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ABSTRACT
We propose a method for discovering the dependency re-
lationships between the topics of documents shared in so-
cial networks using the latent social interactions, attempt-
ing to answer the question: given a seemingly new topic,
from where does this topic evolve?. In particular, we seek
to discover the pair-wise probabilistic dependency in topics
of documents which associate social actors from a latent so-
cial network, where these documents are being shared. By
viewing the evolution of topics as a Markov chain, we es-
timate a Markov transition matrix of topics by leveraging
social interactions and topic semantics. Metastable states
in a Markov chain are applied to the clustering of topics.
Applied to the CiteSeer dataset, a collection of documents
in academia, we show the trends of research topics, how re-
search topics are related and which are stable. We also show
how certain social actors, authors, impact these topics and
propose new ways for evaluating author impact.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]; H.4 [Information

Systems Applications]: Miscellaneous

General Terms
Algorithm, Experimentation, Human Factors

Keywords
Clustering, Social Network Analysis, Text Data Mining, Markov
chains

1. INTRODUCTION
Mining text documents has many basic tasks including

topic classification [17], topic novelty detection [16, 22], and
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topic summarization [2, 14]. In particular, document sum-
marization is often based on the discovery of topics (or
themes). Methods applied to topic discovery in static docu-
ments encompass probabilistic modeling [2], matrix factor-
ization [9], and entropy optimization [1]. More recent work
has been concerned with temporal documents using a col-
lection of incremental and efficient algorithms [14, 16, 22].

While there are a rich set of choices regarding topic dis-
covery in set of temporally related documents, our concern
is when and where these topics evolve and how the topics
relate, if any, dependencies with each other. In Fig. 1, for
example, we illustrate the probability of appearance in doc-
uments in CiteSeer of four research topics discovered using
Latent Dirichlet Allocation [2], which is similar to previous
topic trend discovery [20].
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Figure 1: Probability of four research topics over 14

years in CiteSeer.

Some topics in Fig. 1 have been growing dramatically in
popularity while other topics seem to be less popular, at
least according to the CiteSeer database. A more interest-
ing question is whether a newly emergent topic is truly new
or rather a variation of an old topic? We address this by re-
vealing the dependencies among the discovered topics. With
the temporal dependencies among topics available, one can
survey a research area from a genealogical graph of related
topics instead of perusing the citation graphs.

One may assume that the discovery of pair-wise dependen-
cies between topics can be achieved via document content
analysis. A naive approach would be to cluster documents
recursively yielding a hierarchical structure of topics. Alter-
natively, one might define a similarity metric between prob-
ability distributions (e.g. the Kullback-Leibler distance) if



the topics discovered are represented in terms of probability
distributions over words. In this paper, we introduce con-
sideration of social factors into traditional content anlysis.

In order to interpret and understand the changes of topic
dynamics in documents, we resort to discovering the so-
cial reasons of why a topic evolves and relates dependen-
cies with others. We hypothesize that one topic evolves into
another topic when the corresponding social actors interact
with other actors with different topics in the latent social
network. Consider an actor au associating a topic ti at time
k. For some reason, this actor meets and establishes a social
tie with actor av who is mostly associated with a new topic
tj and they start to work on the new topic with a higher
probability. At a later time 2k, we observe that au is more
likely to be concerned with tj rather than the previous ti.
In return, tj has received a higher popularity than ti. When
such a switch of topics in actors is statistically significant,
we will observe an aggregate transition tendency from ti to
tj in the topic dynamics, yielding the marginal probabilities
of ti and tj moving towards different directions over time, as
illustrated in Fig. 1. Such a trend is defined as transition be-
tween topics. The dependency of ti on tj is measured by the
probability of transition from tj to ti. Abstracted from the
above example, our goal seeks to estimate the dependencies
between topics using social interactions.

We consider this work as an attempt to bridge the dy-
namics of topics in documents with the latent social net-
work. In particular, we hypothesize the changes of topics
in documents in a social network as a Markov chain process
which is parametrized by estimating the social interactions
among individuals conditioned on topics. The primary as-
sumption is that topics in social documents evolve due to the
development of the latent social network. This assumption
has been supported in recent work [7] which experimentally
shows that the information diffusion in a social network cre-
ates new topics in the Web blog space.

Our contributions are: (1) a model of the topic dynam-
ics in social documents which connect the temporal topic
dependency with the latent social interactions; (2) a novel
method to estimate the Markov transition matrix of topics
based on social interactions of different order; (3) the use of
the properties of finite state Markov process as the basis for
discovering hierarchical clustering of topics, where each clus-
ter is a Markov metastable state; (4) a new topic-dependent
metric for ranking social actors based on their social impact.
We test this metric by applying it to CiteSeer authors.

The rest of the paper is organized as follows: in the next
section, we introduce related research. The definitions and
our problem framework are given in § 3. § 4 describes
our probabilistic modeling of topic dynamics and the au-
thor/topic dependency network. In § 5 we introduce the
maximum likelihood estimation algorithm for parameteriz-
ing the Markov chain model. § 6 interprets the metastable
state discovery in the Markov chain as an approach for topic
clustering. Experimental results are presented in § 7 ending
the conclusions and future work in § 8.

2. RELATED WORK
2.1 Document Content Analysis

A variety of statistical approaches have been proposed to
model a text document. The unigram model models each
document with a multinomial distribution and the words in

the document are independently drawn from the multino-
mial distribution [17]. It argued that each document in the
document corpus has a distinct topic and developed mixture
of unigrams based on the unigram. The mixture of unigrams
models each document by considering the words in a docu-
ment as generated from the conditional probability p(w|t),
where t is the topic of this document.

