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Abstract
We propose a novel multiclass classification algorithm Gen-
tle Adaptive Multiclass Boosting Learning (GAMBLE). The
algorithm naturally extends the two class Gentle AdaBoost
algorithm to multiclass classification by using the multi-
class exponential loss and the multiclass response encoding
scheme. Unlike other multiclass algorithms which reduce
the K-class classification task to K binary classifications,
GAMBLE handles the task directly and symmetrically, with
only one committee classifier. We formally derive the GAM-
BLE algorithm with the quasi-Newton method, and prove
the structural equivalence of the two regression trees in each
boosting step.

To scale up to large datasets, we utilize the generalized
Query By Committee (QBC) active learning framework to
focus learning on the most informative samples. Our em-
pirical results show that with QBC-style active sample se-
lection, we can achieve faster training time and potentially
higher classification accuracy. GAMBLE’s numerical supe-
riority, structural elegance and low computation complexity
make it highly competitive with state-of-the-art multiclass
classification algorithms.

Keywords: Boosting, Multiclass Classification,
Active Learning, Data Mining, Committee Machines

1 Introduction

Boosting algorithms [19, 16] have been very popular
in the past decade. The general boosting framework
only requires the underlying weak learners to perform
better than random guessing. By combining these weak
learners based on weighted majority vote, a committee
classifier dramatically reduces the training and testing
error rates. The representative AdaBoost algorithm
[8, 11], in particular, adapts to the weighted error of
the current weak learner, by strengthening the weights
of the misclassified samples and dampening the weights
of the correctly classified ones.

The most appealing feature of boosting is its em-
pirical resistance to overfitting for various classification
tasks. Researchers have gained insights into this seem-
ingly mysterious phenomenon. Friedman et al. [11] pro-
vided an alternative viewpoint for boosting as the well-
known forward stagewise additive modeling. By com-
bining low-variance (high-bias) weak learners, boosting

acts as a bias reduction process. Based on the margin
and VC dimension theory, Schapire et al. [8] proved
that the generalization error is upper bounded, inde-
pendent of the number of training iterations. Boosting
is thus regarded as a margin increasing process, which
connects it to Support Vector Machines [23].

Our work is motivated by two goals. First, boosting
methods were initially designed to handle binary clas-
sification problems. Initial efforts typically decomposed
the K-class classification problem to K binary classifi-
cation problems by using the ‘one-against-all’ strategy,
thus requiring K committees to be trained. A better ap-
proach should handle such problems directly and sym-
metrically. Since weak learners (e.g. classification trees)
can naturally handle multiclass cases, a direct multiclass
boosting method can unleash the innate power of multi-
class weak learners that a ‘one-against-all’ or ‘pairwise’
method cannot. Generalizing to the multiclass cases,
however, requires non-trivial extension of the loss func-
tion, encoding scheme and the algorithms per se.

Furthermore, multiclass labels are usually expen-
sive to obtain (e.g. text classification). And even
if such training data is abundant, multiclass classifi-
cation is generally less efficient. The practicality of
batch learning algorithms is limited in such learning
settings. Boosting methods, specifically, require global
weight updates in each boosting step, as such they are
not tractable for large-scale multiclass learning. Active
learning strategies enable large-scale learning for boost-
ing algorithms by greatly improving data efficiency.

In this paper, we propose a novel multiclass boost-
ing algorithm, Gentle Adaptive Multiclass Boosting
Learning (GAMBLE), which addresses the aforemen-
tioned issues and has the following features:

• A K-class classification problem is treated simulta-
neously and symmetrically, without recasting it to
multiple binary classification problems.

• Only one regression function per iteration is fitted,



yielding a highly efficient solution.

• The algorithm is less sensitive to outliers in training
and robust to unseen data in testing, due to its
numerical stability in each weak learner.

• With active sample selection, Active GAMBLE
uses the informative portion of the training samples
and is thus fast in training with early stopping. It
is also efficient in prediction with a simpler model
and potentially has greater generalization power.

• The algorithmic structure is succinct and the algo-
rithm is easy to implement.

The paper is organized as follows. We review the
related research on multiclass boosting algorithms and
active learning in Section 2. In Section 3, we first derive
the general GAMBLE algorithm using quasi-Newton
methods and then propose an efficient implementation
of GAMBLE using regression trees. We also comment
on the advantages of GAMBLE over other multiclass
boosting algorithms. In Section 4, we further investigate
the active learning strategy for GAMBLE. We present
experimental results on real world and synthetic data in
Section 5 and conclude the paper in Section 6.

2 Related Work

2.1 Related research in multiclass boosting The
first attempt to extend AdaBoost to multiclass classifi-
cation is the AdaBoost.M1 algorithm [8], a direct gener-
alization of AdaBoost by replacing the error with an in-
dicator function I[hk(xi) 6= yi], where hk is the k-th di-
mension of the weak hypothesis. Since the same binary
loss function is used as AdaBoost.Discrete in the bi-
nary case, AdaBoost.M1 fails when the underlying weak
learners misclassify more than half of the samples. This
is not appropriate for multiclass classification, when the
underlying weak learners perform slightly better than
random guessing (err < K−1

K ).
More sophisticated approaches have been investi-

gated for this case. AdaBoost.M2 [8, 18] (a special case
of AdaBoost.MR [21]) solves the multiclass problem by
using the ‘pairwise’ strategy. However, AdaBoost.M2
complicates the design of the weak learners since it re-
quires the optimization of weak hypotheses for the pseu-
doloss measure, a weighted transform of the weak hy-
potheses. AdaBoost.MH [21] was proposed as an al-
ternative to AdaBoost.M2. This method adopts the
well-known ‘one-against-all’ [10] strategy to recast the
K-class classification problem to K binary classification
problems, which are in turn solved by the binary Ad-
aBoost.Real [11] algorithm. Other multiclass variants
exist such as AdaBoost.MO [21, 3] which uses the cor-
recting output code.

