Equivalence in Knowledge Representation:

Automata, Recurrent Ne

ural Networks,

and Dynamical Fuzzy Systems

C. LEE GILES,FELLOW, IEEE, CHRISTIAN W. OMLIN, AND KARVEL K. THORNBER

Invited Paper

Neurofuzzy systems—the combination of artificial neural net-

One approach to increasing this power is through hybrid

works with fuzzy logic—have become useful in many application systems—systems that include several different models

domains. However, conventional neurofuzzy models usually need

enhanced representational power for applications that require
context and state (e.g., speech, time series prediction, control).

intelligent processing [1]. There has also been an increased
interest in hybrid systems as more applications with hybrid

Some of these applications can be readily modeled as finite statemodels emerge [2]. However, there are many definitions of

automata. Previously, it was proved that deterministic finite state
automata (DFA) can be synthesized by or mapped into recurrent
neural networks by directly programming the DFA structure into

the weights of the neural network. Based on those results, a

synthesis method is proposed for mapping fuzzy finite state au-

tomata (FFA) into recurrent neural networks. Furthermore, this
mapping is suitable for direct implementation in very large scale

hybrid systems [3]-[5].

One example of hybrid systems is in combining artificial
neural networks and fuzzy systems (see [6]-[9]). Fuzzy
logic [10] provides a mathematical foundation for approx-
imate reasoning; fuzzy logic has proven very successful
in a variety of applications [11]-[20]. The parameters of

integration (VLS]I), i.e., the encoding of FFA as a generalization adaptive fuzzy systems have clear physical meanings that
of the encoding of DFA in VLSI systems. The synthesis methodsyjjitate the choice of their initial values. Furthermore,

requires FFA to undergo a transformation prior to being mapped
into recurrent networks. The neurons are provided with an enriched

rule-based information can be incorporated into fuzzy sys-

functionality in order to accommodate a fuzzy representation of t€MS in a systematic way. Artificial neural networks propose
FFA states. This enriched neuron functionality also permits fuzzy to simulate on a small scale the information processing

parameters of FFA to be directly represented as parameters of the mechanisms found in biological systems that are based on

neural network. We also prove the stability of fuzzy finite state
dynamics of the constructed neural networks for finite values of
network weight and, through simulations, give empirical validation

the cooperation and computation of artificial neurons that
perform simple operations, and on their ability to learn

of the proofs. Hence, we prove various knowledge equivalence from examples. A.rtificial neu.ral ne.tworks haVe become
representations between neural and fuzzy systems and models ofaluable computational tools in their own right for tasks

automata.

Keywords—Dynamic systems, finite automata, fuzzy systems,
recurrent neural networks.

l. INTRODUCTION

A. Motivation

As our applications for intelligent systems become more
ambitious, our processing models become more powerful.

Manuscript received December 2, 1998; revised April 13, 1999.

C. L. Giles is with NEC Research Institute, Princeton, NJ 08540 USA
and with UMIACS, University of Maryland, College Park, MD 20742
USA.

C. W. Omlin is with the Department of Computer Science, University
of Stellenbosch, 7600 Stellenbosch, South Africa.

K. K. Thornber is with NEC Research Institute, Princeton, NJ 08540
USA.

Publisher Item Identifier S 0018-9219(99)06915-7.

such as pattern recognition, control, and forecasting (for
more information on neural networks, please see [21]-[23]).
Recurrent neural networks (RNN’s) are dynamical systems
with temporal state representations; they are computation-
ally quite powerful [24], [25] and can be used in many
different temporal processing models and applications [26].
Fuzzy finite state automata (FFA), fuzzy generalizations
of deterministic finite state automatdave a long history
[32], [33]. The fundamentals of FFA have been discussed
in [34] without presenting a systematic machine synthesis
method. Their potential as design tools for modeling a
variety of systems is beginning to be exploited in various

IFinite state automata also have a long history as theoretical [27]
and practical [28] models of computation and were some of the earliest
implementations of neural networks [29], [30]. Besides automata, other
symbolic computational structures can be used with neural networks [31],
[28].

0018-9219/99$10.00 1999 IEEE

PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

1623

applications [35], [36]. Such systems have two major to a restricted class of FFA that has final states. The
characteristics: 1) the current state of the system depends orransformation of a fuzzy automaton into an equivalent
past states and current inputs and 2) the knowledge abouteterministic acceptor generally increases the size of the
the system’s current state is vague or uncertain. automaton and thus the network size. Furthermore, the
Finally, the proofs of representational properties of ar- fuzzy transition memberships of the original FFA undergo
tificial intelligence, machine learning, and computational modifications in the transformation of the original FFA into
intelligence models are important for a number of reasons. an equivalent DFA that is suitable for implementation in
Many users of a model want guarantees about what it can doa second-order recurrent neural network. Thus, the direct
theoretically, i.e., its performance and capabilities; others correspondence between system and network parameters is
need this for justification of use and acceptance of the lost which may obscure the natural fuzzy description of
approach. The capability of representing a model, say FFA, systems being modeled.
in an intelligent system can be viewed as a foundation for The existence of a crisp recurrent network encoding for
the problem of learning that model from examples (if a all FFA raises the question of whether recurrent networks
system cannot represent FFA, then it certainly will have can also be trained to compute the fuzzy membership
difficulty learning FFA). function, and how they represent FFA states internally.
Since recurrent neural networks are nonlinear dynamical Based on our theoretical analysis, we know that they have
systems, the proof of their capability to represent FFA the ability to represent FFA in the form of equivalent deter-
amounts to proving that a neural network representation ministic acceptors. Recent work reported in [57] addresses
of fuzzy states and transitions remains stable for input these issues. Instead of augmenting a second-order network
sequences of arbitrary length and is robust to noise. Neuralwith a linear output layer for computing the fuzzy string
networks that have been trained to behave like FFA do membership as suggested in [56], they chose to assign a
not necessarily share this property, i.e., their internal rep- distinct output neuron to each fuzzy string memberships
resentation of states and transitions may become unstable:; occurring in the training set. Thus, the number of
for sufficiently long input sequences [37]. Finally, with output neurons became equal to the number of distinct
the extraction of knowledge from trained neural networks, membership valueg;. The fuzzy membership of an input
the methods discussed here could potentially be applied tostring was then determined by identifying the output neuron
incorporating and refining [38] fuzzy knowledge previously whose activation was highest after the entire string had

encoded into recurrent neural networks. been processed by a network. Thus, they transformed the
fuzzy inference problem into a classification problem with
B. Background multiple classes or classifications. This approach lessens

the burden on the training and improves the accuracy and

A variety of implementations of FFA have been proposed, robustness of string membership computation.

some in digital systems [39], [40]. However, here we give Apart from the use of multiple classes, training networks

a proof that such implementations in sigmoid activation to compute the fuzzv strina membership is identical to
RNN's are stable, i.e., guaranteed to converge to the correct P y 9 P

prespecified membership. This proof is based on previoustrammg networks to behave like DFA. This was verified

. S empirically [57] through information extraction methods
work of stably mapping deterministic finite state automata [46], [37] where recurrent networks trained on fuzzy strings
(DFA) in recurrent neural networks reported in [41]. In ' y 9

. develop a crisp internal representation of FFA, i.e., that the
contrast to DFA, a set of FFA states can be occupied to P P! b . e y
. T P represent FFA in the form of equivalent deterministic ac-
varying degrees at any point in time; this fuzzification : .)
. ceptors® Thus, our theoretical analysis correctly predicted
of states generally reduces the size of the model, and) .
- : : the knowledge representation for such trained networks.
the dynamics of the system being modeled is often more

accessible to a direct interpretation.

From a control perspective, fuzzy finite state automata C. Overview of Paper
have been shown to be useful for modeling fuzzy dynam- |, this paper, we present a method for encoding FFA
ical systems, often in conjunction with recurrent neural using a fuzzy representation of staféEhe objectives of the
networks [35], [42]-[45]. There has been much work on the gpa encoding algorithm are: 1) ease of encoding FFA into
learning, synthesis, and extraction of finite state automata qcyrrent networks; 2) the direct representation of “fuzzi-
in recurrent neural networks (see, for example, [46]-[53]). ness " i.e., the fuzzy memberships of individual transitions
A variety of neural network implementations of FFA have i, FFa are also parameters in the recurrent networks; and 3)
been proposed [39], [40], [54], [55]. We have previously 4chieving a fuzzy representation by making only minimal
shown how fuzzy finite state automata can be mapped into changes to the underlying architecture used for encoding
recurrent neural networks with second-order weights using pga (and crisp FFA representations).
a crisp representatiérof FFA states [56]. That encoding
requlred a trar]s_forma_tlpn of a fuzzy finite state automaton 3The equivalence of FFA and deterministic acceptors was first discussed
into a deterministic finite state automaton that computes in [58] and first used for encoding FFA in [56].

the membership functions for strings; it is only applicable 4ror reasons of completeness, we have included the main results from
[41] which lay the foundations for this and other papers [59], [56]. Thus,
2A crisp mapping is one from a fuzzy to a nonfuzzy variable. by necessity, there is some overlap.

