
Equivalence in Knowledge Representation:
Automata, Recurrent Neural Networks,
and Dynamical Fuzzy Systems

C. LEE GILES,FELLOW, IEEE, CHRISTIAN W. OMLIN, AND KARVEL K. THORNBER

Invited Paper

Neurofuzzy systems—the combination of artificial neural net-
works with fuzzy logic—have become useful in many application
domains. However, conventional neurofuzzy models usually need
enhanced representational power for applications that require
context and state (e.g., speech, time series prediction, control).
Some of these applications can be readily modeled as finite state
automata. Previously, it was proved that deterministic finite state
automata (DFA) can be synthesized by or mapped into recurrent
neural networks by directly programming the DFA structure into
the weights of the neural network. Based on those results, a
synthesis method is proposed for mapping fuzzy finite state au-
tomata (FFA) into recurrent neural networks. Furthermore, this
mapping is suitable for direct implementation in very large scale
integration (VLSI), i.e., the encoding of FFA as a generalization
of the encoding of DFA in VLSI systems. The synthesis method
requires FFA to undergo a transformation prior to being mapped
into recurrent networks. The neurons are provided with an enriched
functionality in order to accommodate a fuzzy representation of
FFA states. This enriched neuron functionality also permits fuzzy
parameters of FFA to be directly represented as parameters of the
neural network. We also prove the stability of fuzzy finite state
dynamics of the constructed neural networks for finite values of
network weight and, through simulations, give empirical validation
of the proofs. Hence, we prove various knowledge equivalence
representations between neural and fuzzy systems and models of
automata.

Keywords—Dynamic systems, finite automata, fuzzy systems,
recurrent neural networks.

I. INTRODUCTION

A. Motivation

As our applications for intelligent systems become more
ambitious, our processing models become more powerful.

Manuscript received December 2, 1998; revised April 13, 1999.
C. L. Giles is with NEC Research Institute, Princeton, NJ 08540 USA

and with UMIACS, University of Maryland, College Park, MD 20742
USA.

C. W. Omlin is with the Department of Computer Science, University
of Stellenbosch, 7600 Stellenbosch, South Africa.

K. K. Thornber is with NEC Research Institute, Princeton, NJ 08540
USA.

Publisher Item Identifier S 0018-9219(99)06915-7.

One approach to increasing this power is through hybrid
systems—systems that include several different models
intelligent processing [1]. There has also been an increased
interest in hybrid systems as more applications with hybrid
models emerge [2]. However, there are many definitions of
hybrid systems [3]–[5].

One example of hybrid systems is in combining artificial
neural networks and fuzzy systems (see [6]–[9]). Fuzzy
logic [10] provides a mathematical foundation for approx-
imate reasoning; fuzzy logic has proven very successful
in a variety of applications [11]–[20]. The parameters of
adaptive fuzzy systems have clear physical meanings that
facilitate the choice of their initial values. Furthermore,
rule-based information can be incorporated into fuzzy sys-
tems in a systematic way. Artificial neural networks propose
to simulate on a small scale the information processing
mechanisms found in biological systems that are based on
the cooperation and computation of artificial neurons that
perform simple operations, and on their ability to learn
from examples. Artificial neural networks have become
valuable computational tools in their own right for tasks
such as pattern recognition, control, and forecasting (for
more information on neural networks, please see [21]–[23]).
Recurrent neural networks (RNN’s) are dynamical systems
with temporal state representations; they are computation-
ally quite powerful [24], [25] and can be used in many
different temporal processing models and applications [26].

Fuzzy finite state automata (FFA), fuzzy generalizations
of deterministic finite state automata,1 have a long history
[32], [33]. The fundamentals of FFA have been discussed
in [34] without presenting a systematic machine synthesis
method. Their potential as design tools for modeling a
variety of systems is beginning to be exploited in various

1Finite state automata also have a long history as theoretical [27]
and practical [28] models of computation and were some of the earliest
implementations of neural networks [29], [30]. Besides automata, other
symbolic computational structures can be used with neural networks [31],
[26].

0018–9219/99$10.00 1999 IEEE

PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999 1623

applications [35], [36]. Such systems have two major
characteristics: 1) the current state of the system depends on
past states and current inputs and 2) the knowledge about
the system’s current state is vague or uncertain.

Finally, the proofs of representational properties of ar-
tificial intelligence, machine learning, and computational
intelligence models are important for a number of reasons.
Many users of a model want guarantees about what it can do
theoretically, i.e., its performance and capabilities; others
need this for justification of use and acceptance of the
approach. The capability of representing a model, say FFA,
in an intelligent system can be viewed as a foundation for
the problem of learning that model from examples (if a
system cannot represent FFA, then it certainly will have
difficulty learning FFA).

Since recurrent neural networks are nonlinear dynamical
systems, the proof of their capability to represent FFA
amounts to proving that a neural network representation
of fuzzy states and transitions remains stable for input
sequences of arbitrary length and is robust to noise. Neural
networks that have been trained to behave like FFA do
not necessarily share this property, i.e., their internal rep-
resentation of states and transitions may become unstable
for sufficiently long input sequences [37]. Finally, with
the extraction of knowledge from trained neural networks,
the methods discussed here could potentially be applied to
incorporating and refining [38] fuzzy knowledge previously
encoded into recurrent neural networks.

B. Background

A variety of implementations of FFA have been proposed,
some in digital systems [39], [40]. However, here we give
a proof that such implementations in sigmoid activation
RNN’s are stable, i.e., guaranteed to converge to the correct
prespecified membership. This proof is based on previous
work of stably mapping deterministic finite state automata
(DFA) in recurrent neural networks reported in [41]. In
contrast to DFA, a set of FFA states can be occupied to
varying degrees at any point in time; this fuzzification
of states generally reduces the size of the model, and
the dynamics of the system being modeled is often more
accessible to a direct interpretation.

From a control perspective, fuzzy finite state automata
have been shown to be useful for modeling fuzzy dynam-
ical systems, often in conjunction with recurrent neural
networks [35], [42]–[45]. There has been much work on the
learning, synthesis, and extraction of finite state automata
in recurrent neural networks (see, for example, [46]–[53]).
A variety of neural network implementations of FFA have
been proposed [39], [40], [54], [55]. We have previously
shown how fuzzy finite state automata can be mapped into
recurrent neural networks with second-order weights using
a crisp representation2 of FFA states [56]. That encoding
required a transformation of a fuzzy finite state automaton
into a deterministic finite state automaton that computes
the membership functions for strings; it is only applicable

2A crisp mapping is one from a fuzzy to a nonfuzzy variable.

to a restricted class of FFA that has final states. The
transformation of a fuzzy automaton into an equivalent
deterministic acceptor generally increases the size of the
automaton and thus the network size. Furthermore, the
fuzzy transition memberships of the original FFA undergo
modifications in the transformation of the original FFA into
an equivalent DFA that is suitable for implementation in
a second-order recurrent neural network. Thus, the direct
correspondence between system and network parameters is
lost which may obscure the natural fuzzy description of
systems being modeled.

