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Abstract

Maintaining currency of search engine indices by
exhaustive crawling is rapidly becoming impossi-
ble due to the increasing size and dynamic content
of the web. Focused crawlers aim to search only
the subset of the web related to a specific cate-
gory, and offer a potential solution to the currency
problem. The major problem in focused crawl-
ing is performing appropriate credit assignment
to different documents along a crawl path, such
that short-term gains are not pursued at the ex-
pense of less-obvious crawl paths that ultimately
yield larger sets of valuable pages. To address
this problem we present a focused crawling algo-
rithm that builds a model for the context within
which topically relevant pages occur on the web.
This context model can capture typical link hierar-
chies within which valuable pages occur, as well
as model content on documents that frequently co-
occur with relevant pages. Our algorithm further
leverages the existing capability of large search
engines to provide partial reverse crawling capa-
bilities. Our algorithm shows significant perfor-
mance improvements in crawling efficiency over
standard focused crawling.

Introduction

such as news, financial data, entertainment and schedules
become widely disseminated via the web. Search engines
are therefore increasingly challenged when trying to main-
tain current indices using exhaustive crawling. Even using
state of the art systems such as AltaVis&ootey which
reportedly crawls ten million pages per day, an exhaustive
crawl of the web can take weeks. Exhaustive crawls also
consume vast storage and bandwidth resources, some of
which are not under the control of the search engine.
Focused crawlers [2, 3] aim to search and retrieve only
the subset of the world-wide web that pertains to a spe-
cific topic of relevance. The ideal focused crawler retrieves
the maximal set of relevant pages while simultaneously
traversing the minimal number of irrelevant documents on
the web. Focused crawlers therefore offer a potential so-
lution to the currency problem by allowing for standard
exhaustive crawls to be supplemented by focused crawls
for categories where content changes quickly. Focused
crawlers are also well suited to efficiently generate indices
for niche search engines maintained by portals and user
groups [4], where limited bandwidth and storage space are
the norm [5]. Finally, due to the limited resources used by
a good focused crawler, users are already using personal
PC based implementations [6]. Ultimately simple focused
crawlers could become the method of choice for users to
perform comprehensive searches of web-related materials.
While promising, the technology that supports focused
crawling is still in its infancy. The major open problem
in focused crawling is that of properly assigning credit to
all pages along a crawl route that yields a highly relevant
document. In the absence of a reliable credit assignment

The size of the publicly indexable world-wide-web has strategy, focused crawlers suffer from a limited ability to
provably surpassed one billion )adocuments [1] and as sacrifice short term document retrieval gains in the interest
yet growth shows no sign of leveling off. Dynamic con- of better overall crawl performance. In particular, existing
tent on the web is also growing as time-sensitive materialsgrawlers still fall shortin learning strategies where topically
relevant documents are found by following off-topic pages.
Permission to copy without fee all or part of this material is granted pro- ~ We demonstrate that credit assignment for focused
e e S oA e a1 bl s lers can be sigrcantly improved by equippig the
ﬁs\ijaar;eag%pear, and noti?é g given that copying is by peprmission of thecra_Wler with the capablh_ty Of. modeling the context within
Very Large Data Base Endowment. To copy otherwise, or to republishWhich the topical materials is usually found on the web.
requires a fee and/or special permission from the Endowment. Such a context model has to capture typical link hierarchies
Proceedings of the 26th VLDB Conference, within which valuable pages occur, as well as describe
Cairo, Egypt, 2000. off-topic content that co-occurs in documents that are fre-
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guently closely associated with relevant pages. We presemjueue. A best first search is performed by popping the next
a general framework and a specific implementation of suclpage to analyze from the head of the queue. This strategy
a context model, which we call a Context Graph. Our algo-ensures that the crawler preferentially pursues promising
rithm further differs from existing focused crawlers in that crawl! paths.

|t IeVerageS the Capablllty Of eXiSting eXhaustiVe SeaI’Ch en- The Simp|est focused Craw'ers use a ﬁxed model of
gines to provide partial reverse crawling capabilities. As athe relevancy class, typically encoded as a classifier, to
suitable for real-time services. _ to (henceforth referred to as children) for topical rele-

