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Abstract

An algorithm isintroduced that trains a neural network to identify chaotic dynamics from a single measured time-
series. The dgorithm has four spedal fedures:

1. The state of the system is extraded from the time-series using delays, foll owed by weighted Principal Component
Analysis (PCA) data reduction.

2. Thepredictionmodel consists of bath alinea model and a Multi-Layer-Perceptron (MLP).

3. The dfedive prediction haizon duing training is user-adjustable, dueto ‘error propagation’: prediction errors
are partialy propagated to the next time step.

4. A criterionis monitored during training to seled the model that has a dhaotic atrador most similar to the red
system’ s attrador.

The dgorithm is applied to laser data from the Santa Fe time-series competition (set A). The resulting model is not only
useful for short-term predictions but it also generates time-series with similar chaotic charaderistics as the measured
data.

K eywords — time series, neural networks, chaotic dynamics, laser data, Santa Fe time series competition, Lyapunors
exporents, principal comporent analysis, error propagation.

1. Introduction

A time-series measured from a deterministic chaotic system has the gppeding charaderistic that its evolutionis fully
determined and yet its predictability is limited, dweto exporential growth o errorsin model or measurements. A variety
of data-driven analysis methods for this type of time-series was colleded in 1991 duing the Santa Fe time-series
competition [1]. The methods focused either on charaderizaion a prediction d the time-series. No attention was given
to athird, much more powerful objedive: given the data and the asumption that it was produced by a deterministic
system, find a set of model equations that will produce atime-series with identicd chaotic charaderistics, having the
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same chaotic atrador. The model could be based onfirst principles if the system is well understood, bu here we
asaime knowledge of just the time-series and wse aneura network based, Hadk-box, model. In concise neura network
jargonwe formulate our godl: train a network to lean the chaotic dtractor. A number of authors addressed thisisaue
[2-6]. The cmmon approach is to identify a prediction model, generate atime-series with it and investigate its
charaderistics. Principe d@ al. [2] foundthat in many cases this approadh fail s; leaning of the atrador is not guaranteed
and remains amatter of trial and error. To improve the common approach, Kuo and Principe [3] propased to minimize
multi-step instead of just one-step-aheal prediction errors. We proceed in this line of thought by introducing an
agorithm that eff edively increases the prediction harizon d the model during training; however, it differsin that it does
not compute multi-step-ahead predictions but, more dficiently, propagates previous prediction errors. The dgorithm
isexplained in sedion 4.1.It isimplemented along with threecther feaures that make the modeling more df edive: the
reduction of the number of model inpus by weighted PCA (sedion 2); use of a wmbined linea model and MLP
(sedion 3; and monitoring during training of a aiterionto compare model and measured attrador (sedion 4.2. Sedion
5 describes how the dgorithm was succesSully applied to laser data (set A) from the Santa Fe competition. The paper
ends with concluding remarks and dredions for future reseach (sedion 6).

2. Method of delays and PCA

The discrete time evolution equation for a norlinear, autonamous, deterministic and stationary systemis
X1 = F(X), (1)

where F isanorlinea function,and X is the state of the system at timet,=t;+nz, risthe sampling time. In most red
applications only asingle variable is measured, even if the evolution d the system depends on several variables. In this
case, we extrad the state from the time-series of the single measured variable y by taking a delay vedor
X, = Vnmep - Ye) » Wheremisthe number of delays, cal ed embedding dimension. Takens [ 7] showed that this method
of delayswill | ead to evolutions of the type of Eq. (1) if we chocse m> 2D +1, where D isthe dimension d the system’s
attrador.

The choiceof the delay time 7 and the eanbedding mis highly empiricd. First we fix their product T=mm, thetime
window, and consider that: (i) it istoo short if the variation within the window is dominated by noise; and (ii) it islonger
than necessry if the first and last part of the delay vedor have no correlation at all. Next we chocse the delay time 7.
Herewe must redizethat 7isnat only the time interval between successve delaysbut it will also be the one-step-ahead
predictiontime of our model. That time must be small to enable generation d smoath time series and to make sure that
the mapping F in Eq. (1) will be smoath.