The existence of a crisp recurrent network encoding for
all FFA raises the question of whether recurrent networks
can also be trained to compute the fuzzy membership
function, and how they represent FFA states internally.
Based on our theoretical analysis, we know that they have
the ability to represent FFA in the form of equivalent deter-
ministic acceptors. Recent work reported in [57] addresses
these issues. Instead of augmenting a second-order network
with a linear output layer for computing the fuzzy string
membership as suggested in [56], they chose to assign a
distinct output neuron to each fuzzy string memberships

occurring in the training set. Thus, the number of
output neurons became equal to the number of distinct
membership values The fuzzy membership of an input
string was then determined by identifying the output neuron
whose activation was highest after the entire string had
been processed by a network. Thus, they transformed the
fuzzy inference problem into a classification problem with
multiple classes or classifications. This approach lessens
the burden on the training and improves the accuracy and
robustness of string membership computation.

Apart from the use of multiple classes, training networks
to compute the fuzzy string membership is identical to
training networks to behave like DFA. This was verified
empirically [57] through information extraction methods
[46], [37] where recurrent networks trained on fuzzy strings
develop a crisp internal representation of FFA, i.e., that they
represent FFA in the form of equivalent deterministic ac-
ceptors.3 Thus, our theoretical analysis correctly predicted
the knowledge representation for such trained networks.

C. Overview of Paper

In this paper, we present a method for encoding FFA
using a fuzzy representation of states.4 The objectives of the
FFA encoding algorithm are: 1) ease of encoding FFA into
recurrent networks; 2) the direct representation of “fuzzi-
ness,” i.e., the fuzzy memberships of individual transitions
in FFA are also parameters in the recurrent networks; and 3)
achieving a fuzzy representation by making only minimal
changes to the underlying architecture used for encoding
DFA (and crisp FFA representations).

3The equivalence of FFA and deterministic acceptors was first discussed
in [58] and first used for encoding FFA in [56].

4For reasons of completeness, we have included the main results from
[41] which lay the foundations for this and other papers [59], [56]. Thus,
by necessity, there is some overlap.

1624 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Representation of FFA in recurrent networks requires that
the internal representation of FFA states and state transitions
be stable for indefinite periods of time. We will demonstrate
how the stability analysis for neural DFA encodings carries
over to and generalizes the analysis of stable neural FFA
representations.

In high-level very large scale integration (VLSI) design
a DFA (actually finite state machines) is often used as
the first implementation of a design and is mapped into
sequential machines and logic [28]. Previous work has
shown how a DFA can be readily implemented in RNN’s
and neural networks have been directly implemented in
VLSI chips [60]–[62]. Thus, with this approach FFA could
be readily mapped into electronics and could be useful
for applications, such as real-time control (see e.g., [13])5

and could potentially be applied to incorporatea priori
knowledge into recurrent neural networks for knowledge
refinement [63].

The remainder of this paper is organized as follows.
FFA are introduced in Section II. The fuzzy representation
of FFA states and transitions in recurrent networks are
discussed in Section III. The mapping “fuzzy automata
recurrent network” proposed in this paper requires that
FFA be transformed into a special form before they can
be encoded in a recurrent network. The transformation
algorithm can be applied to arbitrary FFA; it is described
in Section IV. The recurrent network architecture for rep-
resenting FFA is described in Section V. The stability
of the encoding is derived in Section VI. A discussion
of simulation results in Section VII and a summary of
the results and possible directions for future research in
Section VIII conclude this paper.

II. FFA

In this section, we give a formal definition of FFA [64]
and illustrate the definition with an example.

Definition 2.1: A fuzzy finite state automaton is a 6-
tuple , where is
the alphabet, is a set of states,
is the automaton’s fuzzy start state,6 is a finite output
alphabet, is the fuzzy transition
map, and is the output map.7

Weights define the “fuzziness” of state
transitions, i.e., FFA can simultaneously be in different
states with a different degree of certainty. The particular

5Alternative implementations of FFA have been proposed (see e.g.,
[54]). The method proposed uses recurrent neurons with sigmoidal dis-
criminant functions and a fuzzy internal representation of FFA states.

6In general, the start state of a FFA is fuzzy, i.e., it consists of a set
of states that are occupied with varying memberships. It has been shown
that a restricted class of FFA whose initial state is a single crisp state
is equivalent with the class of FFA described in Definition 2.1 [64]. The
distinction between the two classes of FFA is irrelevant in the context of
this paper.

7This is in contrast to stochastic finite state automata where there exists
no ambiguity about which is an automaton’s current state. The automaton
can only be in exactly one state at any given time and the choice of
a successor state is determined by some probability distribution. For a
discussion of the relationship between probability and fuzziness, see, for
instance, [65].

Fig. 1. Example of an FFA. A fuzzy finite state automaton is
shown with weighted state transitions. State 1 is the automaton’s
start state. A transition from stateqj to qi on input symbolak
with weight� is represented as a directed arc fromqj to qi labeled
ak=�: Note that transitions from states 1 and 4 on input symbols
“0” are fuzzy (�(1; 0; �) = f2; 3g and�(4; 0; �) = f2;3g):

output mapping depends on the nature of the an application.
Since our goal is to construct a fuzzy representation of FFA
states and their stability over time, we will ignore the output
mapping for the remainder of this discussion and not
concern ourselves with the language defined by
For a possible definition, see [64]. An example of a FFA
over the input alphabet is shown in Fig. 1.

III. REPRESENTATION OFFUZZY STATES

A. Preliminaries

The current fuzzy state of a fuzzy finite state automaton
is a collection of states of that are occupied

with different degrees of fuzzy membership. A fuzzy rep-
resentation of the states in fuzzy finite state automaton thus
requires knowledge about the membership of each state

This requirement then dictates the representation of the
current fuzzy state in a recurrent neural network. Since the
method for encoding FFA in recurrent neural networks is
a generalization of the method for encoding DFA, we will
briefly discuss the DFA encoding algorithm.

B. DFA Encoding Algorithm

We make use of an algorithm used for encoding DFA
[41], [59]. For encoding DFA, we used discrete-time,
second-order RNN’s with sigmoidal discriminant functions
that update their current state according to the following
equations:

(1)

where is the bias associated with hidden recurrent state
neurons is a second-order weight, and denotes
the input neuron for symbol The indexes and

run over all state and input neurons, respectively. The
product corresponds directly to the state transition

The architecture is illustrated in Fig. 2.

GILES et al.: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1625

Fig. 2. Recurrent network architecture for deterministic finite
state automata. The recurrent state neurons are connected and
implement the stable finite state dynamics. One of the recurrent
neurons also is the dedicated network output neuron (i.e., the
neuron which with its output value classifies whether or not a
given string is a member of a regular language).

DFA can be encoded in discrete-time, second-order
RNN’s with sigmoidal discriminant functions such that
the DFA and constructed network accept the same regular
language [41]. The desired finite state dynamics are
encoded into a network by programming a small subset
of all available weights to values and this leads
to a nearly orthonormal internal DFA state representation
for sufficiently large values of i.e., a one-to-one
correspondence between current DFA states and recurrent
neurons with a high output. Since the magnitude of all
weights in a constructed network is equal tothe equation
governing the dynamics of a constructed network is of the
special form

(2)

where is the input to neuron
The objective of mapping DFA into recurrent networks is

to assign DFA states to neurons and to program the weights
such that the assignment remains stable for input sequence
of arbitrary length, i.e., exactly one neuron corresponding
to the current DFA state has a high output at any given
time. Such stability is trivial for recurrent networks whose
neurons have hard-limiting (or “step function”) discriminant
functions. However, this is not obvious for networks with
continuous, sigmoidal discriminant functions. The nonlinear
dynamical nature of recurrent networks makes it possible
for intended internal DFA state representations to become
unstable, i.e., the requirement of a one-to-one correspon-
dence between DFA states and recurrent neurons may be
violated for sufficiently long input sequences. We have pre-
viously demonstrated that it is possible to achieve a stable
internal DFA state representation that is independent of the
string length: in constructed networks, the recurrent state
neurons always operate near their saturation regions for
sufficiently large values of as a consequence, the internal

DFA state representation remains stable indefinitely. The
internal representation of fuzzy states proposed in this paper
is a generalization of the method used to encode DFA states
since FFA may be in several states at the same time. We
will apply the same tools and techniques to prove stability
of the internal representation of fuzzy states in recurrent
neural networks.