These boosting algorithms do not handle the mul-
ticlass classification problems directly, but instead re-
duce them to multiple two-class classification problems.
In practice, even when the classification boundaries for
class pairs are simple, the pooling classes (as in the
‘against all’ classes) may form boundaries that are too
complex to approximate and the methods above may fail
[11, 10, 12]. Friedman et al. [11] proposed the multi-
class LogitBoost algorithm by using the multiclass logis-
tic model, which outperformed the asymmetric variants
such as AdaBoost.MH. This gave insight into how to
solve multiclass classification problems simultaneously.
Recently, Zhu et. al. [24] proposed the multiclass ex-
ponential loss function. By adopting the K-class re-
sponse encoding scheme, they successfully generalized
AdaBoost.Discrete and AdaBoost.Real to the multiclass
version SAMME.Discrete and SAMME.Real. SAMME
(Stagewise Additive Modeling using a Multi-class Ex-
ponential loss function) generates only one K-class clas-
sifier in each iteration, thus it is K times faster than
AdaBoost.MH.

As noted by Schapire et. al. [19] and con-
vincingly shown by Dietterich [7], when there are a
great number of outliers in the training instances, Ad-
aBoost (SAMME.Discrete and SAMME.Real alike) may
overemphasize them, which eventually leads to inferior
hypotheses. Friedman et. al. proposed the Gentle Ad-
aBoost algorithm [11] to ameliorate such a problem,
which is a gradient ascent approach in function space.
Gentle AdaBoost also outperforms LogitBoost [11] for
its numerical stability, since the updates are bounded.
The Gentle AdaBoost.MH algorithm was also proposed
in [11] but still using the ‘one-against-all’ strategy. This
paper generalizes this successful boosting algorithm to
the multiclass case in non-trivial ways, yielding a natu-
ral and efficient solution.

2.2 Related work in active learning Compared
to the profusion of literature in boosting algorithms,
there is relatively little work on the scalability issue
of boosting methods. Active learning strategies can
be used to scale up boosting algorithms by focusing
training on the most informative samples. Query By
Committee (QBC) [22] is a popular and theoretically
well motivated active learning method. Abe et al. [1]
proposed the QBoost algorithm which combines QBC
and AdaBoost to efficiently learn the committee. This
paper adopts the same active sample selection method
as in QBoost and extends it to multiclass classification.

3 The GAMBLE Boosting Algorithm

We first formalize the K-class learning problem as:
Given N training samples {(xi, ci)}N

i=1 (xi ∈



Gentle Adaptive Multiclass Boosting Learning (GAMBLE)

1. Initialization: set the observation weights wi ← 1
N , i = 1, 2, ..., N , and set F(x) ← 0.

2. For m ← 1 to M :

(a) Using weight distribution {wi}, fit two regression functions g(m)(x) of y and
h(m)(x) of z to x by weighted least-squares (WLS), where zj = y2

j , j = 1, 2, .., K.

(b) Set r
(m)
j (x) = K · g

(m)
j (x)

h
(m)
j (x)

(c) Obtain weak learner f
(m)
j (x) = r

(m)
j (x)− 1

K

∑K
k=1 r

(m)
k (x), j = 1, 2, ..., K.

(d) Update committee F(x) ← F(x) + f (m)(x).

(e) Update weights wi ← wi exp(− 1
K yT

i f (m)(xi)), i = 1, 2, ..., N and renormalize.

3. Output committee classifier: C(x) = arg max
k

Fk(x).

Algorithm 1: The Gentle Adaptive Multiclass Boosting Learning (GAMBLE) Algorithm.

RD, ci ∈ {1, 2, ..., K}) drawn independently from the
population, we need to obtain M weak hypotheses
{f (m)(x)|f (m) ∈ H}M

m=1, each performing better than
random guessing (∃γ > 0, err(f (m)) ≤ K−1

K − γ). The
combined committee F(x) constitutes a strong hypoth-
esis, in terms of minimizing the empirical loss.

In what follows, we use the K-class response encod-
ing scheme as in [15, 24] rather than a discrete number
as a class label. A class label c is encoded by a K-
dimensional response vector y = (y1, ..., yK)T , where
yk = 1 if and only if k = c and yk = − 1

K−1 other-
wise. Hence, the response vector satisfies the sum-to-
zero constraint, i.e.

∑K
k=1 yk = 0. The advantage of

this encoding scheme unfolds in the sequel.

3.1 The General GAMBLE Algorithm Given
a classifier F and a sample (x,y), a loss function
J(F(x)) measures the degree of disappointment in the
difference between the true response and the learner’s
prediction. To generalize to the multiclass case, we
adopt the multiclass AdaBoost exponential loss [24],
J(F(x)) = exp(− 1

K yTF(x)), a strictly convex function
that has successfully generalized the original AdaBoost
algorithm to the multiclass case. Our goal is to minimize
the empirical loss. To this end, we use quasi-Newton
steps to derive the multiclass extension of the Gentle
AdaBoost algorithm, as shown in the following result.

Result 1. The GAMBLE algorithm, in the population
version, uses quasi-Newton steps for minimizing the
multiclass exponential loss E[exp(− 1

K yTF(x))|x].