2.1. Principal Component embedding

The mnsequence of choosing asmall delay timein afixed timewindow is alarge enbedding, m=T/t, causing the
model to have an excessnumber of inpusthat are highly correlated. A convenient way to reduce the dimension d a set
of linealy correlated variablesis Principal Comporent Analysis (PCA), as introduced in this context by Broomhead
andKing [8]. PCA transforms the set of delay vedors Y, to anew set of uncorrelated variables of reduced dmension.
Thetransformation matrix U is computed by singular value decompasition (SVD) of the mvariancematrix S of the input
data. SVD decompases Sinto the product of threematrices UZV', where U andV are bath arthogorna and X isdiagonal.
The principal comporent vedors Z, are computed by

z, = Uy, 2

andthe original delay vedors y, are reconstructed by

y, = UZ. (3)

Theacaracy of thereconstructionin Eq. (3) depends on hav small we docse the reduced dmension d Z, . Intuitively,
onewould like the reamnstruction d recant measurements to be more acarrate than that of older ones. This can be dore
by using weighted PCA [9]. In ou experience, the standard weighting profile shown in Fig. 1 workswell. The airve
is computed w(d)=ex —E), where w(d) is the weight for the d" delay. The weight of the most recent delay is
douled; withou weightl nbn it'tends to be lesswell recnstructed becaiseit has only one neighbar in the delay vedor.
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Figure 1: standard weighting profile used in the weighted PCA.

3. Prediction model

After defining the state of our experimental system, we need to chocse arepresentation d the nonlinea function F
in Eq. (1). Becaise we prefer to use ashort delay time t, the one-step-ahead prediction will be highly correlated with
the most recent measurement, and alinear model may already make acairate one-step-ahead predictions. To lean the
norineaitiesin F we adda standard Multi Layer Perceptron (MLP).

3.1. PCA State Update

In Eq. (1), the new state of the system is predicted from the previous one. But the method d delays has introduced
information from the past in the state of the system. Sinceit is not soundto predict the past, we first predict only the
new measured variable

yn a7 F /(Xn) ' (4)

and then ‘update’ the old state X, with the prediction y, ; to give X ;. For delay vedors X, = (Y, _y.q:-- Y, » this
update simply involves a shift of the time window: the oldest value of y is removed and the new, predicted value comes
in. In ou case of principal components X, = Z,, the update requires threesteps: (i) reconstruct the delay vedor from
the principal comporents; (i) shift the time window; and (iii ) construct the principal comporents from the updated delay
vedor. Fortunately, these threeoperations can be dorein asingle matrix computation that we cdl ‘updete formula’, see
Bakker et d. [10] for aderivation,

Zn+1 = Azn + Byn+1 (5)
with
= T
Aij = Z Ui,kkal,j (6)
k=2
and
5 - U ()

4. Training algorithm

The objedive of our training procedure isto find aset of parameters for the model such that it will approximate the
atrador of thered system. This diff ers from the usua goal of making goodshort-term predictions. The question arises
what happensif we simply minimize short-term prediction errors; will the prediction model approximate the atractor
of thered system? Principe  a. [2] showed in an experimental study that thisis nat necessarily the cae, and later Kuo
& Principe[3] andaso Dew and Schirmann[4] propased, asaremedy, to usetrajedory learning, i.e., minimize multi-
step instead of one-step-aheal prediction errors. This approach still minimizes prediction errors (and can still fail) but
it leaves more room for optimizaion as it makes the prediction haizon wser-adjustable. The dternative for trajedory
leaning that we present in sedion 4.1 des not have the wmputational burden of computing multi-step-ahead
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predictions. The ideais to make successve predictions dependent on ead ather by propagating previous prediction
errors. To achieve our god of atrador leaning, we extend,in sedion 4.2, the training procedure with a test devel oped
by Dikset d. [11], that measures the distance between the model andred system attrador. Training can be stopped after
the distance has readed its minimum.

Y1

Figure 2. (a) one-step-ahead learning and (b)
error propagation: previous errors are partially
propagated to the next time step.