C. Recurrent State Neurons with Variable Output Range

We extend the functionality of recurrent state neurons in
order to represent fuzzy states as illustrated in Fig. 3. The
main difference between the neuron discriminant function
for DFA and FFA is that the neuron now receives as inputs
the weight strength the signal that represents the
collective input from all other neurons, and the transition
weight where we will denote this
triple with The value of is different for
each of the states that collectively make up the current fuzzy
network state. This is consistent with the definition of FFA.

The following generalized form of the sigmoidal dis-
criminant function will be useful for representing FFA
states:

(3)

Compared to the discriminant function for the encod-
ing of DFA, the weight that programs the network state
transitions is strengthened by a factor

the range of the function is squashed to the
interval and it has been shifted toward the origin.
Setting reduces the function (3) to the sigmoidal
discriminant function (2) used for DFA encoding.

More formally, the function has the following
important invariant property that will later simplify the
analysis:

Lemma 3.1:
Proof:

Thus, can be obtained by scaling
uniformly in the and directions by a factor

The above property of allows a stability analysis of the
internal FFA state representation similar to the analysis of
the stability of the internal DFA state representation.

D. Programming Fuzzy State Transitions

Consider state of FFA and the fuzzy state transition
We assign recurrent state

neuron to FFA state and neurons to FFA
states The basic idea is as follows. The acti-
vation of recurrent state neuron represents the certainty

1626 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Fig. 3. Neuron discriminant function for fuzzy states. A neuron is represented figuratively by the
box and receives as input the collective signalx from all other neurons, the weight strengthH; and
the fuzzy transition membership� to compute the function~g(x;H; �) = �=(1 + eH(��2x)=2�):
Thus, the sigmoidal discriminant function that represents FFA states has a variable output range.

with which some state transition is
carried out, i.e., If is not reached at time

then we have
We program the second-order weights as follows:

if
otherwise

(4)

if
otherwise

(5)

(6)

Setting to a large positive value will ensure that
will be arbitrarily close to and setting to

a large negative value will guarantee that the output
will be arbitrarily close to zero. This is the same technique
using for programming DFA state transitions in recurrent
networks [41] and for encoding partial prior knowledge of
a DFA for rule refinement [66].

IV. A UTOMATA TRANSFORMATION

A. Preliminaries

The above encoding algorithm leaves open the possibility
for ambiguities when FFA are encoded in a recurrent
network as follows. Consider two FFA states and
with transitions where

is one of all successor states reached fromand
respectively, on input symbol Further assume that
and are members of the set of current FFA states (i.e.,
these states are occupied with some fuzzy membership).
Then, the state transition requires that
recurrent state neuron have dynamic range while
state transition requires that state neuron

asymptotically approach For we have
ambiguity for the output range of neuron.

Definition 4.1: We say an ambiguity occurs at state
if there exist two states and with

and An fuzzy finite state
automaton is called ambiguous if an ambiguity occurs
for any state

B. Transformation Algorithm

That ambiguity could be resolved by testing all possible
paths through the FFA and identifying those states for which
the above described ambiguity can occur. However, such an
endeavor is computationally expensive. Instead, we propose
to resolve that ambiguity by transforming any FFA

Before we state the transformation theorem, and give
the algorithm, it will be useful to define the concept of
equivalent FFA.

Definition 4.2: Consider a FFA that is processing
some string with As
reads each symbol it makes simultaneous weighted state
transitions according to the fuzzy transition
map The set of distinct weights
of the fuzzy transition map at time is called the active
weight set.

Note that the active weight set can change with each
symbol processed by We will define what it means
for two FFA to be equivalent:

Definition 4.3: Two FFA and with alphabet are
called equivalent if their active weight sets are at all times
identical for any string

We will prove the following theorem.
Theorem 4.1:Any fuzzy finite state automaton can be

transformed into an equivalent, unambiguous fuzzy finite
state automaton

The tradeoff for making the resolution of ambiguities
computationally feasible is an increase in the number of
FFA states. The algorithm that transforms a FFA into

GILES et al.: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1627

Fig. 4. Algorithm for the FFA transformation.

a FFA such that is shown in Fig. 4.
Before we prove the above theorem, we will discuss an
example of FFA transformation.

C. Example

Consider the FFA shown in Fig. 5(a) with four states
and input alphabet state is the start state.8

The algorithm initializes the variable “list” with all FFA
states, i.e., First, we notice that no
ambiguity exists for input symbol ‘0’ at state since
there are no state transitions There exist
two state transitions that have state as its target, i.e.,

Thus, we set the variable
According to Definition 4.1, an ambiguity

exists since We resolve that ambiguity by
introducing a new state and setting
Since no longer leads to state we need
to introduce new state transitions leading from state
to the target states of all possible state transitions:

Thus, we set and
with and

8The FFA shown in Fig. 5(a) is a special case in that it does
not contain any fuzzy transitions. Since the objective of the trans-
formation algorithm is to resolve ambiguities for statesqi with
�(fqj ; . . . ; qj g; ak; f; �ij k; . . . ; �ij kg) = qi; fuzziness is of no
relevance; therefore, we omitted it for reasons of simplicity.

One iteration through the outer loop thus results in the
FFA shown in Fig. 5(b), another in Fig. 5(c). Consider
Fig. 5(d) which shows the FFA after three iterations. State

is the only state left that has incoming transitions
where not all values are identical.

We have since these
two state transition do not cause an ambiguity for input
symbol “0,” we leave these state transitions as they are.
However, we also have

with Instead
of creating new states for both state transitions
and it suffices to create one new stateand
to set States and
are the only possible successor states on input symbols “0”
and “1,” respectively. Thus, we set and

There exist no more ambiguities and the
algorithm terminates [Fig. 5(e)].

D. Properties of the Transformation Algorithm

We have shown with an example how the algorithm trans-
forms any FFA into a FFA without ambiguities. We
now need to show that the algorithm correctly transforms

into i.e., we need to show that and are
equivalent. In addition, we also need to demonstrate that
the algorithm terminates for any input

1628 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

(a) (b)

(c) (d)

(e)

Fig. 5. Example of FFA transformation. Transition weight ambiguities are resolved in a sequence
of steps: (a) the original FFA—there exist ambiguities for all four states; (b) the ambiguity of
transition from state 3 to state 1 on input symbol 1 is removed by adding a new state 5; (c) the
ambiguity of transition from state 4 to state 2 on input symbol 0 is removed by adding a new state
6; (d) the ambiguity of transition from state 4 to state 3 on input symbol 1 is removed by adding
a new state 7; (e) the ambiguity of transition from states 3 and 7—both transition have the same
fuzzy membership—to state 4 is removed by adding a new state 8.

First, we prove the following property of the transforma-
tion algorithm:

Lemma 4.1: Resolution of an ambiguity does not result
in a new ambiguity.