Derivation. Using the weighted conditional expec-
tation [11], Ew[g(x,y)] def= E[w(x,y)g(x,y)|x]

E[w(x,y)|x] , where

weight w = w(x,y) = exp(− 1
K yTF(x)), we can derive

the quasi-Newton update f = (f1, ..., fK),

(3.1) fj(x) ← K · Ew[yj |x]
Ew[y2

j |x]

See detailed derivation of this result in Appendix. ¤

Result 1 translates directly into the Gentle Adap-
tive Multiclass Boosting Learning (GAMBLE) algo-
rithm (see Algorithm 1). Note that in step (2c), the
weak learner is ‘centralized’ in each dimension such that
it satisfies the symmetric constraint

∑K
k=1 f

(m)
k = 0.

This does not affect the weight update due to the en-
coding scheme of the response, because,

yTf (m)(x) =
∑K

k=1 ykf
(m)
k =

∑K
k=1 ykr

(m)
k

− 1
K

∑K
k=1 yk

∑K
k=1 r

(m)
k (x) = yTr(m)(x).

Also note that our choice of multiclass exponential
loss is valid, because in fact the population minimizer
for the expected loss agrees with the Bayes optimal
classification rule, as shown by the following theorem:

Theorem 3.1. With exponential loss exp(− 1
K yT f(x)),

arg max
k

rk(x) = arg max
k

fk(x) = arg max
k

Pr(c = k|x).

Proof. The constrained minimization problem for the
empirical loss can be formulated as:

arg min
f(x)

EY|x exp(− 1
K YT f(x))

subject to f1 + · · ·+ fK = 0.



The population minimizer can be found by the Lagrange
multiplier (c.f. [24], details omitted in interest of space),

fk = (K−1)


log Pr(c = k|x)− 1

K

K∑

j=1

log Pr(c = j|x)




Thus arg max
k

fk(x) = arg max
k

Pr(c = k|x). Obviously,

arg max
k

rk(x) = arg max
k

fk(x).

When implemented on data, the weighted expecta-
tion in (3.1) can be substituted by weighted regression
methods. As an ensemble learning algorithm, the gen-
eral GAMBLE algorithm may employ an arbitrary re-
gressor as a weak learner. Since most boosting methods
work well with ‘small’ classification trees as weak learn-
ers, we implement the general GAMBLE algorithm with
weighted regression trees [5] in our case.

3.2 The GAMBLE Algorithm Using Weighted
Regression Trees Boosting algorithms have been pre-
dominantly implemented using classification and regres-
sion trees. We first extend the regression tree method
with the weighted least squares criterion. Then we ex-
plore the relationship of the two regression functions in
the general GAMBLE algorithm, and propose an effi-
cient implementation that requires only one regression.

3.2.1 Weighted Regression Trees Since weak
learners work with weighted samples in boosting meth-
ods, we extend the classical regression tree method
[13, 5] to the weighted version with the weighted least
squares (WLS) criterion.

Suppose our model partitions the entire space
(spanned by the variables X1, X2, ..., XD) into J regions
R1, R2, ..., RJ . In each region Rj , the model produces a
constant response cRj as the fitted value:

(3.2) g(x) =
J∑

j=1

cRj I[x ∈ Rj ]

cRj is chosen by minimizing the WLS criterion, i.e,

(3.3) cRj = arg min
c

∑

xl∈Rj

wl(yl − c)T (yl − c)

By taking the first order derivative and setting it to
zero, cRj is the weighted mean of the true responses,

(3.4) ck,Rj =

∑
xl∈Rj

wlyk,l∑
xl∈Rj

wl
(k = 1, 2, ..., K)

In terms of the WLS criterion, seeking an optimal
binary regression tree is inhibitedly expensive. CART

[5], however, grows the tree in a top-down and greedy
fashion and thus dramatically reduces the search space.
Specifically, only one variable is taken into account
in each splitting step, thus the splitting hyperplane
is always orthogonal to the axis of the corresponding
variable. More precisely, each splitting step is a decision
making process: the region R is split into two subregions
R1 and R2, where the points satisfying the decision rule
Xj ≤ h should be grouped into R1 and otherwise R2.
The parameters (j, h) in the decision rule are chosen
such that they also minimize the WLS criterion:

(j, h) = arg min
(j,h)

[
∑

xl∈R1(j,h)

wl(yl − cR1(j,h))T (yl − cR1(j,h))

(3.5) +
∑

xl∈R2(j,h)

wl(yl − cR2(j,h))T (yl − cR2(j,h))]

This decision rule serves as the splitting criterion
for growing the weighted regression tree. We do not use
more sophisticated strategies such as pruning by cross
validation, since boosting strong hypotheses may lead to
overfitting. Empirically, GAMBLE performs reasonably
well using regression trees with about 15 leaves.

3.2.2 GAMBLE with Weighted Regression
Trees In the general GAMBLE algorithm proposed
earlier, two regression functions need to be fitted to the
weighted samples in each iteration. We propose an im-
plementation of the GAMBLE algorithm using weighted
regression trees, which only requires one regression pro-
cess. The key to this efficient solution lies in that y only
takes on categorical responses. Theorem 3.2 reveals the
structural relationship of the two regression trees.

Theorem 3.2. The topological structure of the
weighted regression trees with respect to y and z
(zj = y2

j , j = 1, ..., K) is identical.

Corollary 3.1. The regression functions h and g
satisfy

h(x) =
K − 2
K − 1

g(x) +
1

K − 1
Proof. See Appendix for the proofs.

Theorem 3.2 implies that we only need to grow a
regression tree T1 with respect to y, and the regression
tree T2 with respect to z has exactly the same structure
as T1. Formally, h(x) satisfies the same form as g(x),

(3.6) h(x) =
J∑

j=1

dRj I[x ∈ Rj ]

Moreover, within the same region, Corollary 3.1
suggests that there is a simple way to transform the



Gentle Adaptive Multiclass Boosting Learning (GAMBLE)
Using Weighted Regression Trees

1. Initialization: set the observation weights wi ← 1
N , i = 1, 2, ..., N , and set F(x) ← 0.

2. For m ← 1 to M :

(a) Using weight distribution {wi}, fit a weighted regression tree g(m)(x) of y to x.