~ The outline of the paper is as follows: Section 2 pro-yancy [2, 3, 11]. The classifier is either provided by the user
VldeS a more deta"ed overview of focused CraW“ng. SeC'in the form Of query termS, orcan be bu||t from a set Of Seed
tion 3 describeS the aI’ChitectUi’e and imp|emen'[ati0l’l Of Ouaocuments_ Each ||nk is assigned the score of the document
approach. Comparisons with existing focused crawling alto which it leads. More advanced crawlers adapt the clas-
gorithms on some test crawls are shown in Section 4, andifier based on the retrieved documents, and also model the
we conclude by discussing extensions and implications i'i/vithin-page context of each hyperlink. In the most com-

Section 5. mon adaptive crawlers decision directed feedback is used,
. . ) where documents that are marked as relevant by the clas-
2 Prior Work in Crawling sifier are also used to update the classifier. However, en-

The first generation of crawlers [7] on which most of the suring flexibility in t'h'e ciassifier, without simultaneously
web search engines are based rely heavily on traditionaﬁorrum'r,'g the classifier, is difficult.

graph algorithms, such as breadth-first or depth-first traver- A Major problem faced by the above focused crawlers
sal, to index the web. A core set of URLSs are used as a sedg that it is frequently difficult to learn that some sets of
set, and the algorithm recursively follows hyper links down ©ff-topic documents often lead reliably to highly relevant
to other documents. Document content is paid little heegdocuments. This deficiency causes problems in traversing

since the ultimate goal of the crawl is to cover the wholethe hierarchical page layouts that commonly occur on the
web. web. Consider for example a researcher looking for pa-

pers on neural networks. A large number of these papers
are found on the home pages of researchers at computer
science departments at universities. When a crawler finds
the home page of a university, a good strategy would be to
follow the path to the computer science (CS) department,
then to the researchers’ pages, even though the university
and CS department pages in general would have low rele-
vancy scores. While an adaptive focused crawler described
above could in principle learn this strategy, it is doubtful
that the crawler would ever explore such a path in the first
place, especially as the length of the path to be traversed
increases.

Figure 1: a) A standard crawler follows each link, typically ~ To explicitly address this problem, Rennie and McCal-
applying a breadth first strategy. If the crawler starts fromlum [12] used reinforcement learning to train a crawler on
a document which issteps from a target document, all the specified example web sites containing target documents.
documents that are up te- 1 steps from the starting docu- The web site or server on which the document appearsis re-
ment must be downloaded before the crawler hits the targepeatedly crawled to learn how to construct optimized paths
b) A focused crawler tries to identify the most promising to the target documents. However, this approach places a
links, and ignores off-topic documents. If the crawler startsburden on the user to specify representative web sites. Ini-
from a document which issteps from a target document, tialization can be slow since the search could result in the
it downloads a small subset of all the documents that arerawling of a substantial fraction of the host web site. Fur-
up toi — 1 steps from the starting document. If the searchthermore, this approach could face difficulty when a hier-
strategy is optimal the crawler takes onbteps to discover archy is distributed across a number of sites.

the target. An additional difficulty faced by existing crawlers is that

A focused crawler efficiently seeks out documents aboutinks on the web are uni-directional, which effectively re-
a specific topic and guides the search based on both the costricts searching to top-down traversal, a process that we
tent and link structure of the web [2]. Figure 1 graphically call “forward crawling” (Obtaining pages that link to a par-
illustrates the difference between an exhaustive breadthticular document is referred to as “backward crawling”).
first crawler and a typical focused crawler. A focusedSince web sites frequently have large components that are
crawler implements a strategy that associates a score wittrganized as trees, entering a web site at a leaf can result
each link in the pages it has downloaded [8, 9, 10]. Then a serious barrier to finding closely related pages. In our
links are sorted according to the scores and inserted in example, when a researcher’s home page is entered, say

@) Standard Crawling b) Focus Crawling
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via a link from a list of papers at a conference site, a good