1624 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Representation of FFA in recurrent networks requires that
the internal representation of FFA states and state transitions
be stable for indefinite periods of time. We will demonstrate 0/0.7 1/0.2
how the stability analysis for neural DFA encodings carries 103 107 0/0.9
over to and generalizes the analysis of stable neural FFA

. 0/0.6
representations. 0/0.1
In high-level very large scale integration (VLSI) design
a DFA (actually finite state machines) is often used as 1/0.4
the first implementation of a design and is mapped into 0/0.3

sequential machines and logic [28]. Previous work has Fig. 1. Example of an FFA. A fuzzy finite state automaton is

shown how a DFA can be readily implemented in RNN’s shown with weighted state transitions. State 1 is the automaton’s
. . . start state. A transition from statg to ¢; on input symbola;,

and negral networks have b_een _d'reCtly implemented in with weight# is represented as a directed arc frgjmo ¢; labeled

VLSI chips [60]-[62]. Thus, with this approach FFA could «,/6. Note that transitions from states 1 and 4 on input symbols

be readily mapped into electronics and could be useful “0" are fuzzy (&(1,0,-) = {2,3} and&(4,0,-) = {2,3}).

for applications, such as real-time control (see e.g., f13])

and could potentially be applied to incorporagepriori

knowledge into recurrent neural networks for knowledge output mapping depends on the nature of the an application.
refinement [63]. Since our goal is to construct a fuzzy representation of FFA
The remainder of this paper is organized as follows. states and their stability over time, we will ignore the output
FFA are introduced in Section Il. The fuzzy representation mappingw for the remainder of this discussion and not
of FFA states and transitions in recurrent networks are concern ourselves with the languagiéM) defined by).
discussed in Section Ill. The mapping “fuzzy automata For a possible definition, see [64]. An example of a FFA

recurrent network” proposed in this paper requires that over the input alphabef0, 1} is shown in Fig. 1.

FFA be transformed into a special form before they can
be encoded in a recurrent network. The transformation
algorithm can be applied to arbitrary FFA; it is described lll. - REPRESENTATION OFFUZZY STATES
in Section IV. The recurrent network architecture for rep-

resenting FFA is described in Section V. The stability A. Preliminaries

of the encoding is derived in Section VI. A discussion The current fuzzy state of a fuzzy finite state automaton
of simulation results in Section VIl and a summary of A7 is a collection of stategg;} of M that are occupied
the results and possible directions for future research inwith different degrees of fuzzy membership. A fuzzy rep-

Section VIII conclude this paper. resentation of the states in fuzzy finite state automaton thus
requires knowledge about the membership of each state
Il. EFFA ¢;- This requirement then dictates the representation of the

current fuzzy state in a recurrent neural network. Since the
and illustrate the definition with an example method for encoding FFA in recurrent neural networks is

Definition 2.1: A fuzzy finite state automatoi is a 6- a generalization of the method for encoding DFA, we will
tuple M = @'7@7& Z,8,w), whereX = {ay, ..., am} is briefly discuss the DFA encoding algorithm.

the alphabet? = {¢1,...,q,} is a set of statesk € @
is the automaton’s fuzzy start st&te7 is a finite output B. DFA Encoding Algorithm

alphabet,6: ¥ x @ x [0,1] — @ is the fuzzy transition We make use of an algorithm used for encoding DFA
map, andw: Q@ — Z is the output m?ﬁ. o [41], [59]. For encoding DFA, we used discrete-time,
Weights ;. € [0,1] define the “fuzziness” of state gacond-order RNN's with sigmoidal discriminant functions

transitions, i.e., FFA can simultaneously be in different yh4; ypdate their current state according to the following
states with a different degree of certainty. The particular equations:

In this section, we give a formal definition of FFA [64]

S5Alternative implementations of FFA have been proposed (see e.g.,

[54]). The method proposed uses recurrent neurons with sigmoidal dis- S(H-l) :g(oc‘(t)) _ 1
criminant functions and a fuzzy internal representation of FFA states. 3 v 14 e ®
6In general, the start state of a FFA is fuzzy, i.e., it consists of a set . (t) 7(t)
of states that are occupied with varying memberships. It has been shown ocz(t) =bi+ Z W”’“Sj Ik (1)
that a restricted class of FFA whose initial state is a single crisp state gk

is equivalent with the class of FFA described in Definition 2.1 [64]. The

?r:?su?)(z:atg)e? between the two classes of FFA is irrelevant in the context of whereb; is the bias associated with hidden recurrent state

"This is in contrast to stochastic finite state automata where there exists neur_onsSi, Wi is a second-order Welght' adqj.d.enotes
no ambiguity about which is an automaton’s current state. The automaton the input neuron for symbok;. The indexes:, j, and
can only be in exactly one state at any given time and the choice of ; run over all state and input neurons, respectively. The
a successor state is determined by some probability distribution. For a) () . "
productS; I, corresponds directly to the state transition

discussion of the relationship between probability and fuzziness, see, for - o - .
instance, [65]. 6(g;,ar) = ¢;. The architecture is illustrated in Fig. 2.

GILES et al: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1625

Fig. 2. Recurrent network architecture for deterministic finite
state automata. The recurrent state neurons are connected and
implement the stable finite state dynamics. One of the recurrent
neurons also is the dedicated network output neuron (i.e., the
neuron which with its output value classifies whether or not a
given string is a member of a regular language).

DFA can be encoded in discrete-time, second-order
RNN'’s with sigmoidal discriminant functions such that

DFA state representation remains stable indefinitely. The
internal representation of fuzzy states proposed in this paper
is a generalization of the method used to encode DFA states
since FFA may be in several states at the same time. We
will apply the same tools and techniques to prove stability

of the internal representation of fuzzy states in recurrent

neural networks.

C. Recurrent State Neurons with Variable Output Range

We extend the functionality of recurrent state neurons in
order to represent fuzzy states as illustrated in Fig. 3. The
main difference between the neuron discriminant function
for DFA and FFA is that the neuron now receives as inputs
the weight strengthH, the signalz that represents the
collective input from all other neurons, and the transition
weight, ., whereé(q;, ax, 0;;1) = g;; we will denote this
triple with (x, H, 6;;.). The value ofé;,;;. is different for
each of the states that collectively make up the current fuzzy
network state. This is consistent with the definition of FFA.

The following generalized form of the sigmoidal dis-
criminant functiong(-) will be useful for representing FFA
states:

the DFA and constructed network accept the same regular

language [41]. The desired finite state dynamics are
encoded into a network by programming a small subset
of all available weights to valuesH and —H; this leads
to a nearly orthonormal internal DFA state representation
for sufficiently large values ofH, i.e., a one-to-one

Ok
1 + eH(eijk—Qa;)/Qeijk :

S+ —

T

g(@, H,0i51) = (3)

Compared to the discriminant functigg-) for the encod-
ing of DFA, the weightH that programs the network state

correspondence between current DFA states and recurrentransitions is strengthened by a factof;;;. (0 <0 <

neurons with a high output. Since the magnitude of all
weights in a constructed network is equaHothe equation
governing the dynamics of a constructed network is of the
special form

1

(t+1) _ —
Si _g(va) - 1+6H(172x)/2

()

wherez is the input to neurorb;.
The objective of mapping DFA into recurrent networks is

to assign DFA sta.tes to neurons and to program the Weightsg(Q% H,6) =
such that the assignment remains stable for input sequence

of arbitrary length, i.e., exactly one neuron corresponding
to the current DFA state has a high output at any given
time. Such stability is trivial for recurrent networks whose
neurons have hard-limiting (or “step function”) discriminant
functions. However, this is not obvious for networks with
continuous, sigmoidal discriminant functions. The nonlinear
dynamical nature of recurrent networks makes it possible
for intended internal DFA state representations to become

1); the range of the functiory(-) is squashed to the
interval [0, 6], and it has been shifted toward the origin.
Settingd;; = 1 reduces the function (3) to the sigmoidal
discriminant function (2) used for DFA encoding.

More formally, the functiory(z, H,) has the following
important invariant property that will later simplify the

analysis:
Lemma 3.1: g(6x, H,0) = 84(x, H,1) = 8g(x, H).
Proof:
0
1 + 6H(9—29m)/20
0

=1y -z T 09(z, H,1) = 6g(z, H).

O
Thus, g(x, H) can be obtained by scaling(z, H,1)
uniformly in the z andy directions by a facto#.
The above property of allows a stability analysis of the
internal FFA state representation similar to the analysis of
the stability of the internal DFA state representation.

unstable, i.e., the requirement of a one-to-one correspon-
dence between DFA states and recurrent neurons may be

violated for sufficiently long input sequences. We have pre- D. Programming Fuzzy State Transitions

viously demonstrated that it is possible to achieve a stable Consider state; of FFA M and the fuzzy state transition
internal DFA state representation that is independent of the §(q;, ax, {01} = {@.,-- ., ¢.}). We assign recurrent state
string length: in constructed networks, the recurrent state neurons; to FFA stateg; and neuronsy;, , ..., S; to FFA
neurons always operate near their saturation regions forstatesy;,,...,¢. . The basic idea is as follows. The acti-
sufficiently large values off; as a consequence, the internal vation of recurrent state neurd) represents the certainty

1626 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Fig. 3. Neuron discriminant function for fuzzy states. A neuron is represented figuratively by the
box and receives as input the collective signdfom all other neurons, the weight strength and
the fuzzy transition membershipto compute the functiog(z, H,8) = 6/(1 + H(0—2)/20),
Thus, the sigmoidal discriminant function that represents FFA states has a variable output range.