(b) Set r(m)(x) = K (K−1)g(m)(x)
(K−2)g(m)(x)+1

.

(c) Obtain weak learner f
(m)
j (x) = r

(m)
j (x)− 1

K

∑K
k=1 r

(m)
k (x), j = 1, 2, ..., K.

(d) Update committee F(x) ← F(x) + f (m)(x).

(e) Update weights wi ← wi exp(− 1
K yT

i f (m)(xi)), i = 1, 2, ..., N and renormalize.

3. Output committee classifier: C(x) = arg max
k

Fk(x).

Algorithm 2: The Gentle Adaptive Multiclass Boosting Learning (GAMBLE) algorithm using regression trees.

regression value from the regression function g(x) to
the (un-centralized) weak learner r(x) (see Figure 1).

Theorem 3.2 and Corollary 1 clarify the relationship
between the two regression functions based on the
WLS criterion, thus yielding a more efficient solution
(Algorithm 2). Obviously, Algorithm 2 works twice as
fast as Algorithm 1 since it fits only one regression
function in each step. In what follows, we refer to
Algorithm 2 as GAMBLE unless stated otherwise.

3.3 Remarks on the GAMBLE Algorithm We
characterize the relationship of the GAMBLE algorithm
with other boosting variants, and remark on its superi-
ority over other multiclass boosting alternatives.

First, GAMBLE is a natural extension of Gentle
AdaBoost, and they are identical up to a factor of 2 in
the binary case. The difference comes from the different
coefficients in the loss functions. In this regard, Gentle
AdaBoost is the binary version of GAMBLE. Also,

g(x)

r(
x)

−1/(K−1) 1

−K(K−1)

K

0

0

Figure 1: The concave transformation of the regression
function g(x) to the (un-centralized) weak learner r(x).

GAMBLE retains the succinct form of Gentle AdaBoost
when generalizing to the multiclass case.

Second, the same argument about numerical stabil-
ity for Gentle AdaBoost and AdaBoost.Real [11] holds
when we compare GAMBLE and SAMME.Real. Specif-
ically, we reexamine how GAMBLE obtains a weak clas-
sifier from a regression function in step (2b) (Algorithm
2). Result 2 and Result 3 imply that the regression
functions and the weak classifiers are both bounded.

Result 2. The regression function g(x) satisfies
K∑

k=1

g
(m)
k (x) = 0; also, dim({g(m)}) = K − 1.

Result 3. For any x and dimension k ∈ {1, 2, ..., K},
g
(m)
k (x) ∈ [− 1

K−1 , 1] and r
(m)
k (x) ∈ [−K(K−1),K]; the

weak learner f
(m)
k (x) ∈ [−(K2 −K),K2 −K].

Proof. The derivation follows from the proof of Theo-
rem 3.2. Details omitted due to space constraints.

SAMME.Real, on the other hand, relies on the
logit-transform of the posterior probability, estimated
by the training samples within a region. Due to the
scarcity of data, it is highly likely that no training
samples of a particular class appear in this region. Thus
the posterior probability is estimated to be zero. As
such, the logit will be −∞, making the weak learner
explode. Even when smoothing methods are used to
account for unseen data, the logit is still large, and
the weight updates are exponentially larger. In later
iterations, the weights of training samples differ by
orders of magnitude and result in numerical instability.
The larger the K, the more severe the problem will be.
Thus it explains the numerical stability of GAMBLE
compared to SAMME.Real.



Besides the numerical stability issue, the key differ-
ence between GAMBLE and SAMME is how the multi-
class loss is optimized. Although the same loss function
is used, GAMBLE adopts adaptive quasi-Newton steps
whereas SAMME.Real directly optimizes the Lagrange,
the latter of which being more aggressive.

Finally, compared to Gentle AdaBoost.MH, GAM-
BLE is a natural extension for Gentle AdaBoost to the
multiclass case. Moreover, GAMBLE is K times more
efficient than Gentle AdaBoost.MH. Suppose a regres-
sion tree with depth d is used as the weak learner, the
complexity of building it is O(dDn log(n)), where D is
the dimension of the input and n is the size of the train-
ing dataset. Note that GAMBLE builds only one regres-
sion tree per iteration, regardless of the number of fitted
values. Thus its total cost is O(MdDn log(n)), as com-
pared to Gentle AdaBoost.MH’s O(KMdDn log(n)),
where M is the number of iterations.

4 Query By Committee Style Active Learning

In practice, there are several learning settings where ac-
tive learning is particularly valuable. First, labeled data
is expensive to obtain due to the cost of human anno-
tation, whereas unlabeled data is typically abundant.
The cost of labeling can be minimized if the learner
is able to learn from limited labeled data while actively
querying only the most informative unlabeled instances.
Second, if a tremendous amount of labeled data is avail-
able, boosting on the entire training dataset for even
a small number of iterations can take large amount of
time. Learning an optimal hypothesis by running a
large number of iterations can be computationally infea-
sible. Active learning continuously augments the train-
ing dataset with the most informative instances at each
step, thereby allowing the learner to focus on the ‘best’
portion of the training data. Thus it not only relieves
the learner of redundant training samples, but it can
also dispose of noisy samples.

In either case, Query By Committee (QBC) [22] is
an effective active learning strategy. The general QBC
method reduces the error of the learner by choosing to
label the sample that splits the version space into two
parts of comparable size. As such QBC theoretically has
near-optimal data efficiency, which is logarithmic in the
probability of error [9]. Such a result in the general QBC
framework is however based on the assumption of using
Gibbs algorithm as the component learner, generally
intractable in practice.