The probability latent semantic analysis (pLSA) [9] has
each document generated by the activation of multiple top-
ics, and each topic is modeled as multinomial distributions
over words, which relaxes the mixture of unigrams model
which considers each document as generated from only one
topic. However, pLSA model uses a distribution indexed by
training documents, which means the the number of param-
eters being estimated in a pLSA model must grow linearly
with the number of training documents. This suggests that
pLSA could be prone to overfitting in many practical appli-
cations.

Latent Dirichlet Allocation (LDA) [2] addresses the over-
fitting of pLSA by using the Dirichlet distribution to model
the distribution of topics for each document. Each word
is considered sampled from a multinomial distribution over
words specific to this topic. As an alternative, the LDA
model is a well-defined generative model and generalizes eas-
ily to new documents without overfitting. Recent work has
been concerned with discovering dynamics in topics [14] and
incremental discovery [16].

2.2 Social Network Analysis
The social network analysis is an established field which

proposes to analyze the relationships between social actors
in a social network [21]. The evolution of the Web and
the wide usage of socially related e-formated communica-
tion media (e.g. emails, blogs) has promoted the interest
in computational social network analysis, such as web com-
munity discovery [5]. In the Referral Web project, social
networks were mined from online information and used to
help users target experts who can answer their questions
with geographical proximity [10].

The above research mostly focused on static properties of
social networks. However, social networks are dynamic in
essence and evolve over time. The dynamic property of a
social network greatly impacts evolution of the communi-
cations content among its social actors, usually in terms of
social documents [23].

The dynamics of social ties in a social networks can be
shown by tracking the changes in large-scale data by peri-
odically clustering data and examining the extracted tem-
poral clusters [11]. Link structures can be used to predict
future interactions among social actors [12]. Based on the
assumption that the observed social networks are outcomes
of a Markov process evolving in continuous time, models of
the changes in the social ties [19] can be derived.

Despite of these traditional emphasis on structural ap-
proaches, content-based analysis of social networks is only a
recent trend [23, 7]. In fact, the content of documents shared
in social networks, or social documents, embraces the valu-
able information of both the changes of topics and the de-
velopments of social interactions. Mining social documents
to interpret and understand the changes of dynamics in doc-
uments as well as the dynamics of social ties is becoming an
important direction for computational SNA.

This paper attempts to bridge the changes in social ties



with the changes in their communication patterns. We ad-
dress the discovery of dynamics in social communications
and how these dynamic changes link to the latent social in-
teractions.

3. PROBLEM DEFINITION
3.1 Social Networks

The primary goal of this paper is the discovery of pair-wise
dependencies in the topic dynamics from a social document
corpus. The definition of a social document is based on a
social network:

Definition 1. A Social Network (SN) is defined as a ho-
mogeneous network (graph), in which each vertex denotes an
individual, also known as a Social Actor (SA), and each edge
represents a certain relationship between two SA’s.

A typical SN instances encountered everyday include the
SN of authors, Web blog owners or Email users. The social
ties between two SA’s can be recognized in a variety of ways
depending on the application settings. For example, the
collaboration between authors can be seen as one social tie
between authors.

A SN in real world is not isolated. It is always preferable
to perform the analysis of a SN by studying the correspond-
ing information carrier (a Social Document), e.g. the Email
text in Email SNs, which motivates and maintains the social
ties in a SN. Social documents are defined as:

Definition 2. A social document is a document com-
posed of a set of SAs in a SN for the purpose of exchanging
information or soliciting future social ties.

A social document collection embodies valuable informa-
tion regarding the social ties in the hidden SN and defines
the social ties for modeling the topic dynamics in a social
document corpus.

With the many document summarization tools previously
developed [17, 9, 2], each social document can be seen as a
mixture of topics. By a topic, we mean a certain probability
distribution over the document vocabulary. The topic dy-
namics refer to the series of topic with various strength of
probabilities over time.

3.2 Problem Formalization
Given the definitions in § 3.1, we outline our problem

setting and the solution framework. Consider the evolution
of topics in a social document corpus as a Markov chain.
Per definition, the description of every finite dimensional
Markov chain includes the specification of a finite state set
and a Markov transition matrix. In the social document
setting, we first recognize the topics from the corpus and
consider each topic as a state in the Markov chain whose
marginal probability can be estimated. As such, we need to
address the estimation of the Markov topic transition matrix
in the topic dynamic system spanned by a social document
stream.

For a formal definition of the problem, denote the social
document stream as a matrix DW ∈ R

D×W , where D is the
number of documents and W the number of words. Define
the matrix DA ∈ R

D×A = {λi,j}
D×A denoting the creators

of these documents, where A is the number of social actors

and λi,j = 1(di, aj), an indicator function of whether docu-
ment di is composed by actor aj . Note that one document
may have several actors. (For our experiments actors will
be denoted as authors.)

Using the summarization tools (LDA [2]) we transform
DW into DT ∈ R

D×T , where T is the number of pre-
specified topics. We assume that DT is normalized by row
such that each document is a distribution over topics.

Using the matrix DA, a collaboration matrix A is ob-
tained by setting {αi,j}

A×A = A = (DA)tDA, where αi,j

denotes the number of collaborations between social actors
ai and aj if i 6= j and the number of composed documents
by ai if i = j. Let the author set be Λ. Using matrix DT
and DA, we obtain a set Q = {〈a, t〉|a ⊆ Λ, t ∈ R

1×T},
where a is the set of authors on a document and t is the
distribution over topic specifying this document. Here each
element qi in Q denotes an observation of a document.