Proof: Consider the situation illustrated in Fig. 6(a).
Let and be four FFA states and let there
be an ambiguity at state on input symbol i.e.,

with
Furthermore, let The ambiguity
is resolved by creating a new state We arbitrarily

choose the state transition and set
with This removes the

ambiguity at state We now need to introduce a new
state transition By observing that

we conclude that no new ambiguity has
been created at state following the resolution of the
ambiguity at state

We observe that is not unique, i.e., the order in
which states are visited and the order in which state
transition ambiguities are resolved determine the final FFA

GILES et al.: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1629

(a) (b)

Fig. 6. Resolution of ambiguities. The transition ambiguity from statesql and qj to stateqi on
input symbolak is resolved by adding a new stateqX and adjusting the transition as shown.

Consider the FFA in Fig. 5(a). In our example, if
we had chosen to change transition
instead of state transition then the
resulting FFA would have been different. However,
all possible transformations share a common invariant
property.

Lemma 4.2: The number of states in is constant
regardless of the order in which states are visited and state
transition ambiguities are resolved.

Proof: To see that the lemma’s claim holds true, we
observe that resolving an ambiguity consists of creating a
new state for each set of states with

with Since resolving the ambiguity
for any state does not introduce new ambiguities (see
Lemma 4.1), the number of newly created states only
depends on the number FFA states with ambiguities.

The following definitions will be convenient.
Definition 4.4: The outdegree of a state in

FFA is the maximum number of states for which we
have for fixed with where
the maximum is taken over all symbols The maximum
outdegree of some FFA is the maximum over
all with

Definition 4.5: The indegree of a state in FFA
is the maximum number of states for which we have

for fixed with where
the maximum is taken over all symbols The maximum
indegree of some FFA is the maximum over
all with

We can give a very loose upper bound for the number of
states in as follows.

Lemma 4.3: For a fuzzy finite state automaton with
states and input symbols, the transformed FFA has at

most states.
Proof: Consider some arbitrary state of It can

have at most incoming transitions for input symbol
The resolution of ambiguity for state requires that

all but one transition lead to a new state. In
the case where the fuzzy transition membershipsare all
different, new states are created per ambiguous state.
Thus, for input symbols, at the most
new states are created.

The results in Table 1 show the size of randomly gen-
erated FFA with input alphabet the maximum
outdegree the upper bound on the size of trans-
formed FFA , and average and standard deviation of
actual sizes for transformed FFA taken over 100 exper-
iments. The random FFA were generated by connecting
each state of to at most other states for given
input symbol. We observe that the average actual size
of transformed FFA depends on the maximum outdegree

and appears to be linear in and Lemma
4.3 has the following corollary:

Corollary 4.1: The FFA transformation algorithm termi-
nates for all possible FFA.

Proof: The size of the set l˘ıst in the algorithm decreases
monotonically with each iteration. Thus, the outer while
loop terminates when list Likewise, the inner while
loop terminates since there is only a finite number of states

in the set “class” and the size of that set monoton-
ically decreases with each iteration. Thus, the algorithm
terminates.

We now return to the proof of Theorem 4.1. We have
already proven that the applying the FFA transformation
algorithm results in a FFA where no ambiguities exist. It
is easy to see that the a transformed FFA is equivalent
with the original FFA since no new fuzzy transition
memberships have been added, and the algorithm leaves
unchanged the order in which FFA transitions are executed.
This completes the proof of Theorem 4.1.

The above transformation algorithm removes all ambigu-
ities for incoming transitions. However, a minor adjustment
for the neural FFA encoding is needed. Given the FFA
state with and the
corresponding weight is set to We also need
to specify an implicit value for the neural FFA
encoding even though we have in the FFA. In
order to be consistent with regard to neurons with variable
output range, we set

V. NETWORK ARCHITECTURE

The architecture for representing FFA is shown in Fig. 7.
A layer of sparsely connected recurrent neurons implements

1630 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Table 1
Scaling of a Transformed FFA. The Results Show the Increase of the Size ofM FFA Due to Its
Transformation into an Fuzzy Finite State AutomatonM 0 Without Ambiguities as a Function of
the Size ofM and the Maximum OutdegreeDout(M); the FFA Were Randomly Generated and
the Average Was Computed over 100 Transformations; The Average Size
of Transformed FFA Appears to Be Linear inN andDout

the finite state dynamics. Each neuron of the state
transition module has a dynamical output range
where is the rule weight in the FFA state transition

Notice that each neuron is only
connected to pairs for which since
we assume that is transformed into an equivalent, un-
ambiguous FFA prior to the network construction. The
weights are programmed as described in Section III-
D. Each recurrent state neuron receives as inputs the value

and an output range value it computes its output
according to (3).

VI. NETWORK STABILITY ANALYSIS

A. Preliminaries

In order to demonstrate how the FFA encoding algorithm
achieves stability of the internal FFA state representation
for indefinite periods of time, we need to understand the
dynamics of signals in a constructed RNN.

We define stability of an internal FFA state representation
as follows.

Definition 6.1: A fuzzy encoding of FFA states with
transition weights in a second-order recurrent neural

Fig. 7. Network architecture for FFA representation. The archi-
tecture for representing FFA differs from that for DFA in that: 1) the
recurrent state neurons have variable output range; 2) the resolution
of ambiguities causes a sparser interconnection topology; and 3)
there is no dedicated output neuron.

network is called stable if only state neurons corresponding
to the set of current FFA states have an output greater
than where is the dynamic range of recurrent

GILES et al.: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1631

Fig. 8. Fixed points of the sigmoidal discriminant function. Shown are the graphs of the function
f(x;H; 1; r) = 1=(1 + eH(1�2rx)=2) (dashed graphs) forH = 8 and r = f1;2; 4; 10g
and the functionp(x; u) = 1=(1 + eH(1�2(x�u))=2) (dotted graphs) forH = 8 and
u = f0:0; 0:1;0:4;0:9g: Their intersection with the functiony = x shows the existence and
location of fixed points. In this example,f(x; r) has three fixed points forr = f1;2g; but only
one fixed point forr = f4;10g, and p(x; u) has three fixed points foru = f0:0;0:1g; but
only one fixed point foru = f0:4;0:9g:

state neurons, and all remaining recurrent neurons have
low output signals less than for all possible input
sequences.

It follows from that definition that there exists an upper
bound for low signals and a lower bound

for high signals in networks that repre-
sent stable FFA encodings. The ideal values for low and
high signals are zero and respectively.

A detailed analysis of all possible network state changes
in [41] revealed that, for the purpose of demonstrating sta-
bility of internal finite state representations, it is sufficient
to consider the following two worst cases: 1) a neuron
that does not correspond to a current fuzzy automaton state
receives the same residual low input from all other neurons
that it is connected to, and that value is identical for all
neurons, and 2) a neuron that changes its output from low
to high at the next time step receives input only from one
other neuron (i.e., the neuron which corresponds to the
current fuzzy automaton state), and it may inhibit itself.
In the case of FFA, a neuron undergoing a state change
from to may receive principal inputs
from more than one other neuron. However, any additional
input only serves to strengthen high signals. Thus, the case
of a neuron receiving principal input from exactly one other
neuron represents a worst case.

B. Fixed Point Analysis for Sigmoidal
Discriminant Function

Here, we summarize without proofs some of the re-
sults that we used to demonstrate stability of neural DFA
encodings; details of the proofs can be found in [41].

In order to guarantee low signals to remain low, we have
to give a tight upper bound for low signals that remains
valid for an arbitrary number of time steps.