8, with which some state transitiof{g;, ax, fi;x) = ¢; iS
carried out, i.e. St ~ 6. If ¢; is not reached at time
t 4 1, then we haveS!™ ~ 0.

We program the second-order weights;; as follows:

[+H, if ¢ € 8(g;, a, Oijx)

Wik = { 0, otherwise @
[+H, if g € 8(q5, an,051)

Wiik = { —H, otherwise ©
bi=—H/2 if ¢ €M, ©6)

Setting ;1 to a large positive value will ensure that
S+ will be arbitrarily close tof;;;, and setting;; to
a large negative value will guarantee that the ou'@]’dt1
will be arbitrarily close to zero. This is the same technique
using for programming DFA state transitions in recurrent
networks [41] and for encoding partial prior knowledge of
a DFA for rule refinement [66].

IV. AUTOMATA TRANSFORMATION

A. Preliminaries

Definition 4.1: We say an ambiguity occurs at staje
if there exist two stateg, and ¢; with 8(g;, ax, 6;1) =
6(ql,ak,9ilk) = q; and 9“k 75 &5 AN fuzzy finite state
automatond/ is called ambiguous if an ambiguity occurs
for any stateq; € M.

B. Transformation Algorithm

That ambiguity could be resolved by testing all possible
paths through the FFA and identifying those states for which
the above described ambiguity can occur. However, such an
endeavor is computationally expensive. Instead, we propose
to resolve that ambiguity by transforming any FBA.

Before we state the transformation theorem, and give
the algorithm, it will be useful to define the concept of
equivalent FFA.

Definition 4.2: Consider a FFAM that is processing
some strings = o¢102,...,07 With ¢; € X. As M
reads each symbel;, it makes simultaneous weighted state
transitions® x @ x [0, 1] according to the fuzzy transition
mapé(g;, ax, 8ix) = ¢;. The set of distinct weight$6; ;. }
of the fuzzy transition map at timeis called the active
weight set.

The above encoding algorithm leaves open the possibility Note that the active weight set can change with each

for ambiguities when FFA are encoded in a recurrent
network as follows. Consider two FFA states and g
with transitionsé(g,, ax, 8ix) = 6(qi, ax, 6i) = ¢ Where
g; i1s one of all successor states reached frgmand g,
respectively, on input symbal,. Further assume thaf;
and ¢; are members of the set of current FFA states (i.e.,

symbolo; processed by. We will define what it means
for two FFA to be equivalent:

Definition 4.3: Two FFA M and M’ with alphabet: are
called equivalent if their active weight sets are at all times
identical for any strings € >*.

We will prove the following theorem.

these states are occupied with some fuzzy membership). Theorem 4.1:Any fuzzy finite state automatal/ can be

Then, the state transitiof(g;, ax, ;) = ¢; requires that
recurrent state neurd$y have dynamic rangf®, ¢;;,] while
state transitiod(q;, ax, 8ur) = ¢; requires that state neuron
S; asymptotically approach;;,. For 6,,;, # 6, we have
ambiguity for the output range of neurd.

GILES et al: EQUIVALENCE IN KNOWLEDGE REPRESENTATION

transformed into an equivalent, unambiguous fuzzy finite
state automaton{’.

The tradeoff for making the resolution of ambiguities
computationally feasible is an increase in the number of
FFA states. The algorithm that transforms a FRFA into

1627

Input: FFA M =< %,Q, R, Z,6,w > with ¥ = {a1, ..

with the properties
(1) M = M’ and

aum}yand Q@ = {q,...
Output: FFA M' =< 2,Q',R',Z,§',w > with £ = {a1, ...,

7qN}

av}and Q ={q,...,qv,qv+1,...,9x}

(2) there exist no two states ¢; and g; in M’ with §(g;, ar, i) = 6(qr, ak, bur) = g; with 8;x # Gik.

Algorithm:
1. X « N; list « Q;
while list #£ @ do
2. list + list\ {q; };
fork=1...M do

3. visit « @;

for j=1...N do
4. if 8(q;,ax,) = ¢ then visit « visit U {g; };

end
5. class < {q, € visit l 5(q1,ak,9,—1k) =q; with 8, = 0,-k};
6. visit « visit \ {class};

while class # @ do
7. class + {qz € visit | 5(q1,ak,9uk) = q; with 8; = 9ik}§
8. visit ¢ visit \ {class};
9. X+ X+1
10. Q+« Q U {gx}; /* create new FFA state gx */

for each g; in class do
11. 8(qj,ax,8ij1) < qx; /* change transition */
forl=1...N do
fork=1...M do
12. (5((1x,ak,91x)c) — é(qi,ak,Gl,-k); /* implies 91)(;5 L Hh'k) */
end
end
end
end
end
end

Fig. 4. Algorithm for the FFA transformation.

a FFA M’ such thatL(M) = L(M') is shown in Fig. 4.

One iteration through the outer loop thus results in the

Before we prove the above theorem, we will discuss an FFA shown in Fig. 5(b), another in Fig. 5(c). Consider

example of FFA transformation.

C. Example

Consider the FFA shown in Fig. 5(a) with four states
and input alphabet = {0, 1}; stateq, is the start staté.
The algorithm initializes the variable “list” with all FFA
states, i.e.list = {q1, 2,93, ¢4} First, we notice that no
ambiguity exists for input symbol ‘0O’ at statg, since
there are no state transitiod$-,0,-) = ¢;. There exist
two state transitions that have state as its target, i.e.,
6(g2,1,0.2) = 8(q3,1,0.7) = g;. Thus, we set the variable
visit = {go, g3 }. According to Definition 4.1, an ambiguity
exists sincefl;o; # 6131. We resolve that ambiguity by
introducing a new state; and settingé(gs,1,0.7) = g;.
Since 6(g3,1,0.7) no longer leads to state;, we need
to introduce new state transitions leading from staje
to the target state§q} of all possible state transitions:
6((]17 R) = {QQ7q3}' Thus, we Seﬁ(q{)vaeQSO) = q2 and
6(gs,1,0351) = g3 With a50 = fa10 and 51 = 6311.

8The FFA shown in Fig. 5(a) is a special case in that it does
not contain any fuzzy transitions. Since the objective of the trans-
formation algorithm is to resolve ambiguities for states with
Uiy b ars 4,055 ks -, 0551 }) = qi, fuzziness is of no
relevance; therefore, we omitted it for reasons of simplicity.

1628

Fig. 5(d) which shows the FFA after three iterations. State
g+ is the only state left that has incoming transitions
6(-,ar,041) = g4 Where not all valued, ; are identical.
We haveé(g2,0,0.9) 6(g6,0,0.9) = qu; since these
two state transition do not cause an ambiguity for input
symbol “0,” we leave these state transitions as they are.
However, we also havé(g,0,0420) = 6(gs,0,80430) =
6((]77 0, 9470) E'R with 0430 = B470 # f400 = 0.9. Instead

of creating new states for both state transiti6as,, 0, 8.30)
andé(gr, 0, B479), it suffices to create one new staggand

to seté(gs,0,0.1) = 6(g7,0,0.1) = ¢g. Statesgs and g7

are the only possible successor states on input symbols “0”
and “1,” respectively. Thus, we sétgs,0,0.6) = ¢g and
6(gs, 1,0.4) = ¢7. There exist no more ambiguities and the
algorithm terminates [Fig. 5(e)].

D. Properties of the Transformation Algorithm

We have shown with an example how the algorithm trans-
forms any FFAM into a FFA M’ without ambiguities. We
now need to show that the algorithm correctly transforms
M into M’, i.e., we need to show that/ and M’ are
equivalent. In addition, we also need to demonstrate that
the algorithm terminates for any inpit.

PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

0/0.5

1/0.2

1/0.7 0/0.9

0/0.1

(e)

Fig. 5. Example of FFA transformation. Transition weight ambiguities are resolved in a sequence
of steps: (a) the original FFA—there exist ambiguities for all four states; (b) the ambiguity of
transition from state 3 to state 1 on input symbol 1 is removed by adding a new state 5; (c) the
ambiguity of transition from state 4 to state 2 on input symbol O is removed by adding a new state
6; (d) the ambiguity of transition from state 4 to state 3 on input symbol 1 is removed by adding
a new state 7; (e) the ambiguity of transition from states 3 and 7—both transition have the same
fuzzy membership—to state 4 is removed by adding a new state 8.

First, we prove the following property of the transforma- choose the state transitiof{q;, ax,0u1) = ¢ and set
tion algorithm: 8(qi, an, Oxi) = gx With fx, = 6. This removes the

Lemma 4.1: Resolution of an ambiguity does not result ambiguity at state;;. We now need to introduce a new
in a new ambiguity. state transitior(qx, a},, @mxw) = ¢m- By Observing that

Proof: Consider the situation illustrated in Fig. 6(a). 6,.xx = @.:;x We conclude that no new ambiguity has
Let ¢, ¢;,q, and g, be four FFA states and let there been created at statg, following the resolution of the
be an ambiguity at state; on input symbola, i.e., ambiguity at statey;. O
6(qj, an, i) = O(qu,an, i) = g with 05, # O We observe thatd’ is not unique, i.e., the order in
Furthermore, lets(q;, axr, Omir’) = Gm- The ambiguity which states are visited and the order in which state
is resolved by creating a new statg,. We arbitrarily transition ambiguities are resolved determine the final FFA

GILES et al: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1629

Fig. 6. Resolution of ambiguities. The transition ambiguity from stajesnd ¢; to stateg; on
input symbola; is resolved by adding a new stajg and adjusting the transition as shown.