Contex

strategy would be for the crawler to find the department Greph Back Crawl Stage
member list, and then search the pages of other researchers

in the department. However, unless an explicit link exists mmm Learning Sizge
from the researcher’s page to the CS department member N e

list, existing focused crawlers cannot move up the hierar- \ Craniing Sege

Crawl
Engine

chy to the CS department home page. w
Our focused crawler utilizes a compact context repre- w

sentation called &ontext Graphto model and exploit hi-
erarchies. The crawler also utilizes the limited backward

crawling [13, 14] possible using general search engine in- Q“e”e_l‘ Q“*”ez_‘ Q“E”ef‘ Q“‘”ef“
dices to efficiently focus crawl the web. Unlike Rennie and : : : :
McCallum’s approach [12], our approach does not learn the b " b "

context within which target documents are located from a
small set of web sites, but in principle can back crawl a sig-

nificant fraction of the whole web starting at each seed Of;q ;e 2: Graphical representation of the Context Focused
on-topic document. Furthermore, the approach is more efcrayler. During the initialization stage a set of context
ficient in initialization, since the context is constructed bygraphs are constructed for the seed documents by back-
directly branching out from the gopd set of documents tocrawling the web, and classifiers for different graph layers
model the parents, siblings and children of the seed set. e trained. During the crawling stage the crawl engine and

the classifiers manage a set of queues that select the next
3 The Context Focused Crawler page on which to center the crawl.

Our focused crawler, which we call thi@ontext Focused

Crawler (CFC), uses the limited capability of search en-a number of pages linking to the target are first retrieved
gines like AltaVista or Google to allow users to query for (these pages are called the parents of the seed page). Each
pages linking to a specified document. This data can bearent page is inserted into the graph as a node and an edge
used to construct a representation of pages that occur withis established between the target document node and the
a certain link distance (defined as the minimum number oparent node. The new nodes complaser 1 of the context

link traversals necessary to move from one page to anothegraph. The back-crawling procedure is repeated to search
of the target documents. This representation is used to traiall the documents linking to documents of layer 1. These

a set of classifiers, which are optimized to detect and assigpages are incorporated as nodes in the graph and compose
documents to different categories based on the expectddyer 2. The back-linking process is iterated, until a user-
link distance from the document to the target documentspecified number of layers have been filled. In practice the
During the crawling stage the classifiers are used to predictumber of elements in a given layer can increase suddenly
how many steps away from a target document the currenvhen the number of layers grow beyond some limit. In
retrieved document s likely to be. This information is thensuch a case a statistical sampling of the parent nodes, up

used to optimize the search. to some system dependent limit, is kept. To simplify the
There are two distinct stages to using the algorithmlink structure, we also use the convention that if two docu-
when performing a focused crawl session: ments in layer can be accessed from a common parent, the

initializati h h ¢ h parent document appears two times in the ldyed. As
1. An initialization phase when a set of context grap Saf result, an equivalent induced graph can be created where

and associated classifiers are constructed for each Qch document in the layes- 1 is linked to one and only
the seed documents one document in the layér

2. A crawling phase that uses the classifiers to guide the We define thelepthof a context graph to be the number
search, and performs online updating of the contexof layers in the graph excluding the level O (the node stor-
graphs. ing the seed document). Whéhlevels are in the context

) o graph, path strategies of up kbsteps can be modeled. A
The complete system is shown in Figure 2. We now detontext graph of depth 2 is shown in Figure 3.

scribe the core elements in detail. By constructing a context graph, the crawler gains
knowledge about topics that are directly or indirectly re-
lated to the target topic, as well as a very simple model of
The first stage of a crawling session aims to extract the corthe paths that relate these pages to the target documents. As
text within which target pages are typically found, and en-expected, in practice, we find that the arrangement of the
codes this information in a context graph. A separate connodes in the layers reflect any hierarchical content struc-
text graph is built for every seed element provided by theture. Highly related content typically appears near the cen-
user. Every seed document forms the first node of its aster of the graph, while the outer layers contain more gen-
sociated context graph. Using an engine such as Googleral pages. As a result, when the crawler discovers a page

3.1 Generating the Context Graphs
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ment Frequency). TF-IDF representation [15] describes a
document as a vector relative to a basis of phrases that de-
fine a vocabulary. Each element in the vector represents
the frequency of occurrence of the phrase in the document,
weighted according to the discrimination implied by the
presence of the phrase within a reference corpus. This dis-
crimination is approximated by the phrase frequency in the
reference corpus. If two phrases have the same number of
occurrences in a document, the TF-IDF value of the less
common phrase will be higher. The TF-IDF scorev) of
a phrasev is computed using the following function:

fd(w) N

wherefd(w) is the number of occurrenceswfin a docu-
mentd, 9,4 is the maximum number of occurrences of a
phrase in a documeut, N is the number of documents in
the reference corpus arfdw) is the number of documents
@ Representation of the Target Document in the corpus where the phraseoccurs at least once.

