is designated as the Output

a .4b .5c .8.. ..Table 1: Left column indicates the content of the stack;Right column indicates the quantity of each alphabet onstack. Top of the stack is a.Neuron. The State Neurons get input (at every timestep) from three sources, namely, from their own re-current connections, from the Input Neurons and fromthe Read Neurons. The Input Neurons register externalinputs to the system. These external inputs consist ofsequences of characters of strings fed in one character ata time. The Read Neurons keep track of the symbol(s)on top of the stack. One non-recurrent neuron, calledthe Action Neuron indicates the stack action (push, popor no-op) at any instance. The continuous valued acti-vation of this neuron is used to perform analog actions(namely push and pop) on the stack. The architectureof the Neural Network is shown in Figure 1.Many appropriate error functions could be devised.The one we chose to train the network consists of twoerror functions: one for legal strings and the other forillegal strings. For legal strings we require 1): the N-NPDA must reach a �nal state and 2): the stack mustbe empty. This criterion can be reached by minimizingthe error: Error = 1=2[(1� So(l))2 + L(l)2] (1)where So(l) is the activation of an OutputNeuron withits target value for legal strings as 1:0 and L(l) is thestack length, all after a string of length l has been pre-sented as input a character at a time. For illegal strings,the error function is modi�ed as:Error = So(l) � L(l) if (So(l) � L(l)) > 0:0 (2)otherwise Error = 0:0. Equation (2) reects the cri-terion that, for an illegal pattern we require either the�nal state So(l) = 0:0 or the stack length L(l) to begreater than 1:0. Stack ControlThe analog stack is external to the network and ismanipulated by the action neuron with continuous acti-vation values. Since the activation of the action neuronis continuous valued, the pushing and popping is alsocontinuous. Associated with each element on the stackis an analog value. An example of the stack would bethe one shown in Table 1. It has 0:4 of a stacked over0:5 of b and so on. Operations on the stack are de-termined by the activation of Action Neuron, Sa. Thevalue of Sa is allowed to vary between +1 and �1. Theoperations will be described as follows:PUSH: If the activation of ActionNeuron, Sa is sig-ni�cantly positive the action taken is push. In our

c .6a .4b .5c .8.. ..Table 2: After pushing 0:6 of c onto stack shown inTable 1. a .1b .5c .8.. ..Table 3: After poping 0:9 from the stack in Table 2.simulations we performed push when the magnitude ofSa > 0:1. In case of push the current input is pushed onthe stack and its value is determined by the magnitudeof the activation of ActionNeuron. Therefore, for thestack shown in Table 1, Sa = 0:6 and the current inputis c, then, after the operation, the stack would appearas shown in Table 2.POP: If activation of ActionNeuron is su�cientlynegative, the action taken is pop. In this case, quantitiesstored on the stack are removed up to a depth denotedby the magnitude of Sa. Therefore, for the stack inTable 2 and Sa = �0:9, after the pop operation stackwould appear as shown in Table 3. For our simulationswe performed pop if Sa < �0:1.READING from the stack: At every time step (orwith processing of every element of the input string),the information on top of the stack has to be updatedevery time an action is taken. This is done as follows.All the elements on the top of the stack up to a depthof 1:0 (i.e., all the symbols whose quantities add up to1.0 from the top) are considered. Then their individualquantities on the stack are used as the correspondingactivations of the Read Neurons in the next time step.For example, the Read information of the stack shownin Table 3 would be Ra = 0:1;Rb = 0:5; Rc = 0:4 if weconsider only three input symbols. It should be notedthat our goal is to train the network to take the correctactions, and as training proceeds all magnitudes of Sashould approach 1 or 0. Hence, the quantities of symbolpushed and popped on the stack would also approach1. Thus, after training, a speci�c reading of the stackshould contain only one symbol and the performance ofthe analog stack should approximate that of a discreteone.NO OPERATION: If the magnitude of Sa is signi�-cantly small, no operation is taken. For our simulationswe performed a no-operation if �0:1 < Sa < 0:1.Training of the NNPDAThe activation of State Neurons (and Action Neuron)