In Active GAMBLE (algorithm 3), we adopt the
same QBC sample selection method as in QBoost [1],
and extend it to the multiclass case. In each trial, Ac-
tive GAMBLE trains a committee using GAMBLE as
the component learner, based on the current working

Active GAMBLE

1. Initialization: randomly choose a small set of
samples from the query set Q = {(xi,yi)}N

i=1 to
the working set S.

2. For l ← 1 to L:

(a) Train a committee Cl=GAMBLE(S).

(b) Test Cl on data set T = Q− S.

(c) For each x ∈ T , compute utility
u(x) = [Fk(x) − Fj(x)]−1, where k =
arg max

k
Fk(x) and j = arg max

j 6=k
Fj(x).

(d) Let set D be the R samples x ∈ T with the
highest utility, Q ← Q−D and S ← S∪D.

(e) If Q is empty, let CL ← Cl and exit loop.

3. Output the classifier: CL.
Algorithm 3: The Active GAMBLE algorithm.

set rather than the entire training data. It then evalu-
ates the potential utility of the unlabeled samples in the
query set and selects the top R samples with the high-
est utility into the working set. Utility is here defined
as the reciprocal of the difference between the commit-
tee’s output for the most and the second most popular
class label. By Theorem 3.1, the committee’s output
can be regarded as the surrogate of the posterior prob-
ability. As such utility measures the uncertainty in the
committee about its predicted label, i.e. a sample has
higher utility when the committee is less certain about
its label. [20] has shown that the hypothesis having a
larger margin generalizes better on unseen data. Since
the definition of utility here is similar to the margin
formulation in [20, 1] we expect that Active GAMBLE
generalizes well by selecting samples with high utility or
small margin, thereby increasing the margin in the hy-
pothesis. Empirical results in Section 5.2 suggest that
Active GAMBLE can potentially achieve higher classi-

Table 1: UCI benchmark datasets. K is the number of
classes and D is the number of feature dimensions.

Dataset K D #Train #Test
Glass 6 9 113 101
Pendigits 10 16 7,494 3,498
Satimage 6 36 4,435 2,000
Segmentation 7 19 210 2,100
Soybean 19 35 307 376
Splice 3 60 2,860 316
Vehicle 4 18 422 422
Vowel 11 10 528 462
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Figure 2: GAMBLE boosting regression trees of differ-
ent sizes in the Pendigits dataset. T denotes the number
of leaves in the regression tree. Note that the iteration
number is shown on a log scale.

fication accuracies. The results also show that Active
GAMBLE greatly improves data efficiency and creates
simpler model, therefore reduces the training and test-
ing time. For very large training datasets, one can fur-
ther reduce the training time of Active GAMBLE by
only evaluating the utility of a random portion of in-
stances in the query set.

5 Experimental Results

We conduct a series of experiments on both simulated
and real world data to showcase the performance of the
algorithm in various multiclass classification problems.
We choose the SAMME.Discrete algorithm1 (SAMME
for short) in our experiments for comparison for sev-
eral reasons. First, it has been shown that SAMME
outperforms the most popular multiclass boosting al-
gorithm AdaBoost.MH, in terms of both accuracy and
efficiency [24]. In addition, GAMBLE and SAMME can
be treated as variants because the same multiclass loss
function and K-class response encoding scheme are used
in both algorithms. Note that unlike SAMME which
uses the Lagrange multiplier for direct optimization,
GAMBLE uses the quasi-Newton steps to minimize the
exponential loss. Our goal in this paper is to provide a
meaningful and efficient multiclass extension of Gentle
AdaBoost, one of the best binary boosting algorithms.

5.1 Experiments on Real World Data We tested
our algorithm on a collection of benchmark datasets
(Table 1) available from the UCI Machine Learning
Repository2 [17]. We intentionally choose the same

1SAMME.Discrete is numerically more stable than
SAMME.Real, though empirical results have shown that
they perform almost equally well [24].

2http://www.ics.uci.edu/∼mlearn/MLRepository.html

multiclass datasets as in [21] so readers can compare
our results with other multiclass boosting variants such
as discrete and real AdaBoost.MH, AdaBoost.MR, etc.
These real world datasets cover a wide variety of multi-
class classification scenarios.

Figure 2 shows how GAMBLE performs when
boosting regression trees of different sizes. Boosting
stumps requires a lot more boosting steps than boost-
ing sophisticated trees, in order to reach a desirable level
of prediction error. Interestingly, the gap between test
errors becomes more narrow when boosting relatively
strong learners. For instance, the test errors of boost-
ing trees with the number of leaves 10, 12 and 14 are
almost the same after 600 iterations. Although boost-
ing sophisticated learners may require fewer iterations
for the convergence of the test error, each iteration takes
longer training time and it may also risk overfitting the
training data. Therefore we need to strike a balance in
the size of the trees.

The test results of GAMBLE and SAMME in the
UCI datasets are summarized in Figure 3. GAMBLE
generally incurs less test error rates at 10, 100 and 1,000
iterations. The sign test reveals that the zero median
hypothesis can be rejected (p = 0.0066) at the signifi-
cance level 1%. In other words, GAMBLE performs sta-
tistically better than SAMME in these datasets. Figure
4 illustrates the test errors of GAMBLE and SAMME
in the Glass and Segmentation datasets. Both datasets,
compared to their dimensions, have small number of
training samples for each class. GAMBLE however can
handle these sparse datasets and generalize well.
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Figure 3: Test error scatter plot for GAMBLE and
SAMME at 10, 100 and 1,000 iterations in 8 UCI
multiclass datasets. Each point shows the error rate of
GAMBLE and SAMME on a single benchmark dataset.
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Figure 4: Test error (in the range of [0, 1]) for GAMBLE and SAMME.Discrete on two benchmark datasets.