M’. Consider the FFA in Fig. 5(a). In our example, if
we had chosen to change transitiéfy2,1,0.2) = ¢
instead of state transitiod(gs,1,0.7) = ¢, then the
resulting FFA A’ would have been different. However,
all possible transformation&/’ share a common invariant
property.

Lemma 4.2: The number of states iV’ is constant

The results in Table 1 show the size of randomly gen-
erated FFAM with input alphabet{0, 1}, the maximum
outdegreeD,,,.. (M), the upper bound on the size of trans-
formed FFA M’, and average and standard deviation of
actual sizes for transformed FREW’ taken over 100 exper-
iments. The random FFAZ were generated by connecting
each state of\/ to at mostD,,; other states for given

regardless of the order in which states are visited and stateinput symbol. We observe that the average actual size

transition ambiguities are resolved.
Proof: To see that the lemma’s claim holds true, we

of transformed FFA depends on the maximum outdegree
D (M) and appears to be linear ¥ and D,,,;. Lemma

observe that resolving an ambiguity consists of creating a 4.3 has the following corollary:

new state for each set of statgg } with 6(q;, ax, 6;;1) =

gi With V5 £ j: 6,51 # 0,51 Since resolving the ambiguity
for any stateq; does not introduce new ambiguities (see
Lemma 4.1), the number of newly created states only
depends on the number FFA states with ambiguitied]

The following definitions will be convenient.

Definition 4.4: The outdegreei,..(¢;) of a stateg; in
FFA M is the maximum number of states for which we
haveé(q;, ax, 6;;1) = {g,} for fixed a;, with 6,;, >0 where
the maximum is taken over all symbatg. The maximum
outdegreeD,,,,. (M) of some FFAM is the maximum over
all doui(g;) with ¢; € M.

Definition 4.5: The indegreel;,,(¢;) of a statey; in FFA
M is the maximum number of states for which we have
6({qj},ak,9ijk) = ¢; for fixed a; with eljk >0 where
the maximum is taken over all symbalg. The maximum
indegreeD;,(M) of some FFAM is the maximum over
all din(Qi) with q € M.

We can give a very loose upper bound for the number of
states inM’ as follows.

Lemma 4.3:For a fuzzy finite state automatal with
N states andy input symbols, the transformed FFA has at
most D, KN(N — 1) states.

Proof: Consider some arbitrary statg of M. It can
have at mostD;, N incoming transitions for input symbol
ax. The resolution of ambiguity for statg requires that
all but one transition(-, ax, 8;.x) lead to a new state. In
the case where the fuzzy transition membershjpsare all

different, N — 1 new states are created per ambiguous state.

Thus, for K input symbols, at the mosD;, K N(N — 1)
new states are created. O

1630

Corollary 4.1: The FFA transformation algorithm termi-
nates for all possible FFA.

Proof: The size of the setdt in the algorithm decreases
monotonically with each iteration. Thus, the outer while
loop terminates when list §. Likewise, the inner while
loop terminates since there is only a finite number of states
q; in the set “class” and the size of that set monoton-
ically decreases with each iteration. Thus, the algorithm
terminates. O

We now return to the proof of Theorem 4.1. We have
already proven that the applying the FFA transformation
algorithm results in a FFA where no ambiguities exist. It
is easy to see that the a transformed FHA is equivalent
with the original FFA M since no new fuzzy transition
memberships have been added, and the algorithm leaves
unchanged the order in which FFA transitions are executed.
This completes the proof of Theorem 4.1. O

The above transformation algorithm removes all ambigu-
ities for incoming transitions. However, a minor adjustment
for the neural FFA encoding is needed. Given the FFA
stateg; with 6(g;, ax, 0ir) = ¢ andé6(g;, ax,) # @, the
corresponding weightV,,. is set to—H. We also need
to specify an implicit valued;;;. > 0 for the neural FFA
encoding even though we hawg; = 0 in the FFA. In
order to be consistent with regard to neurons with variable
output range, we sef;;; = k-

V. NETWORK ARCHITECTURE

The architecture for representing FFA is shown in Fig. 7.
A layer of sparsely connected recurrent neurons implements

PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

Table 1

Scaling of a Transformed FFA. The Results Show the Increase of the SizE A Due to Its
Transformation into an Fuzzy Finite State Automafafi Without Ambiguities as a Function of
the Size of M and the Maximum OutdegreB.,+ (M); the FFA Were Randomly Generated and
the Average Was Computed over 100 Transformations; The Average Size

of Transformed FFA Appears to Be Linear ¥ and Dot

size of M | Dyut(M) | upper limit on size of M' | average size of M' | standard deviation
10 1 180 12 2
2 360 16 5
3 540 19 15
4 720 25 29
5 900 28 84
20 1 760 25 6
2 1520 32 19
3 2280 40 40
4 3040 50 191
5 3800 68 278
30 1 1740 38 7
2 3480 49 27
3 5220 61 64
4 6960 84 266
5 8700 111 578
40 1 2400 51 6
2 4800 65 29
3 7200 85 104
4 9600 117 342
5 12000 154 1057
50 1 4900 65 14
2 9800 84 41
3 14700 107 217
4 19600 154 704
5 24500 198 1478
100 1 19800 129 26
2 39600 161 64
3 59400 215 285
4 78800 309 1845
5 98600 401 3916

the finite state dynamics. Each neurdh of the state

transition module has a dynamical output rarjef; ;]

where 8, is the rule weight in the FFA state transition

6(q;j, o, 0;;6) = ¢;. Notice that each neurof; is only Recurrent state neurons
connected to pair$S;,Ii) for which 6;;. = 6,; since

we assume thad/ is transformed into an equivalent, un-
ambiguous FFAM’ prior to the network construction. The
weightsW, ;. are programmed as described in Section Ill-
D. Each recurrent state neuron receives as inputs the value
S} and an output range valug;,; it computes its output
according to (3).

Input neurons

VI. NETWORK STABILITY ANALYSIS

k

A. Preliminaries _ _ . :
. . Fig. 7. Network architecture for FFA representation. The archi-
In order to demonstrate how the FFA encoding algorithm tecture for representing FFA differs from that for DFA in that: 1) the

achieves stability of the internal FFA state representation recurrent state neurons have variable output range; 2) the resolution
. . . . of ambiguities causes a sparser interconnection topology; and 3)

for |nd_ef|n|te penods_ of time, we need to understand the o0 dedicated output neuron.

dynamics of signals in a constructed RNN.

We define stability of an internal FFA state representation
as follows. network is called stable if only state neurons corresponding

Definition 6.1: A fuzzy encoding of FFA states with to the set of current FFA states have an output greater
transition weightg¢;,,. } in a second-order recurrent neural than,,,/2 where#,;; is the dynamic range of recurrent

GILES et al: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1631

1 7 T = T e T —= ¥ T - T
! -
/
r=10 /
/ /
| /
} I
| /
! 3
! | / Y ; K
1 ! / 7 + A .
| | / ; . ;
0 8 L ! ! ’ / / k K -
- ' ! ,’ /’ 0 . .
o / P ; :
1r=4 / / p B F
| ! !
1 ,’ It
{
=2y
) | !
| ! ! ;
H H H / ‘ N 3
| =1/ N , ;
0.6+ ! | ! r—-1,/ ; K ; _
. o | y ki ; ;
b !] ’ . J .
1 ! | ‘ . S y
I I ! / ; ; ;
+ 1 i !
' ' 1 17
t ! i
> ! ! /
I’ !’ i B
! / ;
] E
A (A
! ' ! t ’
041! ! | 7 ; i
E A ! ;]
Vo ! /u=0.0
i H ' ,’ .
| ; :
i ; i ;
[;S u=01 :
! | E E ;
/ ; ’ ;
E ! /' ,’ S u=0.4 K
i ' / ; ; ;
) ! / . K S u=0.9
/ / ; ; E .
0.2 L j S ; ; 1
. J ; ,
|
|
boeieozo: pertT I) L 1

0.6 0.8 1 1.2 1.4 1.6 1.8 2
X

Fig. 8. Fixed points of the sigmoidal discriminant function. Shown are the graphs of the function
flz,H,1,7) = 1/(1 4+ ¢H(0-2r2)/2) (dashed graphs) foH = 8 andr = {1,2,4,10}

and the functionp(z,u) = 1/(1 + e”(1—2(x—))/2) (dotted graphs) forH = & and

v = {0.0,0.1,0.4,0.9}. Their intersection with the functioy = a shows the existence and
location of fixed points. In this examplg(x, r) has three fixed points for = {1,2}, but only

one fixed point forr = {4,10}, and p(z,u) has three fixed points for = {0.0,0.1}, but

only one fixed point fore = {0.4,0.9}.

state neurons, and all remaining recurrent neurons have In order to guarantee low signals to remain low, we have
low output signals less thafh;,/2 for all possible input to give a tight upper bound for low signals that remains
sequences. valid for an arbitrary number of time steps.