may be written asS(t + 1) = F (S(t); I(t); R(t);W) (3)where I is the activation of the Input Neurons and R isthe activation of the Read Neuron and W is the weightmatrix of the network. We use a localized represen-tation for Input and Read symbols (thus, a symbol isuniquely represented by a vector which has only one 1and all other elements 0). We now describe the di�er-ent forms equation (3) take for di�erent orders of theState, Read and Input Neurons.For First Order, let V(t) represent a concatenation ofvectors I(t), R(t) and S(t), i.e., V (t) = I(t) � R(t) �S(t). Then equation (3) becomesSi(t+ 1) = g(XWijVj(t)) (4)For Second Order, let V(t) represent concatenation ofvectors I(t) and R(t), i.e., V (t) = I(t)�R(t). Equation(3) becomesSi(t + 1) = g(XXWijkSjVk(t)) (5)For Third Order equation (3) becomesSi(t+ 1) = g(XXXWijklSj(t)Ik(t)Rl(t)) (6)where g(x) = 1=(1 + exp(�x)).At the end of each input sequence of alphabet-s a0; a1; a2; ::::al�1, a distinct symbol called the end-marker is presented to the network. The activation ofthe Output Neuron at this point is compared with theTarget. The end symbol is useful because there maybe more than one �nal state and we want to accept astring whenever the string reaches some �nal state. Theend symbol facilitates computation by e�ectively con-structing an extra hidden layer. Adjusting the weightsconnected to the end symbol neuron (since the inputhas a local representation, only one input neuron turnson to represent a symbol) corresponds to the trainingof a super-�nal state.There are two coupled functions that the networkneeds to learn in the process of training: the statetransition function and the stack manipulation func-tion. During training, input sequences are presentedone at a time and activations are allowed to propagateuntil the end of the string is reached. Once the end isreached the Target is matched with the Output Neuronand weights are updated in accordance with the learn-ing rule. The learning rule used in the NNPDA is asigni�cantly enhanced extension to Real Time Recur-rent Learning [Williams 89].For the First-order network, using the objec-tive function de�ned by equation (1) and (2) in agradient-descent weight update expression �Wij =��@Error=@Wij , the weight update rule becomes�Wij =8><>: �((Target � So(l))@So(l)=@Wij�L(l)@L(l)=@Wij) for equation 1��(@So(l)=@Wij � @L(l)=@Wij)for equation 2(7)

where � is the learning rate. Then, @So(l)=@Wij canbe calculated from the following recurrence relation bysetting @Sm(0)=@Wij = 0:0.@Sm(t + 1)=@Wij =g0 (�miVj(t) +XWmn@Sn(t)=@Wij +XWmn@Rn(t)=@Wij) (8)where �mi=1 if m= i, g0 =d(g(x))=dx.How do we obtain @R(t)=@Wij? Since the currentstack reading depends on its entire history, no simplerecurrence relation can be found. However, the follow-ing approximation appears valid. It may be noted thatwe are able to di�erentiate R only because the stack iscontinuous. Also, after the network has been trainedsu�ciently and action values are large (> 0:5), eachreading may not contain much information of the past.We obtain an approximate value of @R(t)=@Wij as fol-lows:@R(t)=@Wij = (@R(t)=@Sa(t))(@Sa(t)=@Wij)where Sa(t) is the activation of the Action Neuron.During push and pop, any incremental (or decremen-tal) change of �Sa in Sa would cause an increase (ordecrease) of R in the top of the stack with the sameamount. Therefore, @Ri=@Sa = 1if Ri corresponds to the symbol on top of the stack.Also, since the total reading length (equal to 1) is �xed,any incremental (or decremental) change of �Sa in Sawould also cause a decrease (or increase) of R in thebottom of the stack. Hence,@Ri=@Sa = �1if Ri corresponds to the symbol at the bottom of thestack. It may be noted that, these are only �rst orderapproximations with the assumption that the networkhas been trained su�ciently so that actions are large inmagnitude (close to 1.0).Therefore @Rm(t)=@Wij may be approximated as:@Rm(t)=@Wij � (�mr1 � �mr2)@Sa(t)=@Wij) (9)where r1 and r2 are the indices of the symbols on topand bottom of the stack respectively, and �mri =1 ifm = ri. Having de�ned @R(t)=@Wij and assuming allpartial derivatives at time = 0 to be 0, @Sm(l)=@Wijcan be evaluated, where l is the length of the inputstring being processed.Since the stack length L(t) may be recursively eval-uated by L(t + 1) = L(t) + Sa(t) (10)the second partial derivative, @L(l)=@Wij , in equation(7) may be expressed as@L(t + 1)=@Wij = @L(t)=@Wij + @Sa(t)=@Wij (11)