Now the problem becomes, given a set Q = {〈a, t〉|a ⊆
Λ, t ∈ R

1×T} and A ∈ R
A×A that can be calculated from Q,

find a Markov transition matrix Γ ∈ R
T×T that captures the

dependencies among the discovered topics, i.e. determine a
function Ψ such that Γ = Ψ(Q,A).

4. SOCIAL INTERACTIONS & MARKOV
TOPIC TRANSITION

In our setting, where topics are those discovered from so-
cial documents, we propose a measurement method that ac-
centuates the social interactions in the latent SN in order to
estimate the topic transitions. The function Ψ determines
the measurement of pair-wise dependencies between topics.

Namely, we limit our search for Ψ to consider only the
social interactions mediating the evolution of topics. The
assumption is supported by the intuition that topics created
by close social actors in a SN sense[21] represent greater
dependencies than those created randomly. For example,
a topic ta is more likely to be dependent on tb if the social
actors found in ta are tightly connected to those social actors
found in tb. The idea here is similar to but different from
that of collaborative filtering [15] in that now heterogeneous
social ties are taken into consideration.
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Figure 2: Different dependency networks among two

sets of variables: topics (squares) and social actors
(circles).

The estimation of Markov topic transition matrix Γ breaks
down to a set of estimation tasks each in the form of P (ti|tj),
which denotes the probability that topic tj transits to ti in
the Markov chain process.

In order to estimate P (ti|tj) using social ties in a SN prop-
erly, we first set up the probability independence among two
sets of variables: topics and social actors. Let Fig. 2 illus-
trate our assumptions of the dependencies of variables. The
topics are assumed to be of no direct dependency between
each other. The social actors are assumed to be pair-wise de-
pendent. For two social actors with no relationships, we can



consider their dependency as zero. In Fig. 2, we show that
three actors u,v and w are socially connected (solid lines).
The two topics associated with them, T1 and T2 respectively,
are linked (dashed lines) to all actors.

Following the above, consider the joint distribution P (ti, tj)
resulting from the interactions in the latent SN. In partic-
ular, we consider the social interaction bounded by order
two, i.e. P (ti, tj) is constrained by single self and pairs of

social interactions only, respectively denoted by P (ti, tj)
(1)

and P (ti, tj)
(2). This can be denoted by:

P (ti, tj) = γP (ti, tj)
(1) + (1− γ)P (ti, tj)

(2) (1)

= γ
X

1≤u≤A

P (ti, au, tj) + (1 − γ)
X

1≤u,v≤A

P (ti, au, av, tj) (2)

where au and av are social actors in the underlying SN. γ is
a smoothing parameter that weighs the importance of 1st-
order social interactions. Eq. 2 assumes independence when
estimating P (ti, au, tj) and P (ti, au, av, tj).

Note the assumption above regarding the order of social
interaction can be relaxed to deal with higher order. We
leave it to the readers to generalize Eq. 2 in high order case.

4.1 Multiple orders of social interactions
Multiple types of social ties can be considered as a ba-

sis for determining the estimation of the topic transition
probability. In this subsection, we provide a solution to the
estimation problem based on social interactions, one typical
social tie in a SN, with different orders. Denote the measure-
ments based on 1st-order and 2nd-order social interactions
respectively by P (ti, tj)

(1) and P (ti, tj)
(2). We focus on de-

riving P (ti, au, tj) and P (ti, au, av, tj) estimation formulas
from our social interaction considerations.

First, we consider the estimation of P (ti, au, tj) as a 1st-
order social interaction. We illustrate the 1st-order proba-
bility dependence between topics and social actors in Fig. 3.
The social actor u is present in both topics T1 and T2.

T2T1

u

Figure 3: 1st-order probability dependence between

topics and a social actor.

We can estimate P (ti, au, tj) by Eq. 3:

P (ti, au, tj) = P (ti|au, tj)P (au|tj)P (tj) (3)

We derive Eq. 3 using the chain rule for a joint probability.
Based on the assumption of the dependency network among
au, ti and tj as illustrated in Fig. 3, we obtain the joint
probability P (ti, au, tj) as a chain of probabilities:

P (ti, au, tj) = P (ti|au)P (au|tj)P (tj) (4)

The intuition behind the 1st-order social interaction is
that a new topic may be initiated by the same actor who
is present in an older topic but without collaboration with
any other social actors.

Second, we discuss the estimation of P (ti, au, av, tj) con-
sidering the 2nd-order social interaction (a dyad in SN no-
tation [21]). The 2nd-order probability dependency between
topics and social actors is presented in Fig. 4. Here we in-
troduce the pair-wise interaction in the latent SN as the
motivation for the evolution of topics.
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Figure 4: 2nd-order probability dependence be-

tween topics and social actors.

Again, consider the joint distribution P (ti, tj) as being
constrained by the relationship between two social actors
au and av to the 2nd-order, as measured by P (ti, au, av, tj).