5.2 Active Learning Performance We evaluate
the effectiveness of the active learning strategy by
test error, training time and data efficiency3. As
a baseline algorithm, we implement the GAMBLE
algorithm with random sampling, which we refer to
as Random GAMBLE henceforth. Random GAMBLE
selects training samples randomly from the training
set regardless of their utility. The results of Random
GAMBLE are averaged over 10 runs. The GAMBLE
algorithm which uses the entire training dataset in each
boosting step is referred to as Batch GAMBLE. For
each dataset, the lowest error rate incurred by Batch
GAMBLE throughout the first 1,000 iterations is set as
the target error rate.

We present the results for two datasets which il-
lustrate the characteristic learning curves of the active
learning strategies. Figure 5 (left) shows that in the
Pendigits dataset, Active GAMBLE quickly reaches the
target error rate (4.7%) using about 300 samples and
plateaus afterwards. Random GAMBLE converges to
the same level of error rate using 1,000 samples. Fig-
ure 5 (right) shows a more interesting active learning
curve. Active GAMBLE uses as few as 220 training
samples (5% of all training data) to reach the target er-
ror rate (12.6%), while Random GAMBLE requires at
least six times as many training samples. Interestingly,
Active GAMBLE continues to reduce prediction error
by about 2% after it reaches the target error rate. This
implies that by using the 600 most informative samples
(13.5% of all training data), Active GAMBLE is able to
achieve higher classification accuracy. After this point,
however, adding more training instances does not im-

3Data efficiency is defined as the fraction of training samples
used to achieve the target error rate.

prove the accuracy and eventually the prediction error
converges to that of Random GAMBLE.

Table 2 summarizes the results for the UCI datasets.
By collecting the most informative instances, Active
GAMBLE achieves far better data efficiency than
Random GAMBLE, especially in the large training
datasets, Pendigits, Satimage and Splice. This implies
that those datasets contain redundant training samples.
Batch GAMBLE requires global weight updates at each
boosting step, whereas the component learner in Active
GAMBLE only performs weight updates on a fraction of
the training samples. Thus Active GAMBLE has faster
training time than that of Batch GAMBLE, especially
when high data efficiency is achieved. In small datasets
such as Glass, Segmentation and Soybean, practically
all training data is needed to converge to the target
error rate. Batch GAMBLE works faster in these
cases without having to search for the most informative
samples. Table 2 also presents the lowest test error
rate of Active GAMBLE, which in most cases is lower
than the target error rate. In practice one can retain
a portion of the training samples as a hold-out dataset
to determine the early stopping point in training. This
simpler model trained by less number of samples can
then be used for prediction.

5.3 Simulation Study We tested GAMBLE with a
popular synthetic example in boosting literature.

The Concentric Spheres Example The concentric
spheres example has been used in [11] to showcase the
performance of different boosting algorithms. Since
geometrically complex classification boundaries are in-
volved in this example, it is regarded to be more com-
plicated than practical classification problems. In this



500 1000 1500 2000 2500 3000 3500 4000
0.1

0.15

0.2

0.25

T
es

t e
rr

or

#Training instances

Satimage dataset

Active GAMBLE
Random GAMBLE

Figure 5: Test error of Active GAMBLE and Random GAMBLE in the Pendigits (left) and Satimage (right)
datasets. Active GAMBLE incurs lower test error and uses fewer training samples than Random GAMBLE. Note
that the test error curves for the first 1000 samples are zoomed in for the Pendigits dataset.

Table 2: Data efficiency and training time. Lowest error rate is the minimum error rate incurred by Active
GAMBLE. Target error rate is the lowest error rate incurred by Batch GAMBLE in the first 1,000 iterations.

Dataset
Target Lowest # Training samples (pct.) Training time (sec.)
Error Error Total Active Random Active Batch

Rate (%) Rate (%) Samples GAMBLE GAMBLE GAMBLE GAMBLE
Glass 27.5% 27.5% 113 91 (80.5%) 102 (90.3%) 67 28
Pendigits 4.71% 3.92% 7,494 340 (4.39%) 2,510 (33.5%) 1,698 10,043
Satimage 12.6% 11.3% 4,435 220 (4.96%) 1,450 (32.7%) 362 6,066
Segmentation 4.62% 4.43% 210 135 (64.3%) 190 (90.5%) 158 72
Soybean 5.65% 5.25% 307 245 (79.8%) 300 (97.7%) 266 87
Splice 4.48% 3.42% 2,860 430 (15.0%) 970 (33.9%) 320 470
Vehicle 27.3% 25.1% 422 115 (27.3%) 225 (53.3%) 127 310
Vowel 47.0% 41.8% 528 155 (36.7%) 205 (48.6%) 136 367

example, the samples are drawn from a ten-dimensional
Gaussian distribution, i.e. x ∼ N10(0, I). Each class
is defined by thresholding the radius of the sphere

Ck = {xi|tk−1 ≤ r2
i ≤ tk}, where ri =

√∑10
j=1 x2

j is

the radius from the origin, t0 = 0 and tk = ∞. {tk}K
k=1

are chosen such that approximately equal number of in-
stances are placed in each class. K · 1000 instances are
used as training samples, and an independently drawn
set of 10, 000 samples are used for testing.

