
Automatic Extraction of Informative Blocks from Webpages

Sandip Debnath, Prasenjit Mitra, C. Lee Giles,

Department of Computer Sciences School of Information Sciences
and Engineering and Technology

The Pennsylvania State University The Pennsylvania State University
University Park, PA 16802 USA University Park, PA 16802 USA

debnath@cse.psu.edu pmitra@ist.psu.edu, giles@ist.psu.edu

ABSTRACT
Search engines crawl and index webpages depending upon
their informative content. However, webpages — especially
dynamically generated ones — contain items that cannot
be classified as the “primary content”, e.g., navigation side-
bars, advertisements, copyright notices, etc. Most end-users
search for the primary content, and largely do not seek the
non-informative content. A tool that assists an end-user
or application to search and process information from web-
pages automatically, must separate the “primary content
blocks” from the other blocks. In this paper, two new al-
gorithms, ContentExtractor, and FeatureExtractor are pro-
posed. The algorithms identify primary content blocks by
i) looking for blocks that do not occur a large number of
times across webpages and ii) looking for blocks with de-
sired features respectively. They identify the primary con-
tent blocks with high precision and recall, reduce the stor-
age requirement for search engines, result in smaller indexes
and thereby faster search times, and better user satisfac-
tion. While operating on several thousand webpages ob-
tained from 11 news websites, our algorithms significantly
outperform the Entropy-based algorithm proposed by Lin
and Ho [7] in both accuracy and run-time.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Electronic Publishing, Data Mining, Information Systems
Applications.

1. INTRODUCTION
Search engines crawl the World-Wide Web to collect web-

pages. These pages are stored and indexed. An end-user
who performs a search using a search engine is interested in
the primary informative content of the webpage. However,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

a substantial part of webpages — especially those that are
created dynamically — is content that cannot be classified
as the primary informative content of the webpage. These
blocks are not relevant to the main content of the page and
are seldom sought by the users of the website. We refer to
such blocks as non-content blocks. Non-content blocks are
very common in dynamically generated webpages. Typically
such blocks contain advertisements, image-maps, plug-ins,
logos, counters, search boxes, category information, naviga-
tional links, related links, footers and headers, and copyright
information.

Before the content from a webpage can be used, it must be
subdivided into smaller semantically-homogeneous compo-
nents based on their content. We refer to such components
as blocks in the rest of the paper. A block (or webpage
block) B is a portion of a webpage enclosed within an open-
tag and its matching close-tag, where the open and close
tags belong to an ordered tag-set T that includes tags like
<TR>, <P>, <HR>, and . Figure 1, shows a web-
page obtained from CNN’s website1 and the blocks in that
webpage. In this paper, we address the problem of identi-
fying the primary informative content blocks of a webpage
(e.g., in the figure, the text block containing the news is the
primary content block).

An added advantage of identifying blocks in webpages is
that if the user does not require the non-content blocks or
requires only a few non-content blocks, we can delete the
rest of the blocks. This contraction is useful in situations
where large parts of the web are crawled, indexed and stored.
Since the non-content blocks are often a significant part of
dynamically generated webpages, eliminating them results
in significant savings with respect to storage and indexing.

We propose simple yet powerful algorithms, called Con-
tentExtractor and FeatureExtractor, to identify and separate
content blocks from non-content blocks. We have character-
ized different types of blocks based on the different features
they possess. FeatureExtractor is based on this characteri-
zation and uses heuristics based on the occurrence of certain
features to identify content blocks. ContentExtractor identi-
fies non-content blocks based on the appearance of the same
block in multiple webpages.

First, the algorithms partition the webpage into blocks
based on heuristics. Lin and Ho [7] have proposed an entropy-
based algorithm that partitions a webpage into blocks on the
basis of HTML tables. In contrast, not only do we consider
HTML tables, but also other tags and use heuristics to parti-

1http://www.cnn.com

1722

2005 ACM Symposium on Applied Computing

Figure 1: A webpage from CNN.com and its blocks
(shown using boxes)

tion a webpage. Second, our algorithms classifies each block
as either a content block or a non-content block. While the
algorithm decides whether a block, B, is content or not, it
also compares B with stored blocks to determine whether B
is similar to a stored block. If B already exists in the repos-
itory, a second copy is not stored; instead a pointer to the
stored block identical to B is retained.

Both FeatureExtractor and ContentExtractor produce ex-
cellent precision and recall values and above all, do not use
any manual input and require no complex machine learning
process. While operating on several thousand webpages ob-
tained from 11 news websites, our algorithms significantly
outperform the Entropy-based blocking algorithm proposed
by Lin and Ho [7].