The constraint is captured in Eq. 1 by P (ti, tj)
(2). These

2nd-order SN interaction constraints can be seen as the
sum of the joint probabilities P (ti, au, av, tj), which is rep-
resented as:

P (ti, tj)
(2) =

X

1≤u,v≤A,u6=v

P (ti, au, av, tj). (5)

We factorize the joint probability P (ti, au, av, tj) in Eq. 6
to Eq. 8 using chain rule:

P (ti, au, av, tj) = P (ti|au, av, tj)P (au, av, tj) (6)

= P (ti|au, av, tj)P (au, av|tj)P (tj) (7)

= P (ti|au, av, tj)P (au|av, tj)P (av|tj)P (tj) (8)

Based on the independence assumption in Fig. 4, we arrive
at a new form of P (ti, au, av, tj) as:

P (ti, au, av, tj) = P (ti|au)P (au|av)P (av|tj)P (tj) (9)

where P (au|av) can be seen as the conditional probability
that social actor au interacts with another social actors av.

Note that the idea of relating the evolution of topics in SNs
with the various orders of social interactions naturally coin-
cides with the assumption that “collaborations bring about
new topics”.

The assumptions we made about the independence net-
works in 1st- and 2nd-order social interactions help the deriva-
tions of Eq. 4 and Eq. 9. In traditional topic discovery
methods where social factors are not considered (e.g. LDA),
topics are assumed to be unconditionally independent from
each other. Thus we see the assumptions of our approach
as weaker and relaxed in conditions.

4.2 Markov transition
With the derivation for the joint probability of two topics

with 1st- and 2nd-order social interactions, the estimation
for Markov transition matrix, Γ, becomes straightforward.
In particular, we define Γ ∈ R

T×T , where each element Γi,j

quantifies the transition probability from tj to ti. Then, Γi,j

is the conditional probability P (ti|tj):

Γi,j = P (ti|tj), where Γ ∈ R
T×T . (10)



where the transition probably is a directional estimate such
that Γi,j does not necessarily equal to Γj,i. We assume Γ
will be normalized by row such that the row elements sum
to one.

Next we revisit the estimation of the joint probability
P (ti, tj) in Eq. 1 for the estimation of P (ti|tj). Using Bayes

rule, we have P (ti|tj) =
P (ti,tj)

P (tj)
. Substituting this into

Eq. 1, we obtain P (ti|tj) =
γP (ti,tj)(1)+(1−γ)P (ti,tj)(2)

P (tj)
. Ac-

cording to Eq. 3 and Eq. 8, we rewrite Eq. 2 as:

P (ti|tj) =

γ
P

u P (ti, au, tj) + (1− γ)
P

u,v P (ti, au, av, tj)

P (tj)
(11)

= γ
X

1≤u≤A

P (ti|au)P (au|tj) +

(1− γ)
X

1≤u,v≤A,u6=v

P (ti|au)P (au|av)P (av|tj) (12)

So far we have given analytical formulas for P (ti|tj) which
are required for deriving the Markov transition matrix Γ.
However, we still cannot write out the closed form solu-
tion from the observations for P (ti|tj) because of the un-
known quantities in Eq. 12, such as P (ti|au), P (au|ti) and
P (au|av). In the next section, we derive the algorithmic
estimation of these quantities.

5. MODEL ESTIMATION
Here we estimate P (ti|au), P (au|ti) and P (au|av) required

to obtain the Markov transition matrix Γ. Remember that
our goal is to estimate Γ given the document set Q, which
we assume is already sorted by time.

An algorithm that estimates a solution to the function
Ψ uses the Maximum Likelihood Estimation (MLE) for the
collaboration matrix A as well as the set of conditional prob-
abilities required for Eq. 12. Let Λ be the author set. Fig. 5
illustrates the algorithm which has three phases: (1) initial-
ization; (2) training, and (3) estimation.

In particular, A and T are matrices recording the co-
occurrence of authors and author-topic pairs. We update T
by adding the probabilities of each topic to the correspond-
ing row of T (in step 5). The same idea is applied when
incrementing the “count” for each topic in step 7. Step 6
increments the count of author ai. Author collaborations
are recorded by step 8 - step 9. Note that the estimation
phase (step 10 - step 12) is not needed in training and can be
carried out whenever estimations are required. We design
the training algorithm in an incremental counting manner
so that online estimations becomes easy to compute.

Let us now consider the analytical complexity of train-
ing and estimation. For training, step 3 - step 9 consumes
a computation complexity of O(NLT + NL2) on average,
where L is the average length of author list on a docu-
ment, usually a small integer. N and T are number of doc-
uments and number of topics. The overall computational
complexity to obtain the estimation of P (ti|tj) via Eq. 12
is further enhanced by a ratio of A for 1st-order and A2 for
2nd-order dependence estimation. The P (ti|tj) then costs
O((NLT +NL2)(A+A2)), which is bounded by O(A2NLT ).

Input: observation set Q = {〈a, t〉|a ⊆ Λ, t ∈ R
1×T}

Output: estimations of P (ti|au), P (au|ti) and P (au|av)

//initialization
(1) A ← 0A×A, T ← 0A×T

(2) cA ← 01×A, cT ← 01×T

//training
(3) for 〈a, t〉 in Q //topic-author counting
(4) for ai in a

(5) Ti,: ← Ti,: + t

(6) cA
{i} ← cA

{i} + 1
(7) cT ← cT + t

(8) for aj in a //author-author counting
(9) Ai,j = Ai,j + 1

//estimation

(10) P (ti|au)← Tu,i/cA
{u}

(11) P (au|ti)← Tu,i/cT
{i}

(12) P (au|av)← Au,v/cA
{v}

Figure 5: MLE for P (ti|au), P (au|ti) and P (au|av)

6. MARKOV METASTABLE STATE
DISCOVERY

Now we have topic and topic-topic dependencies respec-
tively estimated as the system states and the stochastic tran-
sition probability of a Markov chain. We will explore other
topic discovery using well established methods in Markov
analysis [18]. This section describes the discovery of metastable
states [3] in a Markov chain as an approach to identifying
hierarchical clustering of topics.