It follows from that definition that there exists an upper Lemma 6.1: The low signals are bounded from above by
bound0 < ¢~ < 6,1 /2 for low signals and a lower bound the fixed point[d);]g of the function f
0;1/2 < ¢t < ;1 for high signals in networks that repre-
sent stable FFA encodings. The ideal values for low and =0
high signals are zero ar};x, respectively. bl s gt

A detailed analysis of all possible network state changes =90 1) (7)
in [41] revealed that, for the purpose of demonstrating sta-
bility of internal finite state representations, it is sufficient where[¢ o represents the fixed point of the discriminant
to consider the following two worst cases: 1) a neuron functiong() with variable output range, andr denotes the
that does not correspond to a current fuzzy automaton statenaximum number of neurons that contribute to a neuron’s
receives the same residual low input from all other neurons input. For reasons of simplicity, we will writg¢; for [¢]s
that it is connected to, and that value is identical for all With the implicit understanding that the location of fixed
neurons, and 2) a neuron that changes its output from low points depends on the particular choicefofThis lemma
to high at the next time step receives input only from one can easily be proven by induction dn
other neuron (i.e., the neuron which corresponds to the It is easy to see that the function to be iterated in (7) is
current fuzzy automaton state), and it may inhibit itself. f(z,H,6,7) = 6/(1 + !(®=2%)/2%) and fixed points are

In the case of FFA, a neurof}; undergoing a state change shown in Fig. 8. The graphs of the function foe= 1.0 are
from S! ~ 0 to 5§+1 ~ 0;; may receive principal inputs shown in Fig. 9 for different values of the parameteit

from more than one other neuron. However, any additional is obvious that the location of fixed points depends on the
input only serves to strengthen high signals. Thus, the caseparticular values of). We will show later in this section
of a neuron receiving principal input from exactly one other that the conditions that guarantee the existence of one or
neuron represents a worst case. three fixed points are independent of the parameter
The functionf(x, H, 8, r) has some desirable properties.
B. Fixed Point Analysis for Sigmoidal Lemma 6.2:For any H >0, the function f(z, H,8,)
Discriminant Function has at least one fixed poit}.

Here, we summarize without proofs some of the re- Lemma 6.3:There exists a valueH; (r) such that
sults that we used to demonstrate stability of neural DFA for any H > H; (r), f(x, H,0,r) has three fixed points
encodings; details of the proofs can be found in [41]. 0<¢g, < d)(} < d)}L <4.

1632 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

20

0

0

Fig. 9. Contour plot off(z, H,6,r) = x. The contour plots (dotted graphs) show the relationship
betweenH and = for various values ofr and fixed valued = 1. If H is chosen such that
H > max(H] (r), HS'(I‘)) (solid graphs), then a line parallel to theaxis intersects the surface
satisfying f(z, H,6,r) = « in three points which are the fixed points pfxz, 6, r).

Lemma 6.4:1f f(x,H,f,r) has three fixed points
¢7,9%, and ¢, then

d);a To < d)?
Jm J'=q O w0 =0 ®)
l d)}—v To > d)?

wherez, is an initial value for the iteration of (-).

The above lemma can be proven by defining an appropri-
ate Lyapunov functior” and showing that” has minima
at ¢7 and ¢}.°

The basic idea behind the network stability analysis is to

show that neuron outputs never exceed or fall below some®

fixed points¢~ and¢™, respectively. The fixed poinig;
andd)}r are only valid upper and lower bounds on low and
high signals, respectively, if convergence toward these fixed
points is monotone. The following corollary establishes
monotone convergence ¢f toward fixed points:

Corollary 6.1: Let f°, 1, f2,... denote the finite se-
guence computed by successive iteration of the function
f- Then we havef® < fl < ... < ¢, whereg¢; is one of
the stable fixed points of (z, H,6,r).

9Lyapunov functions can be used to prove the stability of dynamical
systems [67]. For a given dynamical systémif there exists a function
P (we can think of P as an energy function) such th& has at
least one minimum, therb has a stable state. Here, we can choose
P(z;) = (x; — ¢)f)? wherew; is the value off(-) after: iterations
and ¢ is one of the fixed points. It can be shown algebraically that, for
w0 # ¢4, P(x;) decreases with every step of the iterationf¢f) until a
stable fixed point is reached.

GILES et al: EQUIVALENCE IN KNOWLEDGE REPRESENTATION

With these properties, we can quantify the vakdg ()
such that for anyH > H; (r), f(z, H,8,r) has three fixed
points. The low and high fixed points; and ¢}’ are the
bounds for low and high signals, respectively. The larger
r, the larger H must be chosen in order to guarantee
the existence of three fixed points. H is not chosen
sufficiently large, therf converges to a unique fixed point
6/2 < ¢; < 8. The following lemma expresses a quantita-
tive condition that guarantees the existence of three fixed
points.

Lemma 6.5: The function f(z, H,6,r) 0/1 +
H(@=2r2)/20 has three fixed point8 < ¢, < ¢} < ¢f <0
if H is chosen such that

— T

2<9+(9—x)10g <9
0—x

x

H>Hi(r)=

where x satisfies the equation
92
2a:<9+ (6 — x)log <

r=

0—zx

Proof: We only present a sketch of the proof; for
a complete proof, see [41]. Fixed points of the function

f(z, H,6,r) satisfy the equatiofg /147 (#=2r=)/20) — 4
Given the parameter, we must find a minimum value

1633

Hy (r) such that f(z, H,6,7) has three fixed points.
We can think ofz,», and H as coordinates in a three-
dimensional Euclidean space. Then the locus of points
(z,r, H) satisfying relation the above equation is a curved
surface. What we are interested in is the number of points
where a line parallel to the axis intersects this surface.
Unfortunately, the fixed point equation cannot be solved
explicitly for z as a function ofr and H. However, it can
be solved for either of the other parameters, giving the
intersections with lines parallel to theaxis or theH axis

p 910g<9;$>
7’:7‘($,9,H):%—T 9)

26 log <9—Tx>
H=H(r0,z)= B PR w— (10)

The contours of these functions show the relationship
betweenH andx whenr is fixed (Fig. 9). We need to find
the point on each contour where the tangent is parallel to
the z axis, which will indicate where the transition occurs
between one and three solutions fé(x, H,0,r) = z.
Solving (9r(z, 6, H)/9xy = 0, we obtain the conditions
of the lemma. O

Even though the location of fixed points of the function
f depends orH,r, and 6, we will use [¢]s as a generic
name for any fixed point of a functiofi.

Similarly, we can quantify high signals in a constructed
network.

Lemma 6.6: The high signals are bounded from below
by the fixed point¢;']s of the function

R =1
R =g(h' = f*). (11)

Notice that the above recurrence relation cougfleand
At which makes it difficult if not impossible to find a func-
tion h(x,8,r) which when iterated gives the same values
ash'. However, we can bound the sequeiéehr?, h?, ...
from below by a recursively defined functiopf, i.e.,
vt: p* < h', which decouples’ from f*.

Lemma 6.7:Let [¢s]s denote the fixed point of the
recursive functionf, i.e., lim;—.o. f* = [¢f]s. Then the
recursively defined functiop

p’=1
1=

=3(g" — [#s]s) (12)

pt
has the property thatt: pt < ht.

Then, we have the following sufficient condition for the
existence of two stable fixed point of the function defined
in (11).

Lemma 6.8: Let the iterative functiorp! have two stable
fixed points andrt: p* < h*. Then the functiom’ has also
two stable fixed points.

1634

The above lemma has the following corollary.

Corollary 6.2: A constructed network’s high signals re-
main stable if the sequeng#&, p',p?, ... converges toward
the fixed pointf/2 < [¢;}]s < 6.

Since we have decoupled the iterated funcfibfrom the
iterated functionf® by introducing the iterated functiost,
we can apply the same techniqueptdor finding conditions
for the existence of fixed points as in the caseféf In
fact, the function that when iterated generates the sequence

p°,p,p%, ... is defined by
0
- 9 —
0
T 1 H(-272))/20 (13)
with
1

H = H142[¢p7]e),7 = ———. 14
(L+2[¢1e) 15206710 (14)

We can iteratively compute the value [gf,]s for given
parametersd and . Thus, we can repeat the original
argument withH’ and+’ in place of H andr to find the
conditions under which(r,) and thusg(r, z) have three
fixed points.

Lemma 6.9:The function p(z,[¢;]e) (1/1
+10=20==18,10))/26y has three fixed points
0<[¢, 1o <[¢ls <[#7]s < 1if H is chosen such that

)

— T

2<9+(9—$)10g <9

+(p) —
B 1o) = = o106 — o)

where z satisfies the equation

1 _ 62
L+2[951s 2a7<9+ (0 —2) 10g<

0—=x

O

Since there is a collection of fuzzy transition member-
shipsé; ;. involved in the algorithm for constructing fuzzy
representations of FFA, we need to determine whether the
condition of Lemmas 6.5 and 6.9 hold true for all rule
weights ;. The following corollary establishes a useful
invariant property of the functiody(z,r, 8).