The rest of the paper is organized as follows: In Section 2
we have discussed the related work. We describe our algo-
rithms in Section 3. We outline our performance evaluation
plan and the data set on which we ran our experiments in
Section 4. Then, we compare our algorithms with the LH
algorithm in Section 5 and conclude thereafter.

2. RELATED WORK
Our work is closely related to the work by Lin and Ho [7].

We have implemented their algorithm and show that the
simpler algorithms that we propose outperforms them with
respect to accuracy and scalability. Yi and Liu [10, 8] have

proposed an algorithm for identifying non-content blocks
(the refer to it as “noisy” blocks) of webpages. Their al-
gorithm is based on constructing “Style Tree”s and con-
structing entropies of blocks. Our algorithms use simple
heuristics to determine non-content blocks, it does not in-
cur the overhead of constructing “Style Tree”s and hence
outperforms their algorithm in runtime, but achieves compa-
rable accuracy for the experimental set we used. Bar-Yossef
and Rajagopalan [1] have proposed a method to identify fre-
quent templates of webpages and pagelets (identical to our
blocks). Yi and Liu argue that their entropy-based method
supersedes the template identification method. We show
that our method produces better result than the entropy-
based method. Kushmerick [6, 5] has proposed a feature-
based method that identifies internet advertisements in a
web-page. This method is designed only to remove adver-
tisements, requires training sets and manual procedures to
specify the feature selection. Our approach does not require
any manual training. Other related works include [3, 4, 2,
9], which have tried to extract information that originally
came from databases.

3. ALGORITHMS
We now discuss the two algorithms ContentExtractor and

FeatureExtractor

3.1 ContentExtractor
The ContentExtractor algorithm, shown in Algorithm 1

eliminates blocks depending upon the inverse block-document
frequency, IBDF , of a block. The inverse block-document
frequency, IBDF , is inversely proportional to the number
of documents in which a block occurs or has a similar block.
Blocks that are similar to blocks occurring in multiple pages
in the same domain, e.g. blocks that occur in multiple pages
at cnn.com, are identified as redundant blocks. Blocks that
occur only in one page are identified as content-blocks. If S
is a set of Web pages of the same class, i.e., obtained from
the same source. Then

S = {P1,P2,P3, . . .PM}.

Let us assume IBDF i represents the IBDF of a block Bi in a
set of pages S. Typically, the set S consists of similar pages
from the same source. IBDF i is inversely proportional to
the number of webpages the block Bi occurs in. Then

IBDF
i ≡ f(

1

|Si|+ 1
)

where

Si = ∪{Pl : sim(Bi,Bk) < ε, ∀Bk ∈ Pl, ∀Pl ∈ S}.

f denotes a function, usually linear or log function. The
function sim(Bi,Bk) is a similarity measure of the two blocks.
An expert provides the threshold ε. Given two blocks, the
similarity measure, sim, returns the cosine between their
block feature vectors. Examples of features are: the number
of terms, the number of images, the number of java-scripts,
etc. However, for text blocks, simply taking the number of
terms in the block may result in falsely identifying two blocks
as similar. Therefore, we augment the features by adding a
binary feature for each term in the corpus of documents.
If a feature occurs in a block, the entry in the correspond-
ing feature vector is a one, otherwise it is zero. We used a
threshold value of ε = 0.9. That is, if the similarity measure

1723

is greater than the threshold value, then the two blocks are
accepted as identical.

3.2 FeatureExtractor
The FeatureExtractor algorithm, shown in Algorithm 2,

is invoked to identify blocks with a set of desired features.
Within the set of chosen blocks we sort the blocks again
according to their probability values, and chose the winner
block.

The pseudo-code for the FeatureExtractor algorithm is
shown below.

4. EVALUATION PLAN
We implemented and compared our algorithm with LH,

the entropy-based algorithm, proposed by Lin and Ho [7].
They use the terms precision and recall to refer to the met-
rics to evaluate their algorithm. Although, the use of these
terms are somewhat different from their usual sense in the
“Information Retrieval” field, in order to avoid confusion,
we use the same terms to refer to the evaluation metrics of
our work.

4.1 Metric Used
Precision is defined as the ratio of the number of relevant

items (actual primary content blocks) r found and the total
number of items (primary content blocks suggested by an
algorithm) t found. Precision = r

t
. Recall has been defined

as the ratio of the number of relevant items found and the
desired number of relevant items. The desired number of
relevant items includes the number of relevant items found
and the missed relevant items m. Recall = r

r+m
.

4.2 Data Set
Like Lin and Ho, we chose several websites from the news

domain. We crawled the web for news articles and other
types of websites to collect documents. The details (name,
source, category, number) of the dataset are shown in Table
1.