Consider a Markov chain with its transition matrix P ,
state set S with the marginal distribution of S as π. Let
A ⊆ S, B ⊆ S be two subsets of S. Then the transition
probability from B to A with respect to π is defined as the
conditional probability from B to A:

ωπ(A|B) =

P

a∈A,b∈B πapa|b
P

b∈B πb

(13)

where a,b are dummy variables denoting the states in S.
Let A1,..., AK be disjoint K subsets of S. We define a new

K ×K transition matrix W = {ωπ(Ai|Aj)}ij as described
above. Thus we arrive at another Markov chain with di-
mensionality reduced to K in which each state now is an
aggregate of the unit states from the previous state space.

Markov chains are called nearly uncoupled if its state space
can be decomposed into several disjoint subsets A such that
ωπ(Ai|Aj) ≈ 1 for i = j and ωπ(Ai|Aj) ≈ 0 for i 6= j.
Each aggregate in a nearly uncoupled Markov chain M is
called a metastable state of M . In our setting, a metastable
state in Γ is a cluster of topics. Recursively discovering the
metastable states[3], we may obtain a hierarchical cluster-
ing of topics that capture their taxonomy. Identification of
the metastable states in a Markov chain has been studied
extensively [4, 3]. In numerical analysis, the identification
can be viewed as a process which seeks the matrix permu-
tation such that the transition matrix is as block diagonal
as possible; a method [4] we also use.



7. EXPERIMENTS
7.1 Data preparation

For experiments, we use data from CiteSeer [6], a popu-
lar online search engine and digital library which currently
has a collection of over 739,135 academic documents in Com-
puter Sciences, most of which were obtained by web crawling
and the others by author submissions. The documents have
418,809 distinct authors after name disambiguation. Each
document is tagged with a time-stamp giving the parsed
time of the first crawled date.
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Figure 6: Statistics of the sample CiteSeer.

We associate each document with the list of disambiguated
authors [8]. Then we construct a co-authorship graph where
two nodes share an edge if they ever coauthored a docu-
ment. Next we perform breadth-first-search search on the
co-authorship graph from several predefined well known au-
thor seeds until the graph is completely connected or there
are no new nodes. For seeds selection, we choose two re-
searchers with a large number of publications in CiteSeer,
Michael Jordan and Jiawei Han, from statistical learning
and data mining and database respectively. The constructed
subgraph of authors is further pruned by eliminating the
authors with less than 50 publications in CiteSeer over the
last fourteen years. We end up with a sampling of CiteSeer
containing 3,974 authors and 108,676 documents spanning
from 1991 to 2004. The number of documents acquired w.r.t
years is illustrated in Fig. 6(a). We observe that the number
of documents written by individual authors follows a power
law distribution (Lotka’s law) [13].

7.2 Discovered topics
We train a Latent Dirichlet Allocation (LDA) model over

our entire sample collection of CiteSeer by setting the topic
number as T = 50, resulting in 50 discovered topics illus-
trated in Table 1. The setting of desired topic number is
small because we only work on a small subset of authors in
CiteSeer (3,974 authors out of 418,809). Due to the limited
space, we cannot present all the automatically extracted top
words for all topics. Instead, we manually tag all the topics
with labels using ranked keywords in the words.

For a more detailed description of some topics, in Table 4,
we give a sample of six topics from Table 1 and their top
words. Here the last row is manually labeled to summarize
the topics. We are able to observe that LDA easily discovers
the topics from a variety of areas 1.

1note that Topic 17 denotes the affiliation and venues in

After the models are trained, we re-estimate each docu-
ment with the LDA model to obtain the mixture of topics
for each document. We further normalize the weights of the
mixture components. It should be noted that this permits
us to track the topic over time using some recently proposed
online methods(e.g. [16]).

7.3 Topic trends
We visualize the four topic dynamics w.r.t. time in Fig. 7.

Given a year, the strength of a topic is calculated as the nor-
malized sum of all the probabilities of this topic inferred for
all documents in this year. The topics trend is an indica-
tor of the trend of interests in social documents and in our
setting, the research interest trends.
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Figure 7: Topic probability of eight topics over 14

years in CiteSeer.

The eight topics we choose to plot are (1) query process-
ing (Topic 02); (2) svm learning (Topic 08); (3) digital li-
brary (Topic 019); (4) information retrieval (Topic 026); (5)
knowledge representation (Topic 032); (6) natural language
processing (Topic 038); (7) neural network learning (Topic
046), and (8) Bayesian learning (Topic 050) (similar results
are in[20]).. This raises the question of where do the re-
searchers in a declining trend go (ex. neural networks)? Do
they switch to new topics, and which topics? Our next goal
is to automatically extract the dependencies among these
discovered topics.

7.4 Markov topic transition
In order to explore the temporal dependencies among a

group of discovered topics, we identify the Markov topic
transition matrix via maximum likelihood estimation of the
1st- and 2nd-order constraints brought about by the hidden
social interactions of authors (interactions of single social
actors, or collaboration between social actor pairs).

