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Abstract— We investigate the learning of de-
terministic finite-state automata (DFA’s) with
recurrent networks with a single input neu-
ron, where each input symbol is represented
as a temporal pattern and strings as sequences
of temporal patterns. We empirically demon-
strate that obvious temporal encodings can
make learning very difficult or even impos-
sible. Based on preliminary results, we for-
mulate some hypotheses about ’good’ tempo-
ral encoding, i.e. encodings which do not sig-
nificantly increase training time compared to
training of networks with multiple input neu-
rons.

I. INTRODUCTION

Recurrent neural networks (RNN’s) can be trained to

behave like deterministic finite-state automata (DFA’s)

[2, 3, 4, 6, 8,9, 10]. The symbols of the input alpha-
bet have to be encoded into the network’s set of input
neurons. We investigate whether it is feasible to learn
DFA’s with a temporal encoding scheme where the
example strings are fed into a network via a single
input neuron. All input symbols are mapped into a
sequence of temporal signals ("pulse-encoding’). This
encoding scheme is biologically motivated, but it also
represents an interesting machine learning problem in
itself.

We empirically investigate different encodings and

II. FINITE STATE AUTOMATA

A deterministic finite-state automaton (DFA) M is
an acceptor of a regular language L(M). Formally,
a DFA M is a 5-tuple M =< %,Q, R, F,d > where
¥ = {a1,...,an,} is the alphabet of the language
L, Q = {q1,---,qn} is a set of states, Re( is the
start state, F' C () is a set of accepting states and
0 : @ XX — @ defines state transitions in M. A
string x is accepted by the DFA M and hence is a
member of the regular language L(M) if an accepting
state is reached after the string z has been read by
M. For more details see [5].

III. TRAINING RECURRENT NETWORKS
A. Recurrent Network

We train discrete-time, recurrent networks with second-
order weights W;ji, to behave like DFA’s [2, 3, 4, 6,
8,9, 10]. A network accepts a time-ordered sequence
of inputs and evolves with dynamics defined by the
following equations:

) _ pa () = L
$i = Wait) = T (1)
ai(t) =bi + Y Wik S 1, (2)

3.k

where b; is the bias associated with hidden recurrent
state neurons S; and I, is an input neuron. A spe-
cial state neuron Sy is the designated output neuron.

demonstrate what the limitations are for training RNN’sGiven a set of positive and negative example strings,

with temporal encodings. Based on our empirical re-
sults, we formulate hypotheses which we suspect to
be necessary conditions for successful learning. We
perform the simulations only for second-order net-
works, but we believe that the results also apply to
first-order networks.
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the network is trained using the backpropagation-
through-time algorithm (BPTT) [7]. Training pro-
ceeds until the network correctly classifies all example
strings within a certain tolerance ¢; typically, ¢ = 0.1.
After the training phase, we relax the tolerance of the
values of the output neurons; a trained network ac-
cepts a string if the value of Sy at the end of the string
is greater than 0.5; otherwise, the network rejects the
string.



IV. INPUT ENCODINGS
A. Spatial Encoding

Under a spatial encoding of the input symbols, the
alphabet of the DFA is mapped into a set of input
neurons: ¥ — {I;,I5,...Ix}. A one-to-one mapping
ar, — I, is often used, where only one input neuron
I}, corresponding to input symbol a has a high sig-
nal at any given time step. This orthonormal input
symbol encoding is an extreme case of spatial encod-
ing. As each symbol is presented to the network, a
different network computes the new network state.
The operation SJ(-t)I ,gt) directly corresponds to a DFA
state transition 0(g;, axr) = g;.

B. Temporal Encoding

We encode symbols of a DFA as sequences of tempo-
ral signals; a representative example is shown in fig-
ure 3. This encoding of input symbols transforms the
original DFA M into a DFA M™* with more states and

more transitions. Formally, a DFA M =< %, Q, R, F,§ >
is transformed into a DFA M* =< II, QUX, R, F,y >.