Figure 6(a) represents the training and test error
of GAMBLE when K=2, and it reveals an impressive
aspect of GAMBLE. Even after the training error
reaches zero at about 20 iterations, GAMBLE continues
to fit base classifiers to the training samples and the
test error keeps dropping thereafter without indications
of overfitting. This can be interpreted as GAMBLE
increases the margin of the training samples [20] even
when they are all correctly classified. Eventually this

results in better generalization on the test data.
Figure 6(b) shows the training and test error

curves of GAMBLE and SAMME. This figure demon-
strates significant difference between the two algo-
rithms. GAMBLE outperforms SAMME by incurring
10% less test error, which is consistent with the find-
ings in [11]. Note that after 120 iterations, SAMME
has lower training error whereas GAMBLE has substan-
tially lower test error than SAMME. We can explain
this by the inherent ‘gentle’ nature of the GAMBLE
algorithm, which places less emphases on samples that
are hard to learn. This small sacrifice in training error
actually translates to better generalization power in pre-
diction. But in this complicated classification problem,
SAMME overemphasizes the outliers of the Gaussian
distribution and drives the weak learners to fit them.
As such this effects prediction performance. This fur-
ther confirms explanations in Section 3.3.

This example elicits two important aspects of GAM-
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Figure 6: GAMBLE’s training and test errors in the concentric spheres example. Iteration number is shown on
the log scale, highlighting the significant difference in training error iterations to those of testing.

BLE. GAMBLE continuously increases the margin re-
gardless of the training error and is less sensitive to out-
liers. Both of these are crucial to prediction error reduc-
tion. In practice, classification problems are less noisy
and less complex than this example and the difference
in performance is not as much pronounced.

6 Conclusion

This work extends the successful Gentle AdaBoost algo-
rithm to the multiclass case. The proposed GAMBLE
algorithm follows closely the rationale of other boosting
predecessors. It fits one weighted weak learner symmet-
rically for all classes in each boosting step and combines
them into a powerful committee classifier. Compared
to other ‘one-against-all’ variants, it reduces the time
complexity by K. GAMBLE is numerically stable since
all the weak learners are bounded, and is thus more ro-
bust to unseen data. Also, the only parameter required
in GAMBLE is the complexity of the weak learner (e.g.
the number of leaves in the regression tree). As such it
demands minimum domain knowledge about the clas-
sification problem. Our experiments demonstrate that
GAMBLE does not seem to overfit the training data
after a large number of boosting steps, even after the
training error reaches zero. To accelerate learning in
large-scale datasets, we use active learning to select the
most informative samples for training. Compared to
Batch GAMBLE, Active GAMBLE is able to achieve
even higher classification accuracy, using only a portion
of the training samples and consuming far less training
time. Our empirical results indicate that the proposed
GAMBLE algorithm outperforms the state-of-the-art
multiclass boosting methods.

Several issues emerge and are worthy of further
investigation. It is of theoretical interest to show
that the generalization error of GAMBLE is upper
bounded and independent of the number of boosting
steps, and Schapire’s result [8] may prove useful in this
case. Additionally, the classes are more likely to be
imbalanced in K-class classification in practice. We
intend to improve our algorithm to handle rare classes
[14] and the multiclass cost-sensitive learning problem
[2]. It is also worthwhile to investigate the performance
of boosting different types of regressors. Decision trees
used in boosting methods are discrete and the changes
in sample weights may dramatically alter the topology
of the trees. Boosting other base classifiers, such as
component-wise smoothing splines [6] and KNN [4] may
yield even better empirical results.

Acknowledgments

The authors acknowledge partial support from the
National Science Foundation (NSF).

References

[1] N. Abe and H. Mamitsuka. Query learning strategies
using boosting and bagging. In Proc. of the 15th
International Conference on Machine Learning, 1998.

[2] N. Abe, B. Zadrozny, and J. Langford. An iterative
method for multi-class cost-sensitive learning. In Proc.
of the 10th ACM International Conference on Knowl-
edge Discovery and Data Mining (KDD), 2004.

[3] E. Allwein, R. Schapire, and Y. Singer. Reducing
multiclass to binary: A unifying approach for margin
classifiers. J. Machine Learning Res., 1:113–141, 2000.



[4] V. Athitsos and S. Sclaroff. Boosting nearest neighbor
classifiers for multiclass recognition. In IEEE Work-
shop on Learning in Comp. Vision & Pat. Recog., 2005.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth, 1984.

[6] P. Buhlmann and B. Yu. Boosting with the l2 loss:
Regression and classification. Journal of the American
Statistical Association, 98(462):324–339, 2003.

[7] T. Dietterich. An experimental comparison of three
methods for constructing ensembles of decision trees:
Bagging, boosting, and randomization. Journal of
Machine Learning Research, 40(2):139–158, 2000.

[8] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, August 1997.

[9] Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selec-
tive sampling using the query by committee algorithm.
Machine Learning, 28:133–168, 1997.

[10] J. Friedman. Another approach to polychotomous
classification. Technical report, Stanford Univ., 1996.

[11] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting. The
Annals of Statistics, 28:337–407, 2000.

[12] T. Hastie and R. Tibshirani. Classification by pairwise
coupling. The Annals of Statistics, 26:451–471, 1998.

[13] T. Hastie, R. Tibshirani, and J. Friedman. The Ele-
ments of Statistical Learning. Springer-Verlag, 2001.

[14] M. Joshi, R. C. Agarwal, and V. Kumar. Predicting
rare classes: Can boosting make any weak learner
strong? In Proc. of the 8th ACM KDD, 2002.

[15] Y. Lin. A note on margin-based loss functions in
classification. Stats. and Prob. Letters, 68(1), 2004.

[16] R. Meir and G. Ratsch. An introduction to boosting
and leveraging. Adv. Lect. on Machine Learning, 2003.

[17] C. Merz and P. Murphy. UCI repository of machine
learning databases.

[18] R. Schapire. Using output codes to boost multiclass
learning problems. In Proc. of the 14th International
Conference on Machine Learning, 1997.