@ Document Representations of layer 1 We implement TF-IDF using the following steps. All
the documents in the seed set, as well as optionally, the
first layer, are concatenated into a single master document.

‘ Document Representations of layer 2

1. All stop-wordssuch as “by”, “and”, or “at” are re-
Figure 3: A context graph represents how a target docu-  moved from the master document
ment can be accessed from the web. In each node a web o
document representation is stored. The graph is organized2. Word stemming is performed to remove com-
into layers: each node of layeiis connected to one (and mon word transformations, such as plurals or case
only one) node of the laydr— 1 (except the single node changes [16];
in layer 0). There are no connections betwee.n nodes at the3. TF-IDF computation is performed using a reference
same IeveI.. The See.d documgnt IS stqred n Ia;_/er 0. A corpus derived from an exhaustive web crawl.
document is in layer if at leasti steps (link followings)
are needed to reach the target page starting from that dociihe resulting set of phrases form the vocabularywhen
ment. a document is retrieved, the TF-IDF score for phrases in
V that occur in the document are computed and placed in
with content that occurs higher up in the hierarchy, it cana vector. We then truncate the vector representation to in-
use its knowledge of the graph structure to guide the searctiude only the forty highest scoring components by zeroing
towards the target pages. Returning to our example of lookeut the remaining components. This processing, yielding a
ing for neural network pages, the context graph will typi- representation which we will refer to as reduced TF-IDF
cally discover a hierarchy where levels correspond to rerepresentation, ensures numerical stability and high speed
searcher home pages, research group pages, and ultimatelythe classifiers.
department and university home pages. Given a representation procedure, we next construct the
Once context graphs for all seed documents have beetlassifiers. Our goal is to be able to assign any web doc-
built, the corresponding layers from the different contextument to a particular layer of the merged context graph.
graphs are combined, yielding a layered structure that wélowever, if the document is a poor fit for a given layer, we
call theMerged Context Graph wish to discard the document, and label it as one of the cat-
egory “other”. The major difficulty in implementing such
a strategy using a single classifier mapping a document to
a set ofN + 2 classes corresponding to the layer$,0..N
and a category “other”, is the absence of a good model or
The next stage in initialization builds a set of classifiers fortraining set for the category “other”. To solve this prob-
assigning any document retrieved from the web to one ofem we use a modification of thidaive Bayes Classifier
the layers of the merged context graph, and for quantifyingor each layer. This classifier architecture provides reason-
the belief in such a classification assignment. able performance, high speed, meets the requirement of our
The classifiers require a feature representation of thaystem that a likelihood estimate be provided for each clas-
documents on which to operate. Our present implemensification, and is well studied [17, 18, 12].
tation uses keyword indexing of each document using a Assume that we have a documehntepresented by the
modification of TF-IDF (Term Frequency Inverse Docu- vector corresponding to the reduced TF-IDF representation

3.2 Learning Classifiers for the Context Graph Ele-
ments
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relative to the vocabulary. Documents from class;, de- The classifier of layer 0 is used as the ultimate arbiter
fined to correspond to laygr are assumed to have a prior of whether a document is topically relevant. The discrimi-
probability of being found on the web which we denote nant and likelihood functions for the other layers are used
P(cj). The probability that a vector elemewnt occurs in  to predict for any page how many steps must be taken be-
documents of class; is P(w|cj). To classify a page, we fore a target is found by crawling the links that appear on a
first wish to find the clasg; such thatP(cj|d;) is maxi-  page.