We took 15 different news websites whose design and page-
layouts are completely different. Unlike Lin and Ho’s dataset
[7] that is obtained from one fixed category of news sections
(only one of them is “Miscellaneous” news from CDN), we
took random news pages from every section of a particular
website. This choice makes the dataset a good mix of a
wide variety of HTML layouts. This step was necessary to
compare the robustness of their algorithm to ours.

5. PERFORMANCE COMPARISON
We implemented all three algorithms in Perl 5.8.0 on a

Pentium-based Linux platform. With the help of a few grad-
uate students and professors, we calculated the precision and
recall values for each website and layout category for text
feature. These values are shown in table 2.

Our algorithms outperform LH in all news sites in all cat-
egories. The recall is always good since both algorithms
could find most relevant blocks but the results obtained by
running the LH algorithm were less precise than those ob-
tained by ContentExtractor since the former algorithm also
includes lots of other non-content blocks.

5.1 Precision and Recall

Algorithm 1: ContentExtractor algorithm and Get-
BlockSet function. GetBlockSet function is also used by
FeatureExtractor algorithm

Input : Set S of HTML pages, Sorted tag-set T

Output : Primary Content Blocks and their associated
pages in S

begin
MBD ←− ∅
{ Here theMBD matrix is the block-document
matrix where rows represent document and
columns represent block identifier.}
for each Hk ∈ S do
{ Here Bk represents the kth row of theMBD

matrix. }
Bk ←− GetBlockSet(Hk, T)
Mk

BD ←− Bk

for each bij ∈ MBD do
IBDFij ←− 1
for each bkl ∈ MBD do
{ Here i 6= k.}
simijkl ←− sim(bij , bkl)
if simijkl > ε then

IBDFij ←− Update(IBDFij)
{Update Recalculates IBDF}

{ If IBDF value above threshold we will produce
the output }
for each bij ∈ MBD do

if IBDFi > θ then
Output the content of the block

end

Function: GetBlockSet
Input : HTML page H, Sorted tag-set T

Output : Set of Blocks in H

begin
B ←− H; // set of blocks, initially set to H.
f ←− Next(T)
while f 6= ∅ do

b←− First(B)
while b 6= ∅ do

if b contains f then
BN ←− GetBlocks(B, f)
B ←− (B − b) ∪ BN

b←− Next(B)

f ←− Next(T)

end

1724

Site Address Category Number

ABC http://www.abcnews.com Main Page, USA, World, Business, Entertainment, Sci-
ence/Tech, Politics,Living

415

BB http://www.bloomsberg.com Main Page, World, Market, US Top Stories, World Top
Stories, Asian, Australia/New Zealand, Europe, The
Americas

510

BBC http://www.bbc.co.uk Main Page, The Continents, Business, Health, Nature,
Technology, Entertainment

890

CBS http://www.cbsnews.com Main Page, National, World, Politics, Technology,
Health, Entertainment

370

CNN http://www.cnn.com Main Page, World, US, All Politics, Law, Tech(nology),
Space (Technology), Health, Showbiz, Education, Spe-
cials

717

FOX http://www.foxnews.com Main Page, Top Stories, Politics, Business, Life, Views 476
FOX23 http://www.fox23news.com Main Page, General, Local, Regional, National, World,

In Depth, Sports, Business, Entertainment, Health
658

IE http://www.indianexpress.com Main Page, International, Sports, National Network,
Business, Headlines

269

IT http://www.indiatimes.com Main Page, Main Stories, Top Media Headlines 454
MSNBC http://www.msnbc.com Main Page, Business, Sports, Technology an Science,

Health, Travel
647

YAHOO http://news.yahoo.com Main Page, Top Stories, US (National), Business, World,
Entertainment, Sports, Technology, Politics, Science

505

Table 1: Details of the dataset. Number of pages taken from individual categories are not shown due to the
enormous size of the latex table. But interested reader can contact authors to get the details.

Site Prec
of
LH

Recall
of
LH

F-
measure
of LH

Prec
of
CE

Recall
of
CE

F-
measure
of CE

Prec
of FE

Recall
of FE

F-
measure
of FE

ABC 0.811 0.99 0.89 0.915 0.99 0.95 1.00 1.00 1.00
BB 0.882 0.99 0.93 0.997 1.00 0.998 1.00 1.00 1.00
BBC 0.834 0.99 0.905 0.968 1.00 0.983 1.00 1.00 1.00
CBS 0.823 1.00 0.902 0.972 1.00 0.985 0.98 0.977 0.978
CNN 0.856 1.00 0.922 0.977 1.00 0.988 0.98 0.98 0.98
FOX 0.82 1.00 0.901 0.967 1.00 0.983 1.00 0.99 0.994
FOX23 0.822 1.00 0.902 0.985 1.00 0.992 1.00 1.00 1.00
IE 0.77 0.95 0.85 0.911 0.993 0.95 0.93 0.99 0.959
IT 0.793 0.99 0.878 0.924 0.981 0.951 0.96 0.98 0.969
MSNBC 0.802 1.00 0.89 0.980 1.00 0.989 0.92 1.00 0.95
YAHOO 0.730 1.00 0.84 0.967 1.00 0.98 1.00 0.95 0.974