The new input alphabet II = {by,bs,...,br} is the
set of all possible values of the temporal signal; it
is understood that each input symbol has a distinct
encoding ay — bLb?...bF  ie. i.e. no two input en-
codings are the same for any pair of input symbols ay,
and a;. We will refer to b} as the p*" component of
the temporal encoding of symbol aj. In general, dif-
ferent symbols may have pulse encodings of different
length; for the remainder of this paper, we assume
that the pulse encodings of all input symbols of M
have the same length P. QU X is the extended set of
states and ~ is the new transition function. A state
transition 6(g;,ar) = ¢; in M is transformed into a
new state transition (... (g;,b}),b%,...),bf) = ¢; in
M*. We will assume that no illegal encodings will
occur, i.e. we do not need to specify state transitions
v(q, ) if g is not a state in M or b}, is not the pt"
component of the encoding of some symbol ay.

The DFA M shown in figure 1a accepts all strings
over the alphabet {0,1} which do not contain ’000’
as a substring. Under a temporal input encoding,
DFA M is transformed into the minimized DFA M*
shown in figure 1b. A temporal encoding of input
symbols generally causes an increase in the number
of states and transitions in the transformed DFA.

V. SIMULATIONS

We trained second-order RNN’s with 20 recurrent
neurons with one input neuron on the first 1,000 ex-
ample strings in alphabetical order; the labels of the
strings were assigned by the DFA shown in figure
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Figure 1: Transformation of DFA’s: The DFA M
shown in figure a accepts all strings over the alphabet
{0, 1} which do not contain '000’ as a substring. State
1 is the start state. Accepting strings are shown with
double circles (states 1, 2, 3); state 4 is the only
rejecting state. The DFA M was transformed into
the minimized DFA M* shown in figure b under the
input encoding 0 — {0.5,0.75,0.25,0.5} and 1 —
{0.5,0.25,0.75,0.5}.

la. The weights were initialized with random val-
ues in the interval [-0.1,0.1]. We experimented with
different encodings of different lengths. We report
here the results for 10 different training runs for each
of the encoding schemes. We allowed a maximum
of 5,000 epochs for each run; if a network failed to
converge and the mean-squared error did not change
until 5,000 epochs were reached, we concluded that
the network was stuck in a local minimum and that
further training would not lead to a solution.
Assuming the amplitude of all signals is limited to
the interval [0, 1], each component b of the encoding
of a symbol ay has to be greater than zero. A signal
bt = 0 forces the state neurons to assume the con-
stant value S!™' = h(—b;) regardless of past values
S¢; this makes previous DFA states indistinguishable
and RNN’s fail to converge. Notice that this is a
property of second-order networks only; first-order
networks do not share the restriction b, # 0. We
will discuss in the following sections different encod-
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Figure 2: Uniquely Identifiable Encodings:

These simple encodings allow the current symbol to
be uniquely identified from the current temporal sig-

nal.
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Figure 3: Maximally Non-Identifiable Encod-
ing: This encoding does not allow the current symbol
to be uniquely identified from the current temporal
signal. The two encodings for ’0’ and ’1’ are out of
phase, but otherwise they are identical.

ing schemes and compare the convergence times for
identical initial conditions. The number of possible
encodings grows exponentially with the length of the
symbol encodings; it is thus impossible to perform
an exhaustive search for the best encoding. We have
selected a few encodings which we think are interest-

ing.
A. Symbol Identification

We call input symbol a identifiable if the symbol
can uniquely be identified from any component b}, of
the symbol’s temporal encoding. The simplest such
encoding for a DFA with input alphabet {0,1} is the
encoding shown in figure 2a. The first row in table
1 shows that only 2 out of 10 RNN’s converged with
this simple encoding. We extended the length of each
encoding from one to two time steps (figures 2b).
We observed that convergence is not very likely with
longer signal encoding either.  Similarly, we found
that convergence for the symbol encoding shown in
figure 3 is difficult. The two symbol encodings are out
of phase, but otherwise they are identical. A symbol
a cannot be identified from a signal b} alone. We
observed that only 3 of the 10 runs converged to a
solution.
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Figure 4: Redundant Encodings: These encod-
ings contain redundant information which does not
contribute to the distinction between input symbols
0’ and ’1°.

B. Signal Redundancy

We encoded input symbols according to figure 4a.
The information which distinguishes the encodings
for the two symbols from each other is the same as
in figure 2a. The remainder of the encodings is re-
dundant information which does not contribute to
distinguishing ’0’ from ’1’; none of the 10 runs con-
verged to a solution.

C. Signal Variation

We now consider symbol encodings where no two ad-
jacent signals b% and b2+ are the same within the en-
coding of ay. Two representative examples are shown
in figures 5a and 5b. 8 and 6 out of 10 runs converged
for the encodings of figures 5a and 5b, respectively.
In runs where both encodings converged, the encod-
ing 5a found a solution faster.