mized. The solution is given by Bayes rule

P(ci|dh) O P(c)P(di[cj) 0 P(cj)P(Waa- - W lcy) (2 33 Crawiing
The crawler utilizes the classifiers trained during the con-
text graph generation stage to organize pages into a se-
ence ofM = N + 2 queues, wher&l is the maximum
epth of the context graphs. Tht¢h class (layer) is asso-
ciated to tha-th queug = 0,1,...N. Queue numbeX + 1
is not associated with any class, but reflects assignments
Nej to “other”. The 0-th queue will ultimately store all the re-
P(cjldi) O P(cj)P(dilcj) O P(cj) [TPWaylc))  (3)  trieved topically relevant documents. The system is shown
k=1 graphically in Figure 2.
whereNg, indicates the number of features in the document  Initially all the queues are empty except for the dummy
di. If N denotes the maximum depth of the context graphsgueueN + 1, which is initialized with the starting URL of
thenN + 1 discriminant function®(c;|d;) are built corre-  the crawl. The crawler retrieves the page pointed to by the
sponding the layerg=0,1,...N. URL, computes the reduced vector representation and ex-
The discriminant functions allow for a given padeto  tracts all the hyperlinks. The crawler then downloads all
first be assigned to one of the layers of the merged contextbe children of the current page. All downloaded pages
graph, by finding the layej* for which the discriminant are classified individually and assigned to the queue corre-
functionP(c;j|d;) is maximized. Subsequently, by comput- sponding to the winning layer, or the class “other”. Each
ing the likelihood functiorP(cj-|d;) for the winning layer ~ queue is maintained in a sorted state according to the like-
j*, and comparing this likelihood to a threshold, it is possi-lihood score associated with its constituent documents.
ble to discard weakly matching pages. These pages are ef- When the crawler needs the next document to move to,
fectively marked as “other”, which avoids the need for con-it pops from the first non-empty queue. The documents
struction of an explicit model of all documents not in the that are expected to rapidly lead to targets are therefore
context graph. In effect, we build a set of parallel two-classfollowed before documents that will in probability require
Naive Bayes classifiers, one for each layer, and select theore steps to yield relevant pages. However, depending on
winning layer by maximizing tha-posteriorilikelihood of ~ the relative queue thresholds, frequently high-confidence
the layer based on the context graph. pages from queues representing longer download paths are
In training the classifiers, the documents that occur inretrieved.
layer j of all of the seed document context graphs are com- The setting of the classifier thresholds that determine
bined to serve as a training data 8§t The phrase prob- whether a document gets assigned to the class denoted
abilities P(w; |cj) are computed on the selg by counting  “other” determines the retrieval strategy. In our default im-
the occurrences of the featung and then normalizing for plementation the likelihood function for each layer is ap-
all the words in the documents of clasgs plied to all the patterns in the training set for that layer.
The confidence threshold is then set equal to the minimum
_ 1+ Yqep, N (wt, di)P(c; |di) 4 likelihood obtained on the training set for the correspond-
VI+ Za.ep; 335 N(ws,d)P(c; [d) ing layer. . .
During the crawling phase, new context graphs can peri-
whereN(w,d;) is the number of occurrenceswf in the  odically be built for every topically relevant element found
document; and|V | is the number of phrases in the vocab- in queue 0. However, our focused crawler can also be con-
ularyV [17, 18, 12]. figured to ask for the immediate parents of every document
The parameter®(cj) can be calculated by estimating as it appears in queue 0, and simply insert these into the ap-
the number of elements in each of the layers of the mergedropriate queue without re-computing the merged context
context graph. While useful when the layers do not contairgraph and classifiers. In this way it is possible to contin-
excessive numbers of nodes, as previously stated practicahlly exploit back-crawling at a reasonable computational
limitations sometimes prevent the storage of all documentsost.
in the outermost layers. In these cases the class probabili-
tiesP(c;j) are setto a fixed constant valugd, whereCis 4 Experimental Results
the number of layers. This corresponds to maximum likeli-
hood selection of the winning layer. In our experience, per-The core improvement of our focused crawler derives from
formance is not severely impacted by this simplification. the introduction of the context graph. We therefore com-

wherewg , is the k-th feature of the documemnt. The
Naive Bayes assumption ignores joint statistics and for
mally assumes that given the document class the featur
occur independently of each other, yielding the final solu-
tion

P(wt[c;)
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Figure 4: Both the Context Focused Crawler and the stanments computed using a sliding window of 200 downloads,

dard focused crawler are orders of magnitude more efqjystrating the improved capability of the Context Focused
ficient than a traditional breadth-first crawler when re-crawler to remain on-topic.