Lemma 6.1: The low signals are bounded from above by
the fixed point of the function

(7)

where represents the fixed point of the discriminant
function with variable output range and denotes the
maximum number of neurons that contribute to a neuron’s
input. For reasons of simplicity, we will write for
with the implicit understanding that the location of fixed
points depends on the particular choice ofThis lemma
can easily be proven by induction on

It is easy to see that the function to be iterated in (7) is
and fixed points are

shown in Fig. 8. The graphs of the function for are
shown in Fig. 9 for different values of the parameterIt
is obvious that the location of fixed points depends on the
particular values of We will show later in this section
that the conditions that guarantee the existence of one or
three fixed points are independent of the parameter

The function has some desirable properties.
Lemma 6.2: For any the function

has at least one fixed point
Lemma 6.3: There exists a value such that

for any has three fixed points

1632 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Fig. 9. Contour plot off(x;H; �; r) = x. The contour plots (dotted graphs) show the relationship
betweenH and x for various values ofr and fixed value� = 1: If H is chosen such that
H> max(H�

0
(r);H+

0
(r)) (solid graphs), then a line parallel to thex axis intersects the surface

satisfyingf(x;H; �; r) = x in three points which are the fixed points off(x; �; r):

Lemma 6.4: If has three fixed points
and then

(8)

where is an initial value for the iteration of
The above lemma can be proven by defining an appropri-

ate Lyapunov function and showing that has minima
at and .9

The basic idea behind the network stability analysis is to
show that neuron outputs never exceed or fall below some
fixed points and respectively. The fixed points
and are only valid upper and lower bounds on low and
high signals, respectively, if convergence toward these fixed
points is monotone. The following corollary establishes
monotone convergence of toward fixed points:

Corollary 6.1: Let denote the finite se-
quence computed by successive iteration of the function

Then we have where is one of
the stable fixed points of

9Lyapunov functions can be used to prove the stability of dynamical
systems [67]. For a given dynamical systemS; if there exists a function
P (we can think ofP as an energy function) such thatP has at
least one minimum, thenS has a stable state. Here, we can choose
P (xi) = (xi � �)f)

2 wherexi is the value off(�) after i iterations
and� is one of the fixed points. It can be shown algebraically that, for
x0 6= �0f ; P (xi) decreases with every step of the iteration off(�) until a
stable fixed point is reached.

With these properties, we can quantify the value
such that for any has three fixed
points. The low and high fixed points and are the
bounds for low and high signals, respectively. The larger

the larger must be chosen in order to guarantee
the existence of three fixed points. If is not chosen
sufficiently large, then converges to a unique fixed point

The following lemma expresses a quantita-
tive condition that guarantees the existence of three fixed
points.

Lemma 6.5: The function
has three fixed points

if is chosen such that

where satisfies the equation

Proof: We only present a sketch of the proof; for
a complete proof, see [41]. Fixed points of the function

satisfy the equation
Given the parameter we must find a minimum value

GILES et al.: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1633

such that has three fixed points.
We can think of and as coordinates in a three-
dimensional Euclidean space. Then the locus of points

satisfying relation the above equation is a curved
surface. What we are interested in is the number of points
where a line parallel to the axis intersects this surface.

Unfortunately, the fixed point equation cannot be solved
explicitly for as a function of and However, it can
be solved for either of the other parameters, giving the
intersections with lines parallel to theaxis or the axis

(9)

(10)

The contours of these functions show the relationship
between and when is fixed (Fig. 9). We need to find
the point on each contour where the tangent is parallel to
the axis, which will indicate where the transition occurs
between one and three solutions for
Solving we obtain the conditions
of the lemma.

Even though the location of fixed points of the function
depends on and we will use as a generic

name for any fixed point of a function
Similarly, we can quantify high signals in a constructed

network.
Lemma 6.6: The high signals are bounded from below

by the fixed point of the function

(11)

Notice that the above recurrence relation couplesand
which makes it difficult if not impossible to find a func-

tion which when iterated gives the same values
as However, we can bound the sequence
from below by a recursively defined function , i.e.,

, which decouples from
Lemma 6.7: Let denote the fixed point of the

recursive function i.e., Then the
recursively defined function

(12)

has the property that
Then, we have the following sufficient condition for the

existence of two stable fixed point of the function defined
in (11).

Lemma 6.8: Let the iterative function have two stable
fixed points and Then the function has also
two stable fixed points.

The above lemma has the following corollary.
Corollary 6.2: A constructed network’s high signals re-

main stable if the sequence converges toward
the fixed point

Since we have decoupled the iterated functionfrom the
iterated function by introducing the iterated function
we can apply the same technique tofor finding conditions
for the existence of fixed points as in the case of In
fact, the function that when iterated generates the sequence

is defined by

(13)

with

(14)

We can iteratively compute the value of for given
parameters and Thus, we can repeat the original
argument with and in place of and to find the
conditions under which and thus have three
fixed points.

Lemma 6.9: The function

has three fixed points
if is chosen such that

where satisfies the equation

Since there is a collection of fuzzy transition member-
ships involved in the algorithm for constructing fuzzy
representations of FFA, we need to determine whether the
condition of Lemmas 6.5 and 6.9 hold true for all rule
weights The following corollary establishes a useful
invariant property of the function .

Corollary 6.3: The value of the minima only
depends on the value of and is independent of the
particular values of

(15)

1634 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

(a) (b)

(c) (d)

Fig. 10. Invariant fixed points. The contour plots illustrating the existence and location of fixed
points of the function~g(x;H; �; r) = �=(1 + eH(��2rx)=2�) are shown for: (a)� = 1:0; (b)
� = 0:7; (c) � = 0:5; and (d)� = 0:3: The location of fixed points depends on the value of�.
The condition onH and r for the existence of one versus two stable fixed points is independent
of �: The scaling of the graphs illustrates that invariant property.

Proof: The term scales the function
along the axis. We introduce a scaling factor

and set and Then, (10) becomes

(16)

for fixed Thus the values of are identical for
fixed values of and their local minima have the same
values independent of

The relevance of the above corollary is that there is no
need to test conditions for all possible values ofin order
to guarantee the existence of fixed points. The graphs in
Fig. 10 illustrate that invariant property of the sigmoidal
discriminant function.

We can now proceed to prove stability of low and high
signals, and thus stability of the fuzzy representation of FFA
states, in a constructed recurrent neural network.

C. Network Stability

The existence of two stable fixed points of the discrim-
inant function is only a necessary condition for network
stability. We also need to establish conditions under which
these fixed points are upper and lower bounds of stable low
and high signals, respectively.

Before we define and derive the conditions for network
stability, it is convenient to apply the result of Lemma 3.1
to the fixed points of the sigmoidal discriminant function
(Section III-C).

Corollary 6.4: For any value with the fixed
points of the discriminant function

have the following invariant relationship:

Proof: By definition, fixed points of have the
property that According to Lemma 3.1, we
also have

GILES et al.: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1635

because the invariant scaling property applies to all points
of the function including its fixed points. Thus, we do
not have to consider the conditions separately for all values
of that occur in a given fuzzy finite state automaton.

We now redefine stability of recurrent networks con-
structed from DFA in terms of fixed points.