Corollary 6.3: The value of the minimd{ (x, r, §) only
depends on the value of and is independent of the
particular values of
6 —

x

20 log <

-) = Ho(r). (15)

inf H(z,r,6)=inf

PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

20

16| 16} ;
12 12
H H

4 el 4| el e

0 ‘ L : 0 ‘ S

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 [
X X
() (b)

20

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

© (d)

Fig. 10. Invariant fixed points. The contour plots illustrating the existence and location of fixed
points of the functionj(x, H,8,r) = 6/(1 4+ /(9=2r2)/2¢) are shown for: (ap = 1.0; (b)

6§ = 0.7; (c) # = 0.5; and (d)¢ = 0.3. The location of fixed points depends on the value’of
The condition onH andr for the existence of one versus two stable fixed points is independent
of 6. The scaling of the graphs illustrates that invariant property.

Proof: The term log(@ — z/x) scales the function C. Network Stability
H(z,r,0) ?Iong thex axis. We introduce a scaling factor The existence of two stable fixed points of the discrim-
e and sety’ = ¢f andz’ = ex. Then, (10) becomes inant function is only a necessary condition for network
stability. We also need to establish conditions under which
these fixed points are upper and lower bounds of stable low

2¢f log <69 — 637) 2ef log <9 — x) and high signals, respectively.
H(2',r,0) = «r = i Before we define and derive the conditions for network
et — 2rex €6 — 2rx) stability, it is convenient to apply the result of Lemma 3.1
20 log <9 - 95) to the fixed points of the sigmoidal discriminant function
_ z — H(z,r0) (16) (Section IlI-C).

Corollary 6.4: For any valued with 0 < 8 < 1, the fixed
points [¢]s of the discriminant function

0
1+ cH(0—2rz)/20

60— 2rx

for fixed r. Thus the values of (z,r,8) are identical for
fixed values ofr, and their local minima have the same

values independent df. have the following invariant relationship:
The relevance of the above corollary is that there is no _
need to test conditions for all possible valueglah order [@le = 0[¢]1-

to guarantee the existence of fixed points. The graphs in Proof: By definition, fixed points$ of §(-) have the

Fig. 10 illustrate that invariant property of the sigmoidal property that[¢]s = §[(#)]e. According to Lemma 3.1, we
discriminant function. also have

We can now proceed to prove stability of low and high . .
signals, and thus stability of the fuzzy representation of FFA [#le —g(y[(/)]e) = 9([9le, H,NG)
states, in a constructed recurrent neural network. =09(0[¢]1, H,1) = 09([¢]1) = 0[4]1

GILES et al: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1635

because the invariant scaling property applies to all points

of the functiong, including its fixed points. Thus, we do

Theorem 6.1: For some given unambiguous FB& with
n states andn input symbols, let denote the maximum

not have to consider the conditions separately for all values number of transitions to any state over all input symbols

of @ that occur in a given fuzzy finite state automatonl

We now redefine stability of recurrent networks con-
structed from DFA in terms of fixed points.

Definition 6.2: An encoding of DFA states in a second-
order recurrent neural network is called stable if all the low
signals are less thaf$le,, and all the high signals are
greater tharj¢?],, for all 6; of all state neurons;.

We have simplified;... to 8; because the output of each
neuron$; has a fixed upper lim# for a given input symbol,
regardless which neurorts contribute residual inputs. We
note that this new definition is stricter than that we gave in
Definition 6.1. In order for the low signal to remain stable,
the following condition has to be satisfied:

_g + Hr [(/);Lj < [¢}] 0,

Similarly, the following inequality must be satisfied for

stable high signals:

H

-5 H 6], - H |67 > (4],

The above two inequalities must be satisfied for all
neurons at all times. Instead of testing for all values
;5 separately, we can simplify the set of inequalities as
follows.

Lemma 6.10:Let B,in and 6., denote the minimum
and maximum, respectively, of all fuzzy transition mem-
bershipsé;;; of a given FFAM. Then, inequalities (17)
and (18) are satisfied for all transition weiglttg; if the
inequalities

17)

(18)

H
N 5 + H/r [d);} max < I:d)?] al‘nin (19)
H
B R I P A PR Y

are satisfied.
Proof: Consider the two fixed point$¢;]e,,, and
(¢, 16, - According to Corollary 6.4, we have

(97], = boin 07], <00 [67] <Bux |97]|
= |97,

Thus, if inequalities (19) and (20) are not violated for
(07 16 @Nd [¢%]o,.., then they will not be violated for
emin S eljk S emax either. O

We can rewrite inequalities (19) and (20) as

H _
— 5 + HTemax |:¢f :| 1 < emin [d)(}] 1 (21)

and

H

— S+ Hbuin[97], = Hmax 97| > e [90], (22)

Solving inequalities (21) and (22) fQﬁ);]l and [¢7]:,
respectively, we obtain conditions under which a con-

of M. Furthermore, led,,;, andé,,.,. denote the minimum
and maximum, respectively, of all transitions weighfs.
in M. Then, a sparse recurrent neural network withtate
andm input neurons can be constructed frdh such that
the internal state representation remains stable if

0
g1 (1, [,
1) |:¢f:| L m 5 + eminT
1 /1 - (P71
+ - I
2) [d)h] 1 > emin <2 + 9111ax |:¢f:| 1 + H
3) H > max(Hy (r), H ().
Furthermore, the constructed network has at
most 3mn second-order weights with alphabet

P {-H,0,+H},n + 1 biases with alphabet
¥, = {—H/2}, and maximum fan ousm. O

For €,in = Omax = 1, conditions 1)-3) of the above
theorem reduce to those found for stable DFA encodings
[41]. This is consistent with a crisp representation of DFA
states.

VII. SIMULATIONS

In order to test our theory, we constructed a fuzzy
encoding of a randomly generated FFA with 100 states
(after the execution of the FFA transformation algorithm)
over the input alphabet {0, 1}. We randomly assigned
weights in the range [0, 1] to all transitions in increments
of 0.1. The maximum indegree was;,(M) = » = 5.

We then tested the stability of the fuzzy internal state
representation on 100 randomly generated strings of length
100 by comparing, at each time step, the output signal
of each recurrent state neuron with its ideal output signal
(since each recurrent state neurgncorresponds to a FFA
stateg;, we know the degree to whicft is occupied after
input symbol a;, has been read: either zero 6y;). A
histogram of the differences between the ideal and the
observed signal of state neurons for selected values of the
weight strengthH over all state neurons and all tested
strings is shown in Fig. 11. As expected, the error decreases
for increasing values off. We observe that the number of
discrepancies between the desired and the actual neuron
output decreases “smoothly” for the shown valuesibf
(almost no change can be observed for values up te 6).

The most significant change can be observed by comparing
the histograms foH = 9.7 andH = 9.75. The existence of
significant neuron output errors fdd = 9.7 suggests that
the internal FFA representation is highly unstable. Hop

9.75, the internal FFA state representation becomes stable.
This discontinuous change can be explained by observing
that there exists a critical valuéo(r) such that the number

of stable fixed points also changes discontinuously from

structed recurrent network implements a given FFA. These one to two forH < Ho(r)) and H > Hy(r)), respectively

conditions are expressed in the following theorem.

1636

(see Fig. 11). The “smooth” transition from large output

PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

1.6 1.6

L4] L4t
S 12} L2y
S
= > 1.0
" L.OF Q
= £ 0.8}
g 08} g
g £ 0.6}
g
E 0.6} 1 04l
04+ 1 0.2}
0.2 0
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Absolute Neuron Output Error Absolute Neuron Output Error
(@) (b)
3.0 35
25¢L 30—]
2.5 .
2.1
g g 20
g g~]
= 1.5¢ =
E — E L5}]
1.0}
L.OL S 1
05 1 0.5/]
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Absolute Neuron Output Error Absolute Neuron Output Error
(© (d)
5.0 10.0
4.0} 1 8.0t i
Z 3.0L Z 6.0 1
S| &
Q (5]
= =1
g g
g 20+ c 40t j
1.0t 2.0 1
oL | — L ;
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Absolute Neuron Output Error Absolute Neuron Output Error
(e) ®

Fig. 11. Stability of an FFA state encoding. The histogram shows the frequent®() of absolute
neuron output errors of a network with 100 neurons that implements a randomly generated fuzzy
finite state automaton and reads 100 randomly generated strings of length 100 for different values
of the weight strength”. The error was computed by comparing, at each time step, the actual
with the desired output of each state neuron. The distribution of neuron output signal errors are
for weight strengths: (af = 6.0; (b) H = 9.0; (¢) H = 9.60; (d) H = 9.65; and (e)

H = 9.70; and (f) H = 9.75.

errors to very small errors for most recurrent state neuronsfor some given input symbod; at time stept; in that

[Fig. 11(a)—(e)] can be explained by observing that not all case, the low signals of those neurons are strengthened to
recurrent state neurons receive the same number of residual(0, H, 8, ;) ~ 0 (note that strong low signals imply strong
inputs; some neurons may not receive any residual inputhigh signals by Lemma 6.7).