trieving “Call for Papers” documents. The Context Fo-

cused Crawler outperforms the standard crawler, retrieving, .y case the Context Focused Crawler maintains a signif-
50— 60% more “on-topic” documents in a given period.  jcantly higher level of relevance than either of the other
two crawlers, reflecting the ability of the crawler to use off-
otopic paths to find new sets of promising documents.
Our experiments showed that the overhead due to the
e abreadth-first crawler, using the classifier constructednitialization stage is negligible, especially when the over-
by the Context Focused Crawler on the seed set; all higher efficiency of the crawler is taken into account.
. . The improvement that results from querying for the par-
* a traditional focused crawler which does not use theynis of every on-topic document when it is discovered can
context to search targets. This crawler evaluates alhe seen in Figure 6. This approach shows bursts of rapid re-
children of the current document using the same clasgrjeval when back-crawling from a target document yields
sifier used by the Context Focused Crawler for theg hp site. We note that for general use we ration the num-

seed set, and schedules crawls based on the documef; of hack-link requests to avoid over-taxing the search
with the highest score. engines.

As a test set we performed a focused crawl for confer- Figure 7 shows a different category, “Biking”, for which
ence announcements, and, in particular, for the “Call forour focused crawler showed the least average performance
Papers” section. We used ten examples as a seed set afgProvement over standard focused crawling (although it
constructed ten context graphs of depth four. We limitecStill significantly outperforms the standard crawler over
the number of documents in a single layer of the contexfnost of the trial). We found that such difficult categories
graph to 300 . The resulting data was used to learn the 8re those where target content is not reliably co-located
Naive Bayes classifiers associated with the five queues. With pages from a different category, and where common

To evaluate our algorithm we used the accepted metri®lierarchies do not exist or are not implemented uniformly
of measuring the fraction of pages that are on-topic as &Cross different Web-sites._ It is therefore to .be expected
function of the number of download requests. The result§hat the context graph provides less guidance in such cases.
are shown in the Figure 4. Both of the focused Craw]eré"OWGVQr, due to our architecture deSign, and as illustrated
significantly outperform the standard breadth-first crawlerby Figure 4 and Figure 7, the performance will at worst
However the Context Focused Crawler has found on avapproach that of the standard focused crawling approach.
erage 50-60% more on-topic documents than the standard
focused crgwler on the “Conference” task. 5 Discussion

The ability of the crawlers to remain focused on “on-
topic” documents can also fruitfully be measured by com-We presented a focused crawler that models the links and
puting the average relevance of the downloaded documentsontent of documents that are closely linked to target pages
The relevance of a document is equated to the likelihoodo improve the efficiency with which content related to a
that the document has been generated by the Naive Bayesired category can be found. Our experiments show that
model of the seed set. In Figure 5 we show the averagthe Context Focused Crawler improves the efficiency of tra-
relevance using a sliding window of 200 downloads. Inditional focused crawling significantly (on average about

pare the efficiency of our Context Focused Crawler to tw
crawlers:
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Figure 6: Performance of Context Focused Crawler agigure 7: Performance of focused crawlers on the category
compared to Context Focused Crawler with BackLinks, Biking”.

where parents of each on-topic document are obtained from

the search engines immediately after the document is diglucing another parameter). Online parameter updating of
covered. The task is retrieval of “Call for Papers” docu-the classifiers using the EM approach [19] should result

ments on the web. in more efficient continuous optimization of the classifier
performance.

50-60%), and standard breadth-first crawling by orders of Not only can our approach be used for background gath-

magnitude. ering of web material, the computational and bandwidth re-

The major limitation of our approach is the requirementquirements of the crawler are sufficiently modest for the
for reverse links to exist at a known search engine for acrawler to be used in an interactive session over a DSL
reasonable fraction of the seed set documents. In practicer cable modem connection on a home PC. The focused
this does not appear to be problem. However, even when nerawler can therefore be used as a valuable supplement to,
seed documents have yet been indexed by search enginasid in some cases a replacement for, standard search engine
the approach can be bootstrapped. In this case a contetiatabase queries. We have no doubt that further improve-
model of the seed set is extracted and other high-confidenagaent of focused crawling will soon make crawling not only
target data can be found using query modifications on ahe privilege of large companies that can afford expensive
search engine. The indexed target data pages returned mfrastructures, but a personal tool that is widely available
the search engine can then be used to build context graphf®r retrieving information on the world wide web.

The system can also start with a breadth-first crawl and a
set of example documents for training the level 0 classifierReferences
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