The Markov transition matrices Γ are shown in Fig. 8(a)
and Fig. 8(b) to highlight the extraction of metastable topic
states. The values of matrix entities are scaled with the
color intensity with the darker color denoting large value.
Fig. 8(a) and Fig. 8(b) visualize the Γ with 1st-order and
2nd-order social relationship, before block diagonalization.

which the keywords are university, department, email, con-
ference, proceedings, etc which are also considered as topics
since there was no deliberate removal of such information
from the title/abstracts in CiteSeer.



Table 1: Topics discovered with manual labels.

Topic # manual namings Topic # manual namings
0 real-time system, performance 25 network traffic congestion control, protocols
1 rule mining, database 26 document retrieval, search engine
2 database query processing 27 language, automation machine
3 communication, channel capacity 28 mathematical derivation, proof
4 information theory 29 image segmentation, computer
5 programming language, compiler 30 multimedia, video streaming
6 scheduling, queueing 31 statistical learning theory
7 software engineering, system development 32 knowledge representation, learning
8 svm, learning, classification 33 protein sequence, dna structure
9 signal processing 34 robotics
10 ai, planning 35 system kernel, unix
11 matrix analysis, factorization 36 security, cryptography
12 dynamic flow control 37 mobile network, wireless protocols
13 dimension reduction, manifold 38 natural language, linguistic
14 decision tree, learning 39 np problem, complexity
15 numerical optimization 40 network package routing
16 mobile network, energy 41 user agents, interface
17 affiliation and venues 42 geometry, spatial objects
18 object oriented design 43 parallel processing
19 digital library services, web 44 distributed computing, network infrastructure
20 os cache strategy design 45 system architecture
21 circuit design 46 neural network, learning
22 concurrent control, distributed system 47 graph algorithms, coloring
23 game and marketing 48 linear programming
24 algorithm complexity 49 bayesian method, learning

(a) Transition under
1st-order interaction

(b) Transition under
2nd-order interaction

(c) Transition under
1st-order interaction
after block diagonal-
ization

(d) Transition under
2nd-order interaction
after block diagonal-
ization

Figure 8: Markov transition matrices before and after block diagonalization

From Fig. 8(a) and Fig. 8(b), we observe that Γ is a sparse
matrix, with large values in diagonal elements. The sparse-
ness shows that these topics are separate though some tran-
sitions among them exist. The large diagonal values indi-
cates that the discovered topics in our case are relatively
stable with mostly transitions to themselves. Authors in
our CiteSeer sample prefer to remain in their own topics
rather than switching between topics.

While the separateness among topics is for future investi-
gation, we now take a closer look at the diagonal elements.
Diagonal elements in Γ indicate the probability that an au-
thor (and author pair collaboration as well) will continue to
work on the same topics over time. This self-transition prob-
ability shown in Fig. 9 allows us to rank the topics according
to the authors reluctance to change topics.

Note that Topic 17 (affiliation and venue info.) is that
with largest self-transition probability. The rational is obvi-
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Figure 9: The self-transition probability ranking of

topics. Topics with high probability are more stable.

ous since most authors tend to continue including their af-



Table 2: Discovery of mTopics via block diagonal

Markov transition matrix.
# Topic IDs

mT1 1 2 8 10 18 19 23 26 32 38 41
mT2 0 5 7 20 21 22 27 28 35 43 45
mT3 6 25 30 36 37 40 44
mT4 13 14 15 17 24 31 33 39 42 47 48
mT5 3 4 9 11 12 16 29 34 46 49
mT1 data management, data mining
mT2 system, programming language, and architecture
mT3 network and communication
mT4 numerical analysis, machine learning
mT5 statistical methods and applications

filiation/venue information which was part of the meta data
used. In addition, we can see that generally the topics with
heavy methodology requirements (e.g. np problem, linear
system) and/or popular topics (e.g. mobile computing, net-
work) are more likely to remain stable. By contrast, topics
closely related to applications are more likely to have higher
transition probabilities than other topics (e.g. data mining
in database, security) all things being equal.

Second, in order to investigate the sparseness in matrix Γ,
we perform metastable state recognition (introduced in $ 6),
viewing Γ as the adjacency matrix of the Markov transition
graph. In particular, we permute Γ in such a way that Γ
is approximated by a block diagonal matrix. The resultant
Γ̂ is illustrated in Fig 8(c) and Fig. 8(d), on 1st-order and
2nd-order consideration of social relationship respectively.

The metastable states have in effect reduced the orig-
inal Markov transition process to a new Markov process
with fewer states and each diagonal block can be seen as
a metastable state [3] which is a cluster of topics with tight
intra-transition edges.

From Fig 8(c) and Fig. 8(d), we are able to initially break

the two Γ̂ into two major blocks, as noted by the dashed
lines. Recursively, we can arrive at five smaller blocks, il-
lustrated by solid lines, with each block as a metastable
topic (or mTopic). Even though there exists a transition be-
tween topics, the transitions are more likely to occur within
a metastable topic rather than between them. Table 2 gives
the list of mTopics and the corresponding topics.

Comparing Table 2 with Table 1, we observe that the topic
descendants discovered readily capture natural intuitions of
the relationships among topics. Specifically, mTopics mT1

includes topics on data management and data mining; mT2

includes programming language, system and architecture;
mT3 covers network and communication; mT4 covers ma-
chine learning and numerical analysis; mT5 are mainly sta-
tistical methods.