4.1. Error Propagation

The ommonway to train aprediction model isto minimizethe squared dff erence between the predicted and measured
future value. The predictionis computed

yn+1 = F(Zn) (8)

In sedion 3we recommended to choose the delay time 7 small. As a mnsequence, the one-step-aheal prediction will
be highly correlated with the recent measurements and may eventually be dominated by noise, resulting in bad multi-
step-ahea predictions. This motivated the dorementioned trajedory leaning approach: from alarge number of initial
states compute predictions up to afixed number of steps, and minimizethe aror of these predictions.

We envisage asemnd pashility to improve multi-step-ahead predictions withou adualy computing them, thus
making the dgorithm nore dficient. Theideaisto partially propagde prediction err ors to the next time step, such that
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Figure 3. Diks test result (S) monitored during each training

session. The triangles mark the point where the prediction error

on the test set is at its minimum.




the next predictionis aff eded by the previous one. To be predse, we propaose to updite the next state with a mixture
of the predicted and measured value

Zml = Azn + 6[(1_n)yn+1+nyn+l]' (9)

where 1 is the aror propagation parameter that must be dhasen between zero and ore. Equivaently, defining the
predictionerror € =Y, ,; ~Y,.1»

Zn+1 = Azr‘l + B[yn+1+neﬂ]' (10)

Equation (10) and the illustration in Fig. 2 make dea why we cdl this agorithm error propagdion (EP). For
minimizaion d the aror we use mnjugate gradients; gradients are computed with badkpropagation through time.

In apreliminary version d the dgorithm [10], the parameter 1 was taken as an additional output of the prediction
model, to make it state-dependent. The ideawas that the training procedure would automaticdly choose n large in
regions of the enbedding spacewhere the predictability is high, and small where predictability islow. We now think
that the training procedure @nverges better if we chocse ) fixed, nd to let adaptations of 1, having abig influenceon
the average prediction error, daminate the leaning process

4.2. Diks Test Monitoring

Error propagation training does not guaranteethat we read ou goal: leaning of the system attrador. Therefore, we
monitor a amparison ketween the model and measured attrador and stop training when the diff erenceis at a minimum.
The test we use was recantly developed by Diks et a. [11]. It is comparable to visual comparison d attradors plotted
in the enbedding-space The following null hypothesis is tested: the two sets of delay vedors (model generated,
measured) are drawn from the same multi -dimensiond probalbility distribution. The test defines smoathed distributions
of the two sets using Gaussan kernels and then provides an unbased estimate for the squared dff erence between the
distributions, Q, anditsvariance V. (Q) Under the null hypathesis, theratio S= /MY (Q) isarandam variable with
zero mean and urit variance. For detallswe refer to [11]. Speda attentionis needed for the dhaice of the bandwidth
parameter that is used by the Gaussan kernels. It determines the length scde & which the two sets are cmpared. Diks
suggests to use asmall part of the avail able datato find ou which bandwidth gives the highest test result, and to use
thisvalue for the final test with the cmplete sets of data. In ou pradica i mplementation we generate 11 independent
datasets with the model, eat with alength of two times the measured time series length. The first set is used to find
the optimum bandwidth, the other ten setsto get an estimate of Sandto roughly estimate its gandard deviation (expeaed
to be unity). Diks suggeststo rejed the null hypothesis with more than 95% confidencefor S>3. Our estimate of Sis
the average of ten evaluations, and we docse athreshold of S=3//(10)~0.9.

5. Laser dataresults

We gplied the training algorithm to the benchmark laser data (set A) from the Santa Fe time series competition [1]. The
first 3000 pants were used for training, the next 3000for testing. We took an embedding of 40 and used PCA to reduce
the 40 delaysto 16 pincipal components. First alinear model was fitted to make one-step-aheal predictions. Then the
model was extended with an MLP, having 16 inputs (the 16 principal components), two hidden layers with 32 and 24
sigmoidal nodes, and a sing e output (the time series value to be predicted). Five separate training sessons were caried
out, using 0%, 60%, 70%, 80% and 9(% error propagation (the percentage mrrespondsto n-100). Each sesson lasted
4000 conjugate gradient iterations, and the Diks test was evaluated every 20 iterations. Figure 3 shows the monitoring
results. We draw three onclusions fromiit:

1. Whilethe prediction error on the training set (not shown) monotonicaly deaeases during training, the Diks test
shows very irregular behavior.