Definition 6.2: An encoding of DFA states in a second-
order recurrent neural network is called stable if all the low
signals are less than and all the high signals are
greater than for all of all state neurons

We have simplified to because the output of each
neuron has a fixed upper limit for a given input symbol,
regardless which neurons contribute residual inputs. We
note that this new definition is stricter than that we gave in
Definition 6.1. In order for the low signal to remain stable,
the following condition has to be satisfied:

(17)

Similarly, the following inequality must be satisfied for
stable high signals:

(18)

The above two inequalities must be satisfied for all
neurons at all times. Instead of testing for all values

separately, we can simplify the set of inequalities as
follows.

Lemma 6.10:Let and denote the minimum
and maximum, respectively, of all fuzzy transition mem-
berships of a given FFA Then, inequalities (17)
and (18) are satisfied for all transition weights if the
inequalities

(19)

(20)

are satisfied.
Proof: Consider the two fixed points and

According to Corollary 6.4, we have

Thus, if inequalities (19) and (20) are not violated for
and then they will not be violated for

either.
We can rewrite inequalities (19) and (20) as

(21)

and

(22)

Solving inequalities (21) and (22) for and
respectively, we obtain conditions under which a con-
structed recurrent network implements a given FFA. These
conditions are expressed in the following theorem.

Theorem 6.1:For some given unambiguous FFA with
states and input symbols, let denote the maximum

number of transitions to any state over all input symbols
of Furthermore, let and denote the minimum
and maximum, respectively, of all transitions weights
in Then, a sparse recurrent neural network withstate
and input neurons can be constructed from such that
the internal state representation remains stable if

1)

2)

3)

Furthermore, the constructed network has at
most second-order weights with alphabet

biases with alphabet
and maximum fan out

For conditions 1)–3) of the above
theorem reduce to those found for stable DFA encodings
[41]. This is consistent with a crisp representation of DFA
states.

VII. SIMULATIONS

In order to test our theory, we constructed a fuzzy
encoding of a randomly generated FFA with 100 states
(after the execution of the FFA transformation algorithm)
over the input alphabet {0, 1}. We randomly assigned
weights in the range [0, 1] to all transitions in increments
of 0.1. The maximum indegree was
We then tested the stability of the fuzzy internal state
representation on 100 randomly generated strings of length
100 by comparing, at each time step, the output signal
of each recurrent state neuron with its ideal output signal
(since each recurrent state neuroncorresponds to a FFA
state we know the degree to which is occupied after
input symbol has been read: either zero or A
histogram of the differences between the ideal and the
observed signal of state neurons for selected values of the
weight strength over all state neurons and all tested
strings is shown in Fig. 11. As expected, the error decreases
for increasing values of We observe that the number of
discrepancies between the desired and the actual neuron
output decreases “smoothly” for the shown values of
(almost no change can be observed for values up to).
The most significant change can be observed by comparing
the histograms for and . The existence of
significant neuron output errors for suggests that
the internal FFA representation is highly unstable. For

the internal FFA state representation becomes stable.
This discontinuous change can be explained by observing
that there exists a critical value such that the number
of stable fixed points also changes discontinuously from
one to two for and respectively
(see Fig. 11). The “smooth” transition from large output

1636 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Stability of an FFA state encoding. The histogram shows the frequency (�105) of absolute
neuron output errors of a network with 100 neurons that implements a randomly generated fuzzy
finite state automaton and reads 100 randomly generated strings of length 100 for different values
of the weight strengthH: The error was computed by comparing, at each time step, the actual
with the desired output of each state neuron. The distribution of neuron output signal errors are
for weight strengths: (a)H = 6:0; (b) H = 9:0; (c) H = 9:60; (d) H = 9:65; and (e)
H = 9:70; and (f) H = 9:75:

errors to very small errors for most recurrent state neurons
[Fig. 11(a)–(e)] can be explained by observing that not all
recurrent state neurons receive the same number of residual
inputs; some neurons may not receive any residual input

for some given input symbol at time step in that
case, the low signals of those neurons are strengthened to

(note that strong low signals imply strong
high signals by Lemma 6.7).

GILES et al.: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1637

VIII. C ONCLUSIONS

Theoretical work that proves representational relation-
ships between different computational paradigms is im-
portant because it establishes the equivalences of those
models. Previously it has been shown that it is possible
to deterministically encode FFA in recurrent neural net-
works by transforming any given FFA into a deterministic
acceptor which assign string membership [56]. In such a
deterministic encoding, only the network’s classification
of strings is fuzzy, whereas the representation of states is
crisp. The correspondence between FFA and network pa-
rameters—i.e., fuzzy transition memberships and network
weights, respectively—is lost in the transformation.

Here, we have demonstrated analytically and empirically
that it is possible to encode FFA in recurrent networks
without transforming them into deterministic acceptors. The
constructed network directly represents FFA states with the
desired fuzziness. That representation requires: 1) a slightly
increased functionality of sigmoidal discriminant functions
(it only requires the discriminants to accommodate variable
output range), and 2) a transformation of a given FFA into
an equivalent FFA with a larger number of states. (We
have found empirically that the increase in automaton size
is roughly proportional where and are the
automaton and alphabet size, respectively.) In the proposed
mapping FFA recurrent network, the correspondence be-
tween FFA and network parameters remains intact; this can
be significant if the physical properties of some unknown
dynamic, nonlinear system are to be derived from a trained
network modeling that system. Furthermore, the analysis
tools and methods used to demonstrate the stability of the
crisp internal representation of DFA carried over and gener-
alized to show stability of the internal FFA representation.

We speculate that other encoding methods are possible
and that it is an open question as to which encoding methods
are better. One could argue that, from a engineering point of
view, it may seem more natural to use radial basis functions
to represent fuzzy state membership (they are often used
along with triangular and trapezoidal membership func-
tions in the design of fuzzy systems) instead of sigmoidal
discriminant functions (DFA can be mapped into recurrent
neural networks with radial basis functions [49]). It is an
open question how mappings of FFA into RNN’s with
radial basis discriminant functions would be implemented
and how such mappings would compare to the encoding
algorithm described in this work.

The usefulness of training RNN’s with fuzzy state repre-
sentation from examples to behave like a FFA—the variable
output range can be treated as a variable parameter
and an update rule similar to that for networks weights
can be derived—and whether useful information can be
extracted from trained networks has yet to be determined. In
particular, it would be interesting to compare training and
knowledge representation of networks whose discriminant
functions have fixed and variable output ranges, respec-
tively. Discriminant functions with variable neuron output
range may open the door to novel methods for the extraction
of symbolic knowledge from recurrent neural networks.

ACKNOWLEDGMENT

The authors would like to acknowledge useful discus-
sions with K. Bollacker, D. Handscomb, and B. G. Horne,
as well as suggestions from the referees.

REFERENCES

[1] C. L. Giles, R. sun, and J. M. Zurada,IEEE Trans. Neural
Networks (Special Issue on Neural Networks and Hybrid Intel-
ligent Models: Foundations, Theory, and Applications),vol. 9,
pp. 721–723, Sept. 1998.

[2] L. A. Bookman and R. Sun,Connection Sci. (Special Issue on
Architectures for Integrating Symbolic and Neural Processes),
vol. 5, nos. 3 and 4, 1993.

[3] J. Hendler, “Developing hybrid symbolic/connectionist mod-
els,” in Advances in Connectionist and Neural Computation
Theory, J. Barnden and J. Pollack, Eds. Ablex, 1991.

[4] V. Honavar and L. Uhr, Eds.,Artificial Intelligence and Neural
Networks: Steps Toward Principled Integration. San Diego,
CA: Academic, 1994.