D. Signal Length

We shortened encodings of figures 4, 5a, and 5b by
removing the first and the last components of the
encodings. Compared to the longer encodings, en-
codings shown in figures 6a and 6b are more likely
to converge and the RNN’s learn faster. None of the
10 RNN’s converged for the encoding shown in figure
6c.
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Figure 5: Signal Variation: No two adjacent sig-
nals of a symbol encoding are the same.

E. Spatial Distribution of Input Symbols

For comparison, we trained 10 RNN’s with 20 recur-
rent state neurons; the inputs were spatially encoded
with 2 input neurons, one for each of the input sym-
bols. The last row of table 1 shows the convergence
times for 10 different networks; their initial condi-
tions were not the same as in the previous experi-
ments, since we changed the network architecture.

F. Discussion

The above experiments clearly show that BPTT prefers

some input symbol encodings over others. We would
like to be able to characterize the encodings which
generally yield fast convergence. We attempted to
analyze the symbol encodings discussed above with
standard techniques. Neither a linear correlation anal-
ysis nor a Discrete Fourier Transformation have re-
vealed any significant properties of ’‘good’ encodings.

In the following, we say a RNN has learned a DFA
if the training converged on a given set of strings;
we are not concerned with the generalization perfor-
mance of trained RNN’s. Based on our empirical
evidence, we will now formulate justified hypothe-
ses about ’good’ temporal encodings of input signals,
i.e. encodings which do not significantly increase
the learning time compared to learning a data set
under an orthonormal spatial input symbol encod-
ing. While a spatial encoding will always increase
the number of weights, we will assume that network
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Figure 6: Encodings without Redundancy: The
above encodings correspond to the encodings in fig-
ures 4a, ba and 5b without the first and last compo-
nent.

sizes for spatial and temporal symbol encodings are
comparable.

Hypothesis V.1 The larger a DFA, the more dif-
ficult it is to learn it with a RNN. The opposite is
not necessarily true for temporal encodings of input
symbols.

From experience, we know that learning larger DFA’s
requires larger RNN in order for the network to build
an internal representation of the DFA states. We
have found a temporal encoding which does not change
the size of the DFA, yet the RNN’s had difficulty
learning the DFA.

Hypothesis V.2 A RNN can learn o DFA more eas-
ily if the input symbol encoding is either spatially or
temporally distributed.



Usually, we encode input symbols discretely over a
set of input neurons. A one-to-one mapping is an
extreme case of spatial distribution of input symbols.
Under that encoding, a RNN is likely to learn small
DFA’s (last row of table 1). We have an example of
an symbol encoding which was neither spatially nor
temporally distributed; the RNN’s had difficulty to
converge.

Hypothesis V.3 Unique identification of symbols from

the current signal is neither a necessary nor a suffi-
cient condition for likely convergence of RNN's.

RNN’s where the symbols were easily detectable from
the current signal of the temporal encoding had diffi-
culty to converge. On the other hand, we successfully
trained RNN’s where the symbol was not uniquely
identifiable from the current signal.

Hypothesis V.4 A temporal input encodings with re-
dundant information makes RNN’s less likely to con-
verge.

Theoretical results on learning sequences with RNN’s
suggest that learning algorithms based on gradient-
descent have difficulties propagating error informa-
tion over long signal spans, making it hard to distin-
guish DFA states [1].

Hypotheses V.1 and V.3 may seem surprising. In-
tuitively, we expect RNN’s to converge easily on the
simplest possible temporal encoding; furthermore, one
could assume that a network prefers an encoding
which allow the symbol to be uniquely identified from
a single component of its encoding.

There exists a trade-off between temporal distribu-
tion of input symbol encodings (hypothesis V.2) and
the need for encoding without redundancy (hypothe-
sis V.4). We hypothesize that a distribution of input
signals - spatial or temporal - is a necessary condition
for likely learning of DFA’s with RNN’s. However, a
distribution which is spread too widely, will hinder
gradient-based learning algorithms.

The ultimate goal is to identify properties of tem-
poral input symbol encodings which make conver-
gence no more difficult than spatial input symbol en-
codings.

VI. SIGNAL DELAYS

It is an interesting question whether a network can
learn a DFA if random delays between signals are in-
troduced. In addition to learning to behave like a
DFA, a network has to learn to ignore signal delays.