2. The cae of 90% error propagation converges best to amodel that hasleant the atrador, and daes not ‘f orget the
attrador’ when training procees.

3. Inall cases, the mmmon stopping criterion ‘ stop when error on test set is at its minimum’ does not yield a model
with an acceptable Diks test result.



Experience has iown that the Diks test result of ead training sesson is endgtive for the initial weights of the MLP, the
curves are not well reproducible. Trial and error is required.

For further analyis we seled the model trained with 90% EP after 980iterations, having a Diks test value averaged
over 100iterations aslow as-0.3. Figure 4 shows a time-series generated by this model along with measured data. For
the first 3000iterations, the model runs in 90% EP mode and foll ows the measured time-series. Then the mode is
switched to freeun, a 100% EP, and the model generates a time-series on its own. Visual inspedion confirms the
results of the Diks test: at first sight, the measured and model generated series ‘look the same’. Further inspedion
revedsthat the model generated data shows smal negative pedks that are nat in the measured data and also the pasitive
pedks are lower. This observation includes the first 3000 pants of the generated series, and is therefore adired
consequence of the one-step-ahead prediction error during training in 90% EP mode. Not surprisingly, the root mean
squared error onthe test set is more than 5times higher than that of the model without error propagation (seediagonal
of Table 1); ead predictionis based oninformation that contains acawmulated previous prediction errors. It is aso
interesting to seewhat happensif we take the network trained with 0% EP (after 1920iterations, where it has the lowest
Dikstest result) and runit in 90% EP mode. Table 1 shows that the Normalized Root Mean Squared (one-step-ahead
prediction) Error (NRMSE) then risesto 1.05,which isworse than predicting the mean. In ather words, the 0% EP
network cannd foll ow the time-series if as much as 90% of its previous prediction errorsis propagated.

Table 1. NRMSE of 0% and 90% EP
networks, run in 0% and 90% EP mode.

trained with:
runwith: 0% EP 90% EP
0% EP 0.07 0.27
90% EP 1.05 0.40
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Figure 4. Comparison of measured (top) and model generated time-series (bottom). The laser data
is taken from the Santa Fe time-series competition [1]. The network is trained with 90% error
propagation.



We computed the Lyapunor spedrum of our model using the method by Von Bremen et a. [13], using series of
tangent maps along ten diff erent model generated trgjedories of length 6,000.The threelargest exporents are, averaged
over theten evauations and expressed in nats per 40 samples: 0.57,-0.06and -0.88.The largest exporent is 20% higher
than arough estimate by Hubrer et d. in[1]. The secondexporent must be zeo acording to Haken [14]. To verify this,
we estimate, from the ten evaluations, astandard deviation d the second exporent of 0.04,which is of the same order
asits magnitude.

0.5 T

Zli 0

i D1

Figure 5. Sum of first i Lyapunov exponents vs. i. The dimension D, is estimated by the Kaplan-Yorke
conjecture [12] as indicated.

From the Lyapunor spedrum, we etimate the information dmension D, of the systemto be 2.6, using the Kaplan-Y orke
conjedure [12]: take that (red) value of i where the interpolated curve in Vs. i crosss zeo, see Fig 5. For
comparison, Hibrer et a. reported an estimate of 2.06for the wrrelation dmerision D, which is alower boundfor the
information dmension D,.

Conclusion and discussion

The dgorithm presented in this gudy has siccesSully leaned the atrador of the system that produced the laser data
from the Santa Fe time series competition. Each feaure of the dgorithm contributed to the result: PCA reduced the
number of inpus by 40 to 16 the linea model explained 8% of the variancein the time-series before training of the
MLP started; the seleded model was trained with 90% error propagation; and the Diks test enabled seledion d the
optimum model.

The moddling procedure requires much trial and error, dueto theirregular behavior of the Diks test monitoring curves
that makes it hard to predict the dfed of changes of model parameters (embedding dimension, number of principal
comporents, sizeof the network and percentage of error propagation). Error propagation providesthe experimenter with
aknobto effedively control the prediction haizon duing training. Unfortunately, we have no redpe yet to choose a
goodstarting value.