7.5 Transition within metastable topics
With metastable topics (mTopic) discovered according to

the approach introduced in § 6, we are able to compute the
accumulated transition probability among mTopics. Fig. 10
illustrates the uncoupled Markov transition graph among
five mTopics we have discovered from the original stochastic
matrix. Transitions with probability lower than 0.16 are hid-
den from the graph to clarify the major transition among the
five mTopics. Such transition probabilities among metastable
topics are useful information for understanding the trends of
topics and their dependencies in social document corpora.

Comparing Fig. 10 with the descriptions of each mTopic
in Table 2, we can outline the major dependencies between
mTopics. Out data indicates that mT4 (numerical analy-
sis) has been essential in these mTopics. And there is a
transition to mT5 (statistical methods) and which is tightly
coupled with research in mT1 (data management and data
mining). Results also imply that researchers in mT3 (net-
works) will be concerned with mT2 (systems) and that data
management research is coupled with systems issues due the
high mutual transition probability between mT1 and mT2.
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Figure 10: The Markov transition graph among

mTopics. Transitions with probability lower than

0.16 are not shown.

Next we look at the transitions within these metastable
topics. Now that we know the topics within a metastable
topic (mTopic) are very less likely to jump across mTopics,
questions may be asked about how tightly the topics in
the same metastable state are aggregated. We present the
stochastic matrices of mT1 and mT4 in Fig. 11(a) and Fig. 11(b).
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Figure 11: The Markov transition structure in

metastable topics

We observe that diagonal elements show the existence of
high self-transition probabilities and that both matrices are
almost symmetric, meaning the pairwise transition between
topics in the same mTopic are largely balanced.

7.6 Who powers the topic transition
If one accepts the above interpretation of Markov transi-

tions among the topics discovered in social document collec-
tions, a natural question to ask is what author or authors
cause such a transition between topics, evaluating their roles
as prominent social actors.

In particular, in the CiteSeer data setting, we seek to pro-
vide rank of authors based on their impact on the transition
from one topic to another. We give a new metric δ(au) for
the author impact ratio of au as measuring the difference
between the obtained P (ti|tj)’s, with and without au.



Table 3: Top ranked authors according to their im-

pact on three topic transitions.

T2→T1 T49→T26 T1→T33
Jiawei Han W. Bruce Croft Mark Gerstein

Jennifer Widom David Madigan Heikki Mannila
Timos Sellis Norbert Fuhr Mohammed Zaki

Dimitris Papadias Andrew Mccallum Limsoon Wong
Hans-peter Kriegel James Allan George Karypis

H. V. Jagadish Thomas Hofmann Jiawei Han
Jeffrey Naughton John Lafferty Susan Davidson
Divesh Srivastava Hermann Ney Dennis Shasha
Amr El Abbadi Michael I. Jordan Serge Abiteboul

Philip S. Yu Ronald Rosenfeld Jignesh M. Patel

Formally, consider how the transition probabilities change
if an author au does not exist. Denote the estimation of
P (ti|tj) without au as P (ti|tj)−au . One can then measure
the importance of au w.r.t. topic tj → ti as δ(au, tj → ti):

δ(au, tj → ti) = P (ti|tj)− P (ti|tj)−au . (14)

The new author ranking differs from previous ranking
by citation counting, currently done in CiteSeer, Google
Scholar, and ISI, by now incorporating social interactions
while ranking social actors. In addition, the new ranking is
dependent on the specified topic pairs thus quantifying the
impact of social actors w.r.t. certain field(s).

Next, we choose all pairs of topics from the 50 discovered
topics in our data and test our hypothesis. This ranking
of social actors captures common knowledge of the impor-
tance of these social actors w.r.t. to different fields. Due
space limitations, we select three topic transition instances
(T2 → T1, T49 → T26, and T1 → T33) and present the
corresponding top ten ranked CiteSeer authors in Table 3.

We observe that many commonly believed influential re-
searchers in data management to data mining (T2 → T1),
Bayesian learning to search engine (T49 → T26), and rule
mining to bioinformatics (T1→ T33) are well ranked 2.
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Figure 12: Ranking of authors w.r.t. their impact

on the transition from Topic 02 to Topic 01.

Finally we give the distribution of impact over all authors
in Fig. 12 for the transition of topic 02 to 01. The impact

2some researchers are not on the list because of no (indi-
rect) collaboration with our seed authors and/or having the
number of papers in CiteSeer necessary for our cut.

distribution is a power law, indicating that only a few social
actors have large effects over a certain topic transitions.

7.7 Order of social interactions
It is interesting to consider what can be obtained by in-

vestigating social relationships with higher order. For that
purpose, we compare the entropy of matrices [20] based on
1st- and 2nd-order social interactions. We can see that as
the orders increase, the entropy of the matrix increases as
well. This observation shows that the separation in social ac-
tors generally decreases as the collaboration social network
increases. In addition, we can see that high-order effects of
the social ties does not really help identify topic transitions.
Here we limited our consideration of social orders to two.

1st order 2nd order

Entropy 259.35 399.82

8. CONCLUSION
We develop new methods for relating social actors to their

associated social topics and use them to derive topic trends.
We show that certain topics are stable while others have
a tendency to change over time. Certain social actors can
be shown to play more important roles than others in topic
transitions.