For an initial condition let @L(0)=@Wij = 0:0, then@L(l)=@Wij can be evaluated by the above recursion.Therefore, by imposing the \on-line" learning algorith-m, the derivatives of the weights are propagated for-ward using the recursive formula and the �nal correc-tion �Wij is made at the end, after one whole inputstring has been presented. The learning rules for sec-ond and third order networks are exactly the same innature but vary in the type of interconnections or theW matrix.To determine the time complexity of the learningalgorithm, let S and I be respectively the numberof fully-connected recurrent and input neurons andl the length of the input string. Then the numberof operations required per time step is of the orderl � (S + 1)2 � (S + R) � (I + S + R) for a �rst-orderrecurrent network (primarily dominated by the compu-tation of the partial derivatives in equation (8)) The 1in S+1 takes into account the action neuron. Similarlya second and a third order network require respectivelyl �S2 � (S+1)2 � (I +R)2 and l �S2 � (S+1)2 � I2 �R2.Note that for large S, the complexity goes as O(S4).Learning with HintsOur training sets contained both positive and neg-ative strings. One problem with training on incorrectstrings is that, once a character in the string is reachedthat forces the string to a reject state, no further infor-mation is gained by processing the rest of the string.For example, if we are training the network on lan-guage anbn and we come across a string that beginswith aaaaba:::, no matter what follows the last a in thestring, it is unnecessary to parse and train the networkon rest of the string any further. In order to incorpo-rate this idea we have introduced the concept of a DeadState.During training, we assumed that there is a teacheror an oracle who has some knowledge of the grammarand is able to identify the points on the strings (of neg-ative examples) that takes the strings to a reject state.When such a point is reached in the input string, fur-ther processing of the string is stopped and the networkis trained so that one designated State Neuron calledthe Dead State Neuron is \on". To accommodate theidea of a Dead State in the learning rule, the followingchange is made: if the network is being trained on ille-gal strings that end up in a Dead State then the lengthL(l) in the error function in equation (1) is ignored andsimply becomes Error = 1=2(Target � So(l))2. Sincesuch strings have an illegal sequence, they cannot be apre�x to any legal string. Therefore at this point we donot care about the length of the stack.For strings that are either legal or illegal but do not goto a dead state (an example of such a string would be apre�x of a legal strings, that ends prematurely); the ob-jective function remains the same as described earlier inequation (1) and equation (2). Hints in this form madelearning faster, helped in learning of exact pushdownautomata and made better generalizations. For certain

languages, these hints actually made learning possible.There are methods for inserting hints (rules) directlyinto recurrent neural networks [Omlin 92]; it would beinteresting to see the e�ect of using these methods intraining a NNPDA.SimulationsThe training data consisted of sequence of stringsgenerated in alphabetical order from the input alphabetset. Incremental, real-time learning was used to trainthe NNPDA. In other words, the length of the strings inthe training set was increased in steps, gradually as thenetwork learned the smaller ones. At the beginning ofeach run the weights were initialized with a set of ran-dom values chosen between [-1.0, 1.0]. Training beganwith the shortest possible strings (of length one).Once the network learned to recognize the strings inthe current training set, longer strings (of length onemore than the longest string in the current set) wereadded to the training set. Longer strings were addedwhen either of the two criteria was satis�ed: (1) athreshold number of epochs were completed, (2) net-work learned to recognize all strings in the training setbefore completing the threshold number of epochs. E-pochs here imply one pass over the training set. Atraining set was considered to be successfully learnedwhen all the strings in the set were recognized correct-ly. In general, for every language trained, this thresholdwas varied until the performance (in terms of total num-ber of epochs needed for training) could not be furtherincreased. For most simulations, the threshold for thenumber of epochs ranged between 20 and 40.If the correct stack actions are learned by the NNP-DA, then adding longer strings would not increase theerror. This was used to estimate an upper bound forthe maximum length of training strings to be used. Themaximum length of the strings required for training wasusually limited to ten. For simple languages like anbn,training strings of length up to six were su�cient totrain the NNPDA. For a particular length, since thenumber of positive strings was much smaller than thenumber of possible negative strings, a positive string ofthe same length was placed every third string in thetraining set. Thus, a small set of positive strings wererepeated many times in the training set. Once the net-work was trained, the actions and states were quantizedso as to extract a perfect pushdown automaton. Thisextracted pushdown automaton can recognize strings ofarbitrary length. For a discussion of this extractionmethod, see [Sun 90] and [Giles 90] and, more recently,for �nite state automata [Giles 92a].The same simulation criteria and initial conditionsdescribed above were used for training NNPDA of vari-ous orders. A comparative performance of the networksof �rst, second and third orders in terms of number of it-erations required, generalization capability and numberof neurons are shown in Tables 4, 5 and 6. The valuesin the tables were typical ones obtained in our simula-tions; changing the initial conditions resulted in values