[5] R. Sun, “Learning, action, and consciousness: A hybrid ap-
proach toward modeling consciousness,”Neural Networks, vol.
10, no. 7, pp. 1317–1332, 1997.

[6] J. Bezdek,IEEE Trans. Neural Networks (Special Issue on Fuzzy
Logic and Neural Networks), vol. 3, 1992.

[7] C. S. Herrmann, “A hybrid fuzzy-neural expert system for
diagnosis,” inProc. 14th Int. Joint Conf. Artificial Intelligence,
vol. I, 1995, pp. 494–502.

[8] M. Palaniswami, Y. Attikiouzel, R. J. Marks, and D. Fogel,
Eds.,Computational Intelligence: A Dynamic System Perspec-
tive. Piscataway, NJ: IEEE Press, 1995.

[9] N. Kasabov,Foundations of Neural Networks, Fuzzy Systems,
and Knowledge Engineering. Cambridge, MA: MIT Press,
1996.

[10] L. Zadeh, “Fuzzy sets,”Inform. Control, vol. 8, no. 3, pp.
338–353, 1965.

[11] H. R. Berenji and P. Khedkar, “Learning and fine tuning fuzzy
logic controllers through reinforcement,”IEEE Trans. Neural
Networks, vol. 3, pp. 724–740, Sept. 1992.

[12] P. P. Bonissone, V. Badami, K. H. Chiang, P. S. Khedkar, K. W.
Marcelle, and M. J. Schutten, “Industrial applications of fuzzy
logic at General Electric,”Proc. IEEE, vol. 83, pp. 450–465,
Mar. 1995.

[13] S. Chiu, S. Chand, D. Moore, and A. Chaudhary, “Fuzzy logic
for control of roll and moment for a flexible wing aircraft,”
IEEE Control Syst. Mag., vol. 11, pp. 42–48, Apr. 1991.

[14] J. Corbin, “A fuzzy logic-based financial transaction system,”
Embedded Syst. Programming, vol. 7, no. 12, p. 24, 1994.

[15] L. G. Franquelo and J. Chavez, “Fasy: A fuzzy-logic based tool
for analog synthesis,”IEEE Trans. Computer-Aided Design, vol.
15, p. 705, July 1996.

[16] T. L. Hardy, “Multi-objective decision-making under uncer-
tainty fuzzy logic methods,” NASA, Washington, DC, Tech.
Rep. TM 106796, 1994.

[17] W. J. M. Kickert and H. R. van Nauta Lemke, “Application of
a fuzzy controller in a warm water plant,”Automatica, vol. 12,
no. 4, pp. 301–308, 1976.

[18] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic
controller,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp.
404–435, Feb. 1990.

[19] C. P. Pappis and E. H. Mamdani, “A fuzzy logic controller for a
traffic junction,” IEEE Trans. Syst., Man, Cybern., vol. SMC-7,
pp. 707–717, Oct. 1977.

[20] X. M. Yang and G. J. Kalambur, “Design for machining
using expert system and fuzzy logic approach,”J. Mater. Eng.
Performance, vol. 4, no. 5, p. 599, 1995.

[21] C. M. Bishop,Neural Networks for Pattern Recognition. New
York: Oxford, 1995.

[22] A. Cichocki and R. Unbehauen, Eds.,Neural Networks for
Optimization and Signal Processing. New York: Wiley, 1993.

[23] S. Haykin, Neural Networks, A Comprehensive Foundation.
New York: Prentice-Hall, 1998.

[24] H. T. Siegelmann and E. D. Sontag, “Ont he computational
power of neural nets,”J. Comput. Syst. Sci., vol. 50, no. 1, pp.
132–150, 1995.

[25] H. T. Siegelmann,Neural Networks and Analog Computation:
Beyond the Turing Limit. Boston, MA: Birkhauser, 1999.

1638 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

[26] C. L. Giles and M. Gori, Eds.,Adaptive Processing of Sequences
and Data Structures(Lecture Notes in Artificial Intelligence).
New York: Springer Verlag, 1998.

[27] J. E. Hopcroft and J. D. Ullman,Introduction to Automata The-
ory, Languages, and Computation. Reading, MA: Addison-
Wesley, 1979.

[28] P. Ashar, S. Devadas, and A. R. Newton,Sequential Logic
Synthesis. Norwell, MA: Kluwer, 1992.

[29] S. C. Kleene, “Representation of events in nerve nets and
finite automata,” inAutomata Studies, C. E. Shannon and J.
McCarthy, Eds. Princeton, NJ: Princeton Univ. Press, 1956,
pp. 3–42.

[30] M. Minsky, Computation: Finite and Infinite Machines. En-
glewood Cliffs, NJ: Prentice-Hall, Inc., 1967, ch. 3, pp. 32–66.

[31] L.-M. Fu, Neural Networks in Computer Intelligence. New
York: McGraw-Hill, 1994.

[32] E. S. Santos, “Maximin automata,”Inform. Control, vol. 12,
pp. 363–377, 1968.

[33] L. Zadeh, “Fuzzy languages and their relation to human and
machine intelligence,” Electron. Res. Lab., Univ. California,
Berkeley, Tech. Rep. ERL-M302, 1971.

[34] B. Gaines and L. Kohout, “The logic of automata,”Int. J.
General Syst., vol. 2, pp. 191–208, 1976.

[35] E. B. Kosmatopoulos and M. A. Christodoulou, “Neural net-
works for identification of fuzzy dynamical systems: An ap-
pliation to identification of vehicle highway systems,” inProc.
4th IEEE Mediterranean Symp. New Directions in Control and
Automation, 1996, pp. 23–38.

[36] S. I. Mensch and H. M. Lipp, “Fuzzy specification of finite state
machines,” inProc. Europ. Design Automation Conf., 1990, pp.
622–626.

[37] C. W. Omlin and C. L. Giles, “Extraction of rules from discrete-
time recurrent neural networks,”Neural Networks, vol. 9, no.
1, pp. 41–52, 1996.

[38] R. Maclin and J. W. Shavlik, “Using knowledge-based neural
networks to improve algorithms: Refining the chou-fasman
algorithm for protein folding,”Machine Learning, vol. 11, nos.
2–3, pp. 195–215, 1993.

[39] J. Grantner and M. J. Patyra, “Synthesis and analysis of fuzzy
logic finite state machine models,” inProc. 3rd IEEE Conf.
Fuzzy Syst., vol. I, 1994, pp. 205–210.

[40] E. Khan and F. Unal, “Recurrent fuzzy logic using neural
networks,” inAdvances in Fuzzy Logic, Neural Networks, and
Genetic Algorithms(Lecture Notes in Artificial Intelligence), T.
Furuhashi, Ed. New York: Springer Verlag, 1995.

[41] C. W. Omlin and C. L. Giles, “Constructing deterministic finite-
state automata in recurrent neural networks,”J. ACM, vol. 43,
no. 6, pp. 937–972, 1996.

[42] F. E. Cellier and Y. D. Pan, “Fuzzy adaptive recurrent counter-
propagation neural networks: A tool for efficient implementa-
tion of qualitative models of dynamic processes,”J. Syst. Eng.,
vol. 5, no. 4, pp. 207–222, 1995.

[43] E. B. Kosmatopoulos and M. A. Christodoulou, “Structural
properties of gradient recurrent high-order neural networks,”
IEEE Trans. Circuits Syst., vol. 42, pp. 592–603, Sept. 1995.