In particular, we model the topic dynamics in a social doc-
ument corpus as a Markov chain and discover the probabilis-
tic dependency between topics from the latent social interac-
tions. We propose a novel method to estimate the Markov
transition matrix of topics using social interactions of dif-
ferent orders. With the properties of Markov process with
finite states, we apply the application of Markov metastable
states as an approach for discovering the hierarchical clus-
tering of topics and new topics. In addition, we give an
experimental illustration of our methods using Markov tran-
sitions of topics to rank social actors by their impact on the
CiteSeer database. An initial evaluation of our methodol-
ogy on authors as social actors presents other methods for
author impact besides citation counting. Future work could
refine our estimation of topic dependency, use larger data
sets, derive social ranking of actors independent of topics,
explore better estimation methods and generate new com-
munities of actors. We believe our approach of introducing
social factors to traditional document content analysis could
be useful in other discovering the impact of social actors in
other areas.

9. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

information retrieval. Addison Wesley, 1999.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
2003.

[3] P. Deuflhard, W. Huisinga, A. Fischer, and C. Schutte.
Identification of almost invariant aggregates in
reversible nearly uncoupled Markov chains. Linear
Algebra and its Applications, 315(1–3):39–59, 2000.

[4] C. Ding, X. He, H. Zha, M. Gu, and H. Simon.
Spectral min-max cut for graph partitioning and data
clustering. In Proceedings of intl. conf. on data
mining, pages 107–114, Nov. 2001.



Table 4: Six topics discovered by LDA on CiteSeer subset. Each topic is described using 20 words with

highest probabilities.

Topic 00 Topic 01 Topic 02 Topic 03 Topic 05 Topic 07
real data queries channel program software
time database data coding code systems

system mining join rate analysis development
simulation spatial patten performance java tools

fault relational matching bit compiler process
tolerance query clusters capacity data engineering
embedded temporal analysis transmission language components

events large algorithms fading programming application
timing rules hierarchical receiver source design

synchronization association large interference execution component
execution information incremental decoding fortran framework
scheduling management space frequency run modeling
dynamic discovery aggregation low machine specification

performance support evaluation cdma automatic case
response sql views distortion compilation study

distributed frequent cost signal optimization reuse
task patterns efficient systems runtime management

events dbms compression block dynamic evaluation
clock integration approximate modulation static object
period schema text time loops oriented

real-time system association rule query processing communication program lang. software engr.
performance mining capacity compiler system

[5] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient
identification of web communities. In KDD ’00:
Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 150–160, New York, NY, USA, 2000. ACM
Press.

[6] C. L. Giles, K. D. Bollacker, and S. Lawrence.
Citeseer: an automatic citation indexing system. In
DL ’98: Proceedings of the third ACM conference on
Digital libraries, pages 89–98, 1998.

[7] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins.
Information diffusion through blogspace. In WWW
’04: Proceedings of the 13th international conference
on World Wide Web, pages 491–501, 2004.

[8] H. Han, L. Giles, H. Zha, C. Li, and
K. Tsioutsiouliklis. Two supervised learning
approaches for name disambiguation in author
citations. In Proceedings of the 4th ACM/IEEE joint
conference on Digital libraries, 2004.

[9] T. Hofmann. Unsupervised learning by probabilistic
latent semantic analysis. Mach. Learn.,
42(1-2):177–196, 2001.

[10] H. Kautz, B. Selman, and M. Shah. Referral web:
Combining social networks and collaborative filtering.
Comm. ACM, March 1997.

[11] J. Kubica, A. Moore, J. Schneider, and Y. Yang.
Stochastic link and group detection. In Proceedings of
the 2002 AAAI Conference, pages 798–804, 2002.

[12] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In CIKM ’03:
Proceedings of the twelfth international conference on
Information and knowledge management, pages
556–559, New York, NY, USA, 2003. ACM Press.

[13] A. J. Lotka. The frequency distribution of scientific
productivity. Journal of the Washington Academy of
Sciences, 16(12):317–323, 1926.

[14] Q. Mei and C. Zhai. Discovering evolutionary theme

patterns from text: an exploration of temporal text
mining. In KDD ’05: Proceeding of the eleventh intl.
conf. on Knowledge discovery in data mining, 2005.

[15] B. Miller and J. Riedl. A hands-on introduction to
collaborative filtering. In Proc. of the ACM conf. on
computer supported cooperative work, 1996.

[16] S. Morinaga and K. Yamanishi. Tracking topic
dynamic trends using a finite mixture model. In KDD
’04: Proceedings of the tenth intl. conf. on Knowledge
discovery and data mining, pages 811–816, 2004.

[17] K. Nigam, A. K. McCallum, S. Thrun, and
T. Mitchell. Text classification from labeled and
unlabeled documents using em. Mach. Learn.,
39(2-3):103–134, 2000.

[18] E. Seneta. Non-negative Matrices and Markov Chains.
Springer-Verlag, 1981.

[19] T. Snijders. Models for longitudinal network data.
Book Chapter in Models and methods in social
network analysis, 2004.

[20] M. Steyvers, P. Smyth, M. Rosen-Zvi, and
T. Griffiths. Probabilistic author-topic models for
information discovery. In KDD ’04: Proceedings of the
tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 306–315,
New York, NY, USA, 2004. ACM Press.

[21] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge University
Press, Cambridge, New York, USA, 1994.

[22] Y. Yang, J. Zhang, J. Carbonell, and C. Jin.
Topic-conditioned novelty detection. In KDD ’02:
Proceedings of the eighth intl. conf. on Knowledge
discovery and data mining, pages 688–693, 2002.

[23] D. Zhou, E. Manavoglu, J. Li, L. Giles, and H. Zha.
Probabilistic models for discovering e-communities. In
WWW’06: Proceedings of the 15th ACM International
World Wide Web Conference, 2006.