of similar orders of magnitude. These tables show s-tatistics for the minimal machines learned.ConclusionsA neural network pushdown automaton (NNPDA)was constructed by connecting a recurrent neural net-work state controller to an external stack memorythrough a joint error function. This NNPDA was shownto be capable of learning a range of small, but inter-esting, deterministic context-free (DCF) grammars. Acontinuous external stack was constructed that permit-ted the successful use of continuous optimization meth-ods (gradient-descent). The NNPDA learned to makee�cient use of this stack. When it was trained on regu-lar languages, e.g. (single parity, where the odd or evenoccurrence of a single symbol is checked for acceptance),the network learns the state transitions without makinguse of the stack. However, a language like parity couldhave been learned using a stack, that is, it could haveused the stack by pushing a symbol on every odd oc-currence of a character and popping the stack on everyeven occurrence. But the NNPDA error function ap-parently allows the network to selectively avoid usingthe stack when the language can be learned without it.Simulations varying the order of the recurrent net-work showed that, in general, the higher the order ofthe net, the easier it was to learn grammars. (For somegrammars, higher order proved to be a necessity for suc-cessful training!) However, it proved possible to learn asimple DCF Language such as the parenthesis matchinggrammar by using only �rst-order networks. We alsoobserved that the stack was able to learn to change it-s stack actions. For example, in learning the languageanbncbmam, the stack had to learn to push a's and pushb's when it saw an a and then reverse that process.Third order networks do not necessarily perform muchbetter than second order networks. One possible expla-nation is that in the higher order networks the increasein the degrees of freedom slows down convergence. Ofcourse the network has only learned small DCF gram-mars; larger grammars should be much more di�cult.However, the NNPDA was able to learn how to e�-ciently control and use an external stack while at thesame time learning its neural network state machinecontroller. AcknowledgementThe authors would like to acknowledge helpful anduseful discussions with M. Goudreau, C. Miller, M.Mozer, C. Omlin, H. Siegelmann, P. Smolensky and D.Touretzky. References[Allen 90] Allen, R.B., 1990. Connectionist LanguageUsers. Connection Science 2(4): p 279.[Elman 90] Elman, J.L., 1990. Finding Structure inTime. Cognitive Science 14:p. 179.