For the experiments, we augmented the signal al-
phabet II by a special signal bgeiqy Which separates
consecutive, complete temporal encodings of input

0.25
O W
-
0.

5@ o° 0.5/0.75
0,7 \0.25 } = @
L l 025

0.5\ / 0.75 \0-25 i @
/o5
SEC

\0\.\75

)

0.25,0.5,0.75

Figure 7: DFA Allowing Random Signal De-
lays: The shown DFA M allows signal delays of ran-
dom length between complete input symbol encod-
ings. The delay encoding is bgesoy = 0.5. The DFA
differs from the DFA shown in figure 1b only in the
transitions from states 5, 10 and 13 on input signal
bdelay =0.5.

symbols. We encoded the training strings accord-
ing to the encoding shown in figure 5a and randomly
separated the complete encodings of each input sym-
bol by at most one time step using bgeiay = 0.5. In
general, one would allow random signal delays of ar-
bitrary length.

There are two problems associated with random
signal delays: First, the delays always add to the
length of each example string making learning with
gradient-descent more difficult. Second, the DFA’s
to be learned with and without signal delays are
not identical. Random signal delays always add new
state transitions as follows: Let g; be any state reached
on the last signal bf of the encoding of symbol ay; a
new state transition (g, bgeiay) = ¢; is added. The
DFA in figure 1b is extended to allow delays of ar-
bitrary length between complete encodings of input
symbols (figure 7).

We found that none of the RNN’s converged when
at the most one signal delay was inserted between two
consecutive symbols in the training data. The slight
increase in overall DFA complexity (number of states
and transitions) alone can hardly be responsible for
the RNN’s failure to converge. The increased length
of the training strings due the introduction of signal



| encoding | run 1 ‘run? ‘ run 3 | run 4 ‘ Tun 5 | run 6 | Tun 7 ‘ run 8 | run 9 | run 10 ‘
temporal 2a - - - - - 340 - 856 - -
temporal 2b - - - - 459 - - - - -
temporal 3 - - - - - 344 1280 | 3456 - -
temporal 4a - - - - - - - - - -
temporal 4b - - - - - 1011 - 1382 - -
temporal Ha 241 221 185 - 844 325 372 - 247 1505
temporal 5b - 565 999 723 - 2942 615 - 1322 -
temporal 6a 326 305 287 315 - 236 265 296 315 358
temporal 6b 117 116 140 144 113 119 107 135 121 116
temporal 6¢ - - - - - - - - - -
signal delay (5a) - - - - - - - - - -
spatial 54 45 31 42 35 47 46 36 47 36

Table 1: Input Symbol Encodings: The table shows the convergence of 10 RNN’s under different input
symbol encodings. The same initial networks were used for training with different encodings. The numbers
in the first column refer to the number of the figure that describes the encoding of input symbols ’0” and ’1°.

delays could explain the RNN’s difficulty to converge.
However, the training strings with signal delays are
still shorter than than the ones used for symbol en-
codings of length 4 for some of which convergence
was likely. Thus, we conclude that neither the in-
crease in DFA complexity nor the increased string
length alone can be responsible for the RNN’s failure
to converge; other characteristics of the input symbol
encoding must play a role in determining whether a
network is likely to converge.

VII. CONCLUSIONS

We have started the investigation of training recur-
rent neural networks (RNN’s) with temporally en-
coded input sequences. Qur preliminary empirical
results have shown some surprising results: RNN’s
could not easily learn a simple deterministic finite-
state automaton (DFA) with the shortest possible
temporal encoding of the input sequences although
similar RNN’s with a spatial input symbol encoding
learned easily. We speculate that there exist proper-
ties of temporal input signal encodings which make
RNN’s more or less likely to converge. One such
hypothesis may be that input symbols must be dis-
tributed - ether spatially or temporally - in order for
RNN’s to be likely to learn a DFA. Based on that
assumption, we further speculate that there exists a
trade-off between convergence and a wide distribu-
tion which leads to signal redundancy. There exist
theoretical result which suggest that training with
gradient-descent algorithms becomes harder with in-
creasing sequence length. Thus, short input sequence
encodings should be favored. Standard techniques
for analyzing signals (correlation analysis and Dis-
crete Fourier Transformation) have not revealed any
characteristics of encodings which allow fast learning;
further research is needed to find out why a network
prefers certain encodings of input signals over others.
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