GILES et al: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1637

VIIl. CONCLUSIONS ACKNOWLEDGMENT

Theoretical work that proves representational relation- The authors would like to acknowledge useful discus-
ships between different computational paradigms is im- sions with K. Bollacker, D. Handscomb, and B. G. Horne,
portant because it establishes the equivalences of thoseas well as suggestions from the referees.
models. Previously it has been shown that it is possible
to deterministically encode FFA in recurrent neural net- REFERENCES
works by transforming any given FFA into a deterministic
acceptor which assign string membership [56]. In such a [1] C. L. Giles, R. sun, and J. M. Zurad#£EE Trans. Neural
deterministic encoding, only the network’s classification Networks (Special Issue on Neural Networks and Hybrid Intel-
of strings is fuzzy, whereas the representation of states is g%engzhffgggs‘ S':gstndfsg’gs’ Theory, and Applications)l. 9,
crisp. The correspondence between FFA and network pa- [2] L. A. Bookman and R. SunConnection Sci. (Special Issue on

rameters—i.e., fuzzy transition memberships and network Architectures for Integrating Symbolic and Neural Processes)
vol. 5, nos. 3 and 4, 1993.

weights, respectively—is lost in the tr?nSformaﬂon' N [3] J. Hendler, “Developing hybrid symbolic/connectionist mod-
Here, we have demonstrated analytically and empirically els,” in Advances in Connectionist and Neural Computation
that it is possible to encode FFA in recurrent networks Theory J. Barnden and J. Pollack, Eds. ~Ablex, 1991.

. ; . S [4] V. Honavar and L. Uhr, EdsArtificial Intelligence and Neural
without transforming them into deterministic acceptors. The Networks: Steps Toward Principled IntegrationSan Diego,

constructed network directly represents FFA states with the CA: Academic, 1994. _ _
desired fuzziness. That representation requires: 1) a slightly [5] R. Sun, “Learning, action, and consciousness: A hybrid ap-

. s . proach toward modeling consciousnedsgural Networksvol.
increased functionality of sigmoidal discriminant functions 10, no. 7, pp. 13171332, 1997

(it only requires the discriminants to accommodate variable [6] J. Bezdek]EEE Trans. Neural Networks (Special Issue on Fuzzy
output range), and 2) a transformation of a given FFA into Logic and Neural Networksyol. 3, 1992.

. . [7]1 C. S. Herrmann, “A hybrid fuzzy-neural expert system for
an equwalent FFA with a Iarger number of states. (We diagnosis,” inProc. 14th Int. Joint Conf. Atrtificial Intelligence

have found empirically that the increase in automaton size vol. I, 1995, pp. 494-502.
is roughly proportionalV «+ K where N and K are the [8] M. Palaniswami, Y. Attikiouzel, R. J. Marks, and D. Fogel,

- . Eds., Computational Intelligence: A Dynamic System Perspec-
automaton and alphabet size, respectively.) In the proposed tive. Piscataway, NJ: IEEE Press, 1995.

mapping FFA— recurrent network, the correspondence be- [9] N. Kasabov,Foundations of Neural Networks, Fuzzy Systems,
tween FFA and network parameters remains intact; this can ?336KHOW|60|99 Engineering Cambridge, MA: MIT Press,
be significant if the physical properties of some unknown |1q; {“7adeh, “Fuzzy sets,Inform. Control vol. 8, no. 3, pp.
dynamic, nonlinear system are to be derived from a trained 338-353, 1965.

network modeling that system. Furthermore, the analysis [11] H. R. Berenji and P. Khedkar, “Learning and fine tuning fuzzy

o logic controllers through reinforcementlEEE Trans. Neural
tools and methods used to demonstrate the stability of the Networks vol. 3, pp. 724-740, Sept. 1992.

crisp internal representation of DFA carried over and gener- [12] P. P. Bonissone, V. Badami, K. H. Chiang, P. S. Khedkar, K. W.

alized to show stability of the internal FFA representation. Marcelle, and M. J. Schutten, “Industrial applications of fuzzy

We speculate that other encoding methods are possible ',&g'rcl %%’neral Electric,Proc. IEEE vol. 83, pp. 450-465,

and that it is an open question as to which encoding methods[13] S. Chiu, S. Chand, D. Moore, and A. Chaudhary, “Fuzzy logic
; ; ; for control of roll and moment for a flexible wing aircraft,”

are bgtter. One could argue that, from a engineering pomt of IEEE Control Syst. Magol. 11, pp. 42-48, Apr. 1991

view, it may seem more natural to use radial basis functions [14] J. Corbin, “A fuzzy logic-based financial transaction system,”
i Embedded Syst. Programmingpl. 7, no. 12, p. 24, 1994.

o repre_sent fuzzy state membershlp (they are Often used[15] L. G. Franquelo and J. Chavez, “Fasy: A fuzzy-logic based tool

along with triangular and trapezoidal membership func- for analog synthesisJEEE Trans. Computer-Aided Desigrol.

tions in the design of fuzzy systems) instead of sigmoidal 15, p. 705, July 1996.

S . . [16] T. L. Hardy, “Multi-objective decision-making under uncer-
discriminant functions (DFA can be mapped into recurrent tainty fuzzy logic methods,” NASA, Washington, DC, Tech.

neural networks with radial basis functions [49]). It is an 7 \F/zvepJ. 'II\'AMK1_0|6(3796, }1934'R N Lemke. “Abn| .
; ; ;) ; . J. M. Kickert and H. R. van Nauta Lemke, “Application o
ope_n que.Stlor_] hOW mappmg; of FFA into RNNS with a fuzzy controller in a warm water plant&utomatica vol. 12,
radial basis discriminant functions would be implemented no. 4, pp. 301-308, 1976. _
and how such mappings would compare to the encoding [18] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic

. . . . controller,” IEEE Trans. Syst., Man, Cybernvol. 20, .
algorithm described in this work. 404-435, Feb. 1990. Y yoer PP

The usefulness of training RNN'’s with fuzzy state repre- [19] thFr’ F_’appti_s a[}?EEE-EH-TMamdSanit, “?vl fUZZél%giC C?ntsrg/lﬂgf;m a
. . . ratic junction, rans. syst., Man, Cybervol. -1,
sentation from examples to behave like a FFA—the variable pp. 707717, Oct. 1977.

output rangef can be treated as a variable parameter [20] X. M. Yang and G. J. Kalambur, “Design for machining

. ; using expert system and fuzzy logic approach,Mater. Eng.
and an update rule similar to that for networks weights Performance vol. 4, no. 5, p. 599, 1995,

can be derived—and whether useful information can be [21] C. M. Bishop,Neural Networks for Pattern RecognitionNew

; i York: Oxford, 1995.
extrgcted frpm trained qetwork; has yet to be detgrr_mned. In[zz] A Cichocki and R. Unbehauen, Edsleural Networks for
particular, it would be interesting to compare training and Optimization and Signal ProcessingNew York: Wiley, 1993.
knowledge representation of networks whose discriminant [23] S. Haykin, Neural Networks, A Comprehensive Foundation
. . . New York: Prentice-Hall, 1998.
functions have fixed and variable output ranges, respec-24] H. T. Siegelmann and E. D. Sontag, “Ont he computational

tively. Discriminant functions with variable neuron output Eg\évelr 500](nfgégl nets,J. Comput. Syst. Sg¢ivol. 50, no. 1, pp.
range may open the door to novel methods for the extraction[25] HT SiegelmannNeural Networks and Analog Computation:

of symbolic knowledge from recurrent neural networks. Beyond the Turing Limit Boston, MA: Birkhauser, 1999.

1638 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

[26]
[27]
(28]

[29]

[30]
(31]
(32]
[33]

[34]
(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]

[50]

C. L. Giles and M. Gori, EdsAdaptive Processing of Sequences [51] J. B. Pollack, “The induction of dynamical recognizreb)a-