[44] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou,
and P. A. Ioannou, “High-order neural networks for identifica-
tion of dynamical systems,”IEEE Trans. Neural Networks, vol.
6, pp. 422–431, Mar. 1995.

[45] E. B. Kosmatopoulos and M. A. Christodoulou, “Recurrent neu-
ral networks for approximation of fuzzy dynamical systems,”
Int. J. Intell. Control Syst., vol. 1, no. 2, pp. 223–233, 1996.

[46] M. P. Casey, “The dynamics of discrete-time computation, with
application to recurrent neural networks and finite state machine
extraction,”Neural Computation, vol. 8, no. 6, pp. 1135–1178,
1996.

[47] A. Cleeremans, D. Servan-Schreiber, and J. McClelland, “Finite
state automata and simple recurrent neural networks,”Neural
Computation, vol. 1, no. 3, pp. 372–381, 1989.

[48] J. L. Elman, “Finding structure in time,”Cognitive Sci., vol.
15, no. 2, pp. 179–211, 1990.

[49] P. Frasconi, M. Gori, M. Maggini, and G. Soda, “Representa-
tion of finite state automata in recurrent radial basis function
networks,”Machine Learning, vol. 23, no. 1, pp. 5–32, 1996.

[50] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and
Y. C. Lee, “Learning and extracting finite state automata with
second-order recurrent neural networks,”Neural Computation,
vol. 4, no. 3, pp. 393–405, 1992.

[51] J. B. Pollack, “The induction of dynamical recognizres,”Ma-
chine Learning, vol. 7, nos. 2/3, pp. 227–252, 1991.

[52] R. L. Watrous and G. M. Kuhn, “Induction of finite-state
languages using second-order recurrent networks,”Neural Com-
putation, vol. 4, no. 3, pp. 406–411, 1992.

[53] Z. Zeng, R. M. Goodman, and P. Smyth, “Learning finite
state machines with self-clustering recurrent networks,”Neural
Computation, vol. 5, no. 6, pp. 976–990, 1993.

[54] J. Grantner and M. J. Patyra, “VLSI implementations of fuzzy
logic finite state machines,” inProc. 5th IFSA Congr., 1993,
pp. 781–784.

[55] F. A. Unal and E. Khan, “A fuzzy finite state machine imple-
mentation based on a neural fuzzy system,” inProc. 3rd Int.
Conf. Fuzzy Syst., vol. 3, 1994, pp. 1749–1754.

[56] C. W. Omlin, K. K. Thornber, and C. L. Giles, “Fuzzy finite-
state automata can be deterministically encoded into recurrent
neural networks,”IEEE Trans. Fuzzy Syst., vol. 6, pp. 76–89,
Feb. 1998.

[57] A. Blanco, M. Delgado, and M. C. Pegalajar, “Fuzzy grammar
inference using neural networks,” Dep. Comput. Sci. Artificial
Intell., Univ. Granada, Spain, Tech. Rep., 1997.

[58] M. G. Thomason and P. N. Marinos, “Deterministic acceptors
of regular fuzzy languages,”IEEE Trans. Syst., Man, Cybern.,
vol. 4, pp. 228–230, Mar. 1974.

[59] C. W. Omlin and C. L. Giles, “Stable encoding of large
finite-state automata in recurrent neural networks with sigmoid
discriminants,”Neural Computation, vol. 8, no. 7, pp. 675–696,
1996.

[60] L. A. Akers, D. K. Ferry, and R. O. Grondin, “Synthetic neural
systems in VLSI,” inAn Introduction to Neural and Electronic
Systems. San Diego, CA: Academic, 1990, pp. 317–336.

[61] B. J. Sheu,Neural Information Processing and VLSI. Boston,
MA: Kluwer, 1995.

[62] C. Mead, Analog VLSI and Neural Systems. Reading, MA:
Addison-Wesley, 1989.

[63] C. L. Giles and C. W. Omlin, “Extraction, insertion and
refinement of symbolic rules in dynamically driven recurrent
neural networks,”Connection Sci., vol. 5, nos. 3 & 4, pp.
307–337, 1993.

[64] D. Dubois and H. Prade,Fuzzy Sets and Systems: Theory and
Applications (Mathematics in Science and Engineering), vol.
144. New York: Academic, 1980, pp. 220–226.

[65] S. F. Thomas,Fuzziness and Probability. Wichita, KS: ACG
Press, 1995.

[66] C. W. Omlin and C. L. Giles, “Rule revision with recurrent
neural networks,”IEEE Trans. Knowledge and Data Eng., vol.
8, pp. 183–188, Jan. 1996.

[67] H. K. Khalil, Nonlinear Systems. New York: Macmillan, 1992.

C. Lee Giles (Fellow, IEEE) received the B.S.
degree from the University of Tennessee, the
B.A. degree from Rhodes College, the M.S.
degree from the University of Michigan, and the
Ph.D. in optical sciences from the University of
Arizona.

He is a Senior Research Scientist in Computer
Science at NEC Research Institute, Princeton,
NJ, an Adjunct Faculty Member at the Institute
for Advanced Computer Studies at the Univer-
sity of Maryland, College Park, and an Adjunct

Professor in Computer and Information Science at the University of
Pennsylvania, Philadelphia. Previously, he was a Program Manager at
the Air Force Office of Scientific Research in Washington, DC, where he
initiated and managed research programs in neural networks and artificial
intelligence, and in optics in computing and processing. Before that he
was a Research Scientist at the Naval Research Laboratory, Washington,
DC, and an Assistant Professor of Electrical and Computer Engineering
at Clarkson University. During part of his graduate education he was
a research engineer at Ford Motor Scientific Research Laboratory. His
research interests are in novel applications and tools in web computing
and intelligent information systems and in the foundations of intelligent
systems.

Dr. Giles is a member of AAAI, ACM, INNS, OSA, AAAS, and
the Center for Discrete Mathematics and Theoretical Computer Science,
Rutgers University.

GILES et al.: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1639

Christian W. Omlin received the M.S. degree from the Swiss Federal
Institute of Technology, Zurich, in 1987 and the Ph.D. degree from
Rensselaer Polytechnic Institute, Troy, NY, in 1995.

He is a Senior Lecturer in the Computer Science Department at the
University of Stellenbosch, South Africa. Prior to his appointment at
Stellenbosch University, he was with Adaptive Computing Technologies,
Troy, NY, where he specialized in real-world applications of intelligent
information processing methods. He was also a graduate assistant and
instructor at Rensselaer Polytechnic Institute from 1987 to 1991. From
1991 to 1996, he was with NEC Research Institute, Princeton, NJ. His
expertise and research interests include foundations and applications of
artificial intelligence, neural networks, fuzzy systems, hybrid systems,
intelligent autonomous agents, and applications of machine learning meth-
ods to information retrieval on the world wide web. He has published
over 30 papers in conferences, journals, and book chapters. He is the
coauthor of the upcoming bookKnowledge Representation and Acquisition
in Recurrent Neural Networks: Foundations, Algorithms, and Applications.

Dr. Omlin is a member of ACM and INNS.

Karvel K. Thornber received the Ph.D. de-
gree from the California Institute of Technology,
Pasadena, in 1966.

After spending two years at Stanford Uni-
versity, one year at Bristol, and 20 years at
Bell Labs, he joined NEC Research Institute,
Princeton, NJ, in 1989 as a Senior Research Sci-
entist. Having contributed earlier to theoretical
and device physics, he is currently working on
inference and vision.

1640 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