The computation o the Lyapunor spedrum isonly afirst minor applicaion d the model. The model can play an
essntial role in chaos control and synchronizaion, as demonstrated in the wntrol of an experimental chaotic penduum
[15]. The sdledted model for the laser data has 56 sigmoidal nodes and over 1400weights. In our experience, thiskind
of large size network helps training to quickly converge to an accetable locd optimum. However, in the context of
chaos control, the speed of computing predictions is crucial, and the network shoud be & concise & possble.
Therefore, a pruning technique to reducethe size of the model will be the next feaure alded to the dgorithm. Also,
pruning will i mprove the generali zation performanceof the model [16] and may enhanceleaning of the system attractor.

Acknowledgements

Thiswork is suppated by the Netherlands Foundition for Chemicd Reseach (SON) with financia aid from the
Netherlands Organization for Scientific Reseach (NWO). The aithors like to thank Floris Takens for stimulating
discussons andthe ideato use the Diks test, and Cees Diks for his suppat with the implementation.

References

[1] A.S. Weigend, and N.A. Gershenfeld, “Time Series Prediction: Forecasting the Future and Understanding the Past”, Addison-
Wesley, 1994



[2] J.C. Principe, A. Rathie, and JM. Kuo, “Prediction d Chaotic Time Series with Neural Networks and the Isaue of Dynamic
Modeling”, Int. J. Bifurcation andChaocs, Vol. 2, 1992 pp. 989-996.

[3] JM. Kuo, and J.C. Principe, “Reonstructed Dynamics and Chaotic Signal Modeling”, In Proc. IEEE Int’| Conf. Neural
Networks, Vol. 5, 1994 pp. 3131:3136

[4] G. Dewm, B. Schirmann, “Neural Leaning of Chaotic System Behavior”, IEICE Trans. Fundamentals, Vol. E77-A, 1994 pp.
18401845

[5] R. Rico-Martinez K. Krischer, 1.G. Kevrekidis, M.C. Kube, and J.L. Hudson, “Discrete- vs. Continuows-Time Nonlinea Signal
Processng Of Cu Eledrodisolution Data”, Chem. Eng. Comm, Vol 118 1992 pp. 25-48.

[6] L.A. Aguirre, S.A. Billi ngs, “Validating Identified Nonlinear Models with Chaotic Dynamics’, Int. J. Bifurcation andChags,
Vol. 4,1994 pp. 109125

[7] F. Takens, “Deteding strange dtradorsin turbulence”, Lecure notes in Mathematics, Vol. 898 1981, pp. 365381

[8] D.S. Broomhead, G.P. King, “Extrading qudlit ative dynamics from experimental data”, Physica D, Vol. 20, 1986 pp. 217-236
[9] JE. Jadkson, “A User’s Guide to Principal Comporents’, Wiley, 1991

[10] R. Bakker, R.J. deKorte, J.C. Schouen, F. Takens, and C.M. van den Bleek, “Neural Networks for Prediction and Control of
Chaotic Fluidized Bed Hydrodynamics: A First Step”, Fractals, Vol. 5, No. 3, (to appea).

[11] C. Diks, W.R. van Zwet, F. Takens, and J. de Goede, “ Deteding diff erences between delay vedor distributions’, Physical Review
E, Vol. 53,1996 pp. 21692176

[12] J. Kaplan, and J. Y orke, “ Chaotic Behavior of Multidimensional Difference Equations’, Ledure natesin mathematics, Vol. 730,
1979

[13] H.F. von Bremen, F.E. Udwadia, W. Proskurowski, “An efficient QR Based Method for the Computation o Lyapunor
Exporents’, Physica D, Vol. 101, 1997, pp. 1-16.

[14] H. Haken, “At Least One Lyapunos Exporent vanishesif the Trajedory of an Attrador does not contain a Fixed Point”, Physics
Letters, Vol. 94A, (1983, pp. 71

[15] R. Bakker, J.C. Schouen, F. Takens, and C.M. van den Bleek, “Neural network model to control an experimental chaotic
penddum”, Physical Review E, Vol. 4-A, 1996 pp. 35453552

[16] T. Lin, C.L. Giles, B.G. Horne, S.Y. Kung, “A Delay Damage Model Seledion Algorithm for NARX Neural Networks’, IEEE
Trans. Sgnd Proc,, (in press.