and Data StructuregLecture Notes in Artificial Intelligence). chine Learning vol. 7, nos. 2/3, pp. 227-252, 1991.
New York: Springer Verlag, 1998. [52] R. L. Watrous and G. M. Kuhn, “Induction of finite-state
J. E. Hopcroft and J. D. Ullmanntroduction to Automata The- languages using second-order recurrent netwolsiiral Com-
ory, Languages, and ComputationReading, MA: Addison- putation vol. 4, no. 3, pp. 406-411, 1992.) o
Wesley, 1979. [53] Z. Zeng, R. M. Goodman, and P. Smyth, “Learning finite
P. Ashar, S. Devadas, and A. R. Newtd®equential Logic state machines with self-clustering recurrent networkktral
Synthesis Norwell, MA: Kluwer, 1992. Computation vol. 5, no. 6, pp. 976-990, 1993.
S. C. Kleene, “Representation of events in nerve nets and [54] J. Grantner and M. J. Patyra, “VLSI implementations of fuzzy
finite automata,” inAutomata StudigsC. E. Shannon and J. logic finite state machines,” ifProc. 5th IFSA Congy. 1993,
McCarthy, Eds. Princeton, NJ: Princeton Univ. Press, 1956, pp. 781-784. . . o
pp. 3-42. [55] F. A. Unal and E. Khan, “A fuzzy finite state machine imple-
M. Minsky, Computation: Finite and Infinite Machines En- genftaltzlon baéedt Orll %nle;éf fUZZi’i)gSti%fmC- 3rd Int.
lewood Cliffs, NJ: Prentice-Hall, Inc., 1967, ch. 3, pp. 32—66. ont. Fuzzy systvol. s, » PP- —1754. .
g.-M. Fu, Neural Networks in Computer IntelligenggNew [56] C. W. Omlin, K. K. Thornber, and C. L. Giles, “Fuzzy finite-
York: McGraw-HiII, 1994. state automata can be deterministically encoded into recurrent
E. S. Santos, “Maximin automataliform. Contro| vol. 12, neural networks,1EEE Trans. Fuzzy Systvol. 6, pp. 76-89,
pp. 363-377, 1968. Feb. 1998. o
L. Zadeh, “Fuzzy languages and their relation to human and [57] A. Blanco, M. Delgado, and M. C. Pegalajar, “Fuzzy grammar
machine intelligence,” Electron. Res. Lab., Univ. California, inference using neural networks,” Dep. Comput. Sci. Artificial
Berkeley, Tech. Rep. ERL-M302, 1971. Intell., Univ. Granada, Spain, Tech. Rep., 1997.
B. Gaines and L. Kohout, “The logic of automatarit. J. [58] M. G. Thomason and P. N. Marinos, “Deterministic acceptors
General Syst.vol. 2, pp. 191208, 1976. of regular fuzzy languages/EEE Trans. Syst., Man, Cybern.
E. B. Kosmatopoulos and M. A. Christodoulou, “Neural net- vol. 4, pp. 228-230, Mar. 1974. _
works for identification of fuzzy dynamical systems: An ap- [99] C. W. Omlin and C. L. Giles, "Stable encoding of large
pliation to identification of vehicle highway systems,” Rioc. finite-state automata in recurrent neural networks with sigmoid
4th IEEE Mediterranean Symp. New Directions in Control and discriminants,"Neural Computationvol. 8, no. 7, pp. 675-696,

1996.

[60] L. A. Akers, D. K. Ferry, and R. O. Grondin, “Synthetic neural
systems in VLSI,” inAn Introduction to Neural and Electronic
Systems San Diego, CA: Academic, 1990, pp. 317-336.

Automation 1996, pp. 23-38.
S. . Mensch and H. M. Lipp, “Fuzzy specification of finite state
machines,” inProc. Europ. Design Automation Cont990, pp.

622-626. . :
C.W. Omlin and C. L. Giles, “Extraction of rules from discrete- (61] l|\3/IA:] I%Esvuel;leilgglgnformatlon Processing and VLSlBoston,
time recurrent neural networksNeural Networksvol. 9, no. [62] C. Mead Aﬁalog VLSI and Neural SystemsReading, MA:

1, pp. 41-52, 1996. ison-
R. Maclin and J. W. Shavlik, “Using knowledge-based neural [63] é('jdll_s'onGi\llggslgza 1(9:§9W omlin

networks to improve algorithms: Refining the chou-fasman , “Extraction, insertion and

refinement of symbolic rules in dynamically driven recurrent

algorithm for protein folding," Machine Learningvol. 11, nos. neural networks,”Connection Scj.vol. 5, nos. 3 & 4, pp.
2-3, pp. 195-215, 1993. . 307-337, 1993.

J. Grantner and M. J. Patyra, Synthesis and analysis of fuzzy [64] D. Dubois and H. Pradesuzzy Sets and Systems: Theory and
logic finite state machine models,” iRroc. 3rd IEEE Conf. Applications (Mathematics in Science and Engineejingol.
Fuzzy Syst.vol. I, 1994, pp. 205-210. o 144. New York: Academic, 1980, P 220-226.

E. Khan and F. Unal, ‘Recurrent fuzzy logic using neural [65] S. F. ThomasFuzziness and Probability Wichita, KS: ACG
networks,” inAdvances in Fuzzy Logic, Neural Networks, and Press, 1995.

Genetic A_IgorlthmiLecture Note_s in Artificial IntelligengeT. [66] C. W. Omlin and C. L. Giles, “Rule revision with recurrent
Furuhashi, Ed. New York: Springer Verlag, 1995. neural networks,1EEE Trans. Knowledge and Data Engol.
C. W. Omlin and C. L. Giles, “Constructing deterministic finite- 8, pp. 183-188, Jan. 1996.

state automata in recurrent neural networks,ACM vol. 43, [67] H. K. Khalil, Nonlinear Systems New York: Macmillan, 1992.

no. 6, pp. 937-972, 1996.

F. E. Cellier and Y. D. Pan, “Fuzzy adaptive recurrent counter-
propagation neural networks: A tool for efficient implementa-
tion of qualitative models of dynamic processes, Syst. Eng.
vol. 5, no. 4, pp. 207-222, 1995.

E. B. Kosmatopoulos and M. A. Christodoulou, “Structural
properties of gradient recurrent high-order neural networks,”
IEEE Trans. Circuits Systvol. 42, pp. 592-603, Sept. 1995.

E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou,
and P. A. loannou, “High-order neural networks for identifica-
tion of dynamical systemsJEEE Trans. Neural Networksol.

6, pp. 422-431, Mar. 1995.

E. B. Kosmatopoulos and M. A. Christodoulou, “Recurrent neu-
ral networks for approximation of fuzzy dynamical systems,”
Int. J. Intell. Control Syst.vol. 1, no. 2, pp. 223-233, 1996. for Advanced Computer Studies at the Univer-
M. P. Casey, “The dynamics of discrete-time computation, with sity of Maryland, College Park, and an Adjunct
application to recurrent neural networks and finite state machine Professor in Computer and Information Science at the University of
extraction,”Neural Computationvol. 8, no. 6, pp. 1135-1178, Pennsylvania, Philadelphia. Previously, he was a Program Manager at

C. Lee Giles(Fellow, IEEE) received the B.S.
degree from the University of Tennessee, the
B.A. degree from Rhodes College, the M.S.
degree from the University of Michigan, and the
Ph.D. in optical sciences from the University of
Arizona.

He is a Senior Research Scientist in Computer
Science at NEC Research Institute, Princeton,
NJ, an Adjunct Faculty Member at the Institute

1996. the Air Force Office of Scientific Research in Washington, DC, where he
A. Cleeremans, D. Servan-Schreiber, and J. McClelland, “Finite initiated and managed research programs in neural networks and artificial
state automata and simple recurrent neural networKsyiral intelligence, and in optics in computing and processing. Before that he
Computation vol. 1, no. 3, pp. 372-381, 1989. was a Research Scientist at the Naval Research Laboratory, Washington,
J. L. Elman, “Finding structure in time,Cognitive Sci. vol. DC, and an Assistant Professor of Electrical and Computer Engineering
15, no. 2, pp. 179-211, 1990. at Clarkson University. During part of his graduate education he was

P. Frasconi, M. Gori, M. Maggini, and G. Soda, “Representa- a research engineer at Ford Motor Scientific Research Laboratory. His
tion of finite state automata in recurrent radial basis function research interests are in novel applications and tools in web computing
networks,”Machine Learningvol. 23, no. 1, pp. 5-32, 1996. and intelligent information systems and in the foundations of intelligent
C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and systems.

Y. C. Lee, “Learning and extracting finite state automata with Dr. Giles is a member of AAAI, ACM, INNS, OSA, AAAS, and
second-order recurrent neural networkidgural Computation the Center for Discrete Mathematics and Theoretical Computer Science,
vol. 4, no. 3, pp. 393-405, 1992. Rutgers University.

GILES et al: EQUIVALENCE IN KNOWLEDGE REPRESENTATION 1639

Karvel K. Thornber received the Ph.D. de-
gree from the California Institute of Technology,
Pasadena, in 1966.

After spending two years at Stanford Uni-
versity, one year at Bristol, and 20 years at
Bell Labs, he joined NEC Research Institute,
Princeton, NJ, in 1989 as a Senior Research Sci-
entist. Having contributed earlier to theoretical
and device physics, he is currently working on
inference and vision.

Christian W. Omlin received the M.S. degree from the Swiss Federal
Institute of Technology, Zurich, in 1987 and the Ph.D. degree from
Rensselaer Polytechnic Institute, Troy, NY, in 1995. ;
He is a Senior Lecturer in the Computer Science Department at the
University of Stellenbosch, South Africa. Prior to his appointment at
Stellenbosch University, he was with Adaptive Computing Technologies,
Troy, NY, where he specialized in real-world applications of intelligent
information processing methods. He was also a graduate assistant ang
instructor at Rensselaer Polytechnic Institute from 1987 to 1991. From
1991 to 1996, he was with NEC Research Institute, Princeton, NJ. His
expertise and research interests include foundations and applications of* =
artificial intelligence, neural networks, fuzzy systems, hybrid systems,
intelligent autonomous agents, and applications of machine learning meth-
ods to information retrieval on the world wide web. He has published
over 30 papers in conferences, journals, and book chapters. He is the
coauthor of the upcoming bodénowledge Representation and Acquisition
in Recurrent Neural Networks: Foundations, Algorithms, and Applications
Dr. Omlin is a member of ACM and INNS.

1640 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 9, SEPTEMBER 1999