Table 2: Block level Precision and Recall values from LH algorithm, ContentExtractor and FeatureExtractor. The
second, third, and fourth columns are from LH algorithm, the fifth, sixth, and the seventh columns are from
ContentExtractor and the eighth, ninth, and tenth columns are from FeatureExtractor

1725

Algorithm 2: FeatureExtractor

Input : HTML pages H, Sorted Tag Set F , Desired
Feature FI

Output : Content Blocks of H

Feature: Feature set FS used for block separation
sorted according to importance taken from F

begin
B ←− GetBlockSet(H,F)

for each b ∈ B do
P1 ←− Pr(FI |F)
if P1 > 0.5 then
W ←−W ∪ b

for each b ∈ W do
Pb ←− Pr(FI |F ,W)

{ Output: Sort W according to the Probability
value Pb and (1) Produce the content of the
Winner block }

end

Both FeatureExtractor and ContentExtractor performed
better than LH in almost all cases.

We compare the features of all three algorithms in Table
3.

5.2 Execution Time
Figure 2 shows execution time taken by the three algo-

rithms averaged over all test webpages.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300 350 400 450 500

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Pages

LH Algorithm
ContentExtractor Algorithm
FeatureExtractor Algorithm

Figure 2: Run-times for the LH and the ContentEx-
tractor algorithm.

Here in table 3 we present a comparison table for the
features of both algorithms.

6. CONCLUSIONS AND FUTURE WORK
We devised simple, yet powerful, and modular algorithms,

to identify primary content blocks from webpages. Our algo-
rithms outperformed the LH algorithm significantly, in pre-
cision as well as run-time, without the use of any complex
learning technique. The FeatureExtractor algorithm, pro-
vided a feature, can identify the primary content block with
respect to that feature. The ContentExtractor algorithm de-
tects redundant blocks based on the occurrence of the same

Property LH ContentExtractor
Precision Low High
Recall High Very High
Number
of pages
needed

All the pages to
calculate Entropy
of features

Very few (5−10) pages
from same class are
enough to give high
performance

Time of
comple-
tion

Always more
than ContentEx-
tractor

Less than LH (shown
in figure 2)

Table 3: A property-wise comparison table for both
algorithms

block across multiple webpages. The algorithms, thereby,
reduce the storage requirements, make indices smaller, and
result in faster and more effective searches.

7. REFERENCES
[1] Ziv Bar-Yossef and Sridhar Rajagopalan. Template

detection via data mining and its applications. In
Proceedings of WWW 2002, pages 580–591, 2002.

[2] Boris Chidlovskii, Jon Ragetli, and Maarten de Rijke.
Wrapper generation via grammar induction. In
Machine Learning: ECML 2000, 11th European
Conference on Machine Learning, Barcelona,
Catalonia, Spain, May 31 - June 2, 2000, Proceedings,
volume 1810, pages 96–108. Springer, Berlin, 2000.

[3] Valter Crescenzi, Giansalvatore Mecca, and Paolo
Merialdo. Roadrunner: Towards automatic data
extraction from large web sites. In Proceedings of the
27th International Conference on Very Large Data
Bases, pages 109–118, 2001.

[4] C. Hsu. Initial results on wrapping semistructured
web pages with finite-state transducers and contextual
rules. In AAAI-98 Workshop on AI and Information
Integration, pages 66–73. AAAI Press, 1998.

[5] Nicholas Kushmerick. Wrapper induction: Efficiency
and expressiveness. Artificial Intelligence,
118(1-2):15–68, 2000.

[6] Nickolas Kushmerick, Daniel S. Weld, and Robert B.
Doorenbos. Wrapper induction for information
extraction. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 729–737, 1997.

[7] Shian-Hua Lin and Jan-Ming Ho. Discovering
informative content blocks from web documents.
Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 588–593, 2002.

[8] Bing Liu, Kaidi Zhao, and Lan Yi. Eliminating noisy
information in web pages for data mining. In
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 296–305, 2003.

[9] Ion Muslea, Steven Minton, and Craig A. Knoblock.
Hierarchical wrapper induction for semistructured
information sources. Autonomous Agents and
Multi-Agent Systems, 4(1/2):93–114, 2001.

[10] Lan Yi, Bing Liu, and Xiaoli Li. Visualizing web site
comparisons. In Proceedings of the eleventh
international conference on World Wide Web, pages
693–703, 2002.

1726