[19] R. Schapire. The boosting approach to machine learn-
ing: an overview. In MSRI Workshop on Nonlinear
Estimation and Classification, 2002.

[20] R. Schapire, Y. Freund, P. Barlett, and W. S. Lee.
Boosting the margin: A new explanation for the
effectiveness of voting methods. In Proc. of the 14th
Int’l Conf. on Machine Learning (ICML), 1997.

[21] R. Schapire and Y. Singer. Improved boosting al-
gorithms using confidence-rated prediction. Machine
Learning, 37(1):297–336, 1999.

[22] H. S. Seung, M. Opper, and H. Sompolinsky. Query
by committee. In Proc. of the 5th Annual Workshop
on Computational Learning Theory, 1992.

[23] V. Vapnik. Statistical Learning Theory. John Wiley
and Sons, Inc., New York, 1998.

[24] J. Zhu, S. Rosset, H. Zhou, and T. Hastie. Multiclass
adaboost. Technical Report #430, Department of
Statistics, University of Michigan, 2005.

Appendix
A. Derivation of Result 1

Derivation. Given the current committee F(x), we calculate
the improved update f(x). Consider the expected multiclass
exponential loss J ,

E[J(F(x) + f(x))|x]

= E[exp(− 1

K
yT(F(x) + f(x)))|x](A-7)

(i) Conditioning on input x, we compute the first and
the second order derivatives of the exponential loss at
f(x) = 0 = (0, 0, ..., 0)T . The first order derivative with
respect to the j-th dimension is:

sj(x) =
∂(J(F(x) + f(x)))

∂fj(x)

˛̨
˛̨
f(x)=0

= E[− 1

K
yj exp(− 1

K
yT(F(x) + f(x)))|x]

˛̨
˛̨
f(x)=0

= E[− 1

K
yj exp(− 1

K
yTF(x))|x]

Likewise, the Hessian is:

Hj,k(x) =
∂2(F(x) + f(x))

∂fj(x)∂fk(x)

˛̨
˛̨
f(x)=0

= E[
1

K2
yjyk exp(− 1

K
yT(F(x))|x]

(ii) The quasi-Newton update is used to reduce the sub-
stantial computation overhead of Newton’s method, the
former of which uses the diagonal approximation of the
Hessian, i.e.

(A-8) fj(x) ← K · E[yj exp(− 1
K

yTF(x))|x]

E[y2
j exp(− 1

K
yTF(x))|x]

(iii) Using the weighted conditional expectation,

(A-9) Ew[g(x,y)]
def
=

E[w(x,y)g(x,y)|x]

E[w(x,y)|x]

where weight w = w(x,y) = exp(− 1
K

yTF(x)),

(A-8) can be rewritten as

fj(x) ← K · E[yjw(x,y)|x]

E[y2
j w(x,y)|x]

= K · E[yjw(x,y)|x]/E[w(x,y)|x]

E[y2
j w(x,y)|x]/E[w(x,y)|x]

Therefore, we express the update as

fj(x) ← K · Ew[yj |x]

Ew[y2
j |x]

.

¤



B. Proof of Theorem 3.2
Proof. For simplicity of notations, we provide the proof
assuming that the regression function generates one re-
sponse, and it is relatively straightforward to generalize to
the K-response case. Suppose during the regression process
with respect to y, the region R in question is split into
two subregions R1 and R2 (R1

S
R2 = R), subject to the

criterion (3.5). In other words, the following inequality
holds for any two subregions S1 and S2 (S1

S
S2 = R):

X
xl∈R1

wl(yl − cR1)
2 +

X
xl∈R2

wl(yl − cR2)
2

≤
X

xl∈S1

wl(yl − cS1)
2 +

X
xl∈S2

wl(yl − cS2)
2(B-10)

Substituting (3.4) into the weighted squares and cancel-
ing out the identical weighted square response
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both sides, (B-10) becomes:
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Since yl ∈ {1,− 1
K−1

}, we further partition R1 into R+
1

when yl = 1 and otherwise R−1 (R+
1

S
R−1 = R1). Hence,

X
xl∈R1

wlyl =
X

xl∈R+
1

wl · 1 +
X

xl∈R−1

wl · (− 1

K − 1
)

=
X

xl∈R1

wl − K

K − 1

X

xl∈R−1

wl(B-12)

Applying the same trick to all the components and
canceling out the common terms on both sides of (B-11),
the following inequality holds:
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Note that zl = y2
l ∈ {1, 1

(K−1)2
}, therefore,

X
xl∈R1

wlzl =
X

xl∈R+
1

wl · 1 +
X

xl∈R−1

wl · 1

(K − 1)2
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X
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Also note that 
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Substituting (B-13), we derive this inequality:

(B-15) ≥
X

xl∈R
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Thus we arrive at the following inequality,

X
xl∈R1

wl(zl − dR1)
2 +

X
xl∈R2

wl(zk − dR2)
2

≤
X

xl∈S1

wl(zl − dS1)
2 +

X
xl∈S2

wl(zl − dS2)
2(B-16)

where d is the weighted mean for the square response.
Hence the optimal splitting variable and value that

minimize the weighted least squares with respect to y also
minimize that with respect to z. Thus, we can reach the
conclusion by induction. ¤

C. Proof of Corollary 3.1
Proof. Substitute (B-12) into (3.4) and similarly (B-14) into
the weighted mean of z, we derive the following equation:

(C-17) dR =
1

K − 1
+

K − 2

K − 1
cR

By definition of g(x) and h(x),

h(x) =
K − 2

K − 1

JX
j=1

cRj I[x ∈ Rj ] +
1

K − 1

JX
j=1

I[x ∈ Rj ]

=
K − 2

K − 1
g(x) +

1

K − 1
.
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