[Giles 90] Giles, C.L.; Sun, G.Z.; Chen, H.H.; Lee,Y.C.; Chen, D., 1990. Higher Order Recurrent Net-works & Grammatical Inference. Advances in Neu-ral Information Systems 2, D.S. Touretzky (ed),Morgan Kaufmann, San Mateo, Ca:p. 380.[Giles 92a] Giles, C.L.; Miller, C.B.; Chen, D.; Chen,H.H.; Sun, G.Z.; Lee, Y.C., 1992. Learning and Ex-tracting Finite State Automata with Second-OrderRecurrent Neural Networks. Neural Computation4(3):p. 393.[Giles 92b] Giles, C.L.; Miller, C.B.; Chen, D.; Sun,G.Z.; Chen, H.H.; Lee, Y.C., 1992. Extracting andLearning an Unknown Grammar with RecurrentNeural Networks. Advances in Neural InformationSystems 4, J.E. Moody, S.J. Hanson, R.P. Lipp-mann (eds), Morgan Kaufmann, San Mateo, Ca.[Miclet 90] Miclet, L., 1990. Grammatical Inference,Syntactic and Structural Pattern Recognition; The-ory and Applications, H. Bunke and A. Sanfeliu(eds), World Scienti�c, Singapore, Ch 9.[Mozer 90] Mozer, M.C.; Bachrach, J., 1990. Discov-ering the Structure of a Reactive Environment byExploration. Neural Computation 2(4):p. 447.[Omlin 92] Omlin, C.W.; Giles, C.L., 1992. TrainingSecond-Order Recurrent Neural Networks UsingHints. Proceedings of the Ninth International Con-ference on Machine Learning, D. Sleeman and P.Edwards (eds). Morgan Kaufmann, San Mateo,Ca.[Pollack 90] Pollack, J.B., 1990. Recursive DistributedRepresentations. J. of Arti�cial Intelligence 46:p.77.[Pollack 91] Pollack, J. B. 1991. The Induction of Dy-namical Recognizers. Machine Learning 7:p. 227.[Servan-Schreiber 91] Servan-Schreiber, D.; Cleere-mans, A.; McClelland, J.L., 1991. Graded StateMachine: The Representation of Temporal Con-tingencies in Simple Recurrent Networks. MachineLearning 7:p. 161.[Sun 90] Sun, G Z.; Chen, H.H.; Giles, C.L.; Lee, Y.C.;Chen, D., 1990. Neural Networks with ExternalMemory Stack that Learn Context-Free Grammarsfrom Examples. Proceedings of the Conference onInformation Science and Systems, Vol. II: p. 649.Princeton University, Princeton, NJ: Conferenceon Information Science and Systems, Inc.[Watrous 92] Watrous, R.L.; Kuhn, G.M., 1992. Induc-tion of Finite-State Languages Using Second-OrderRecurrent Networks, Neural Computation 4(3).[Williams 89] Williams, R.J.; Zipser, D., 1989. ALearning Algorithm for Continually Running FullyRecurrent Neural Networks. Neural Computation1(2):p. 270.

...

alphabet on stack

Top-of-Stack(t)

External
StackAction

Top-of-Stack(t-1)Input(t-1)State(t-1)

State Neurons Input Neurons Read Neurons

Flow of Information

push

pop or no-op
1.0

State(t)

higher order
weightsFigure 1: The �gure shows the architecture of a third-order NNPDA. Each weight relates the product of Input(t-1),State(t-1) and Top-of-Stack information to the State(t). Depending on the activation of the Action Neuron, stackaction (namely, push, pop or nooperation) is taken and the Top-of-Stack (i.e. value of Read Neurons) is updated.Order parenthesis anbn anbncbmam an+mbncmof NN hints w/o hints hints w/o hints hints w/o hints hints w/o hints1st 50{100 *** 300{500 *** *** *** *** ***2nd 50{80 80{100 150{300 300 500 *** 200-250 ***3rd 50{80 50{80 150{250 150{250 150 *** 150{250 ***Table 4: Iterations required by first, second and third order networks to learn various languages with and withouthints and under same initial conditions, namely, same initial learning rate, same initial value of state neurons, samerandom number and same input set (***" in the table implies that the simulation did not converge).Order parenthesis anbn anbncbmam an+mbncmof NN hints w/o hints hints w/o hints hints w/o hints hints w/o hints1st 0.0 *** 8.9 *** *** *** *** ***2nd 0.0 3.07 0.0 2.67 5.56 *** 0.0 ***3rd 0.0 0.0 0.0 1.03 3.98 *** 0.0 ***Table 5: Generalization (in % error on all possible strings up to length 15, starting from length 1, that is, with 65534strings). Order parenthesis anbn anbncbmam an+mbncmof NN hints w/o hints hints w/o hints hints w/o hints hints w/o hints1st 3+1 *** 3+1 *** *** *** *** ***2nd 1+1 2 1+1 3 1+1 *** 1+2 ***3rd 1+1 2 1+1 2 1+1 *** 1+1 ***Table 6: Minimal number of State Neurons required to learn the languages in various orders (for the simulationswith hints one neuron was required explicitly for dead state and hence the \+1"s).

