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Abstract

Learning long-term temporal dependencies with recurrent neural networks can be a difficult problem. It has recently been shown that a
class of recurrent neural networks called NARX networks perform much better than conventional recurrent neural networks for learning
certain simple long-term dependency problems. The intuitive explanation for this behavior is that the output memories of a NARX network
can be manifested as jump-ahead connections in the time-unfolded network. These jump-ahead connections can propagate gradient informa-
tion more efficiently, thus reducing the sensitivity of the network to long-term dependencies. This work gives empirical justification to our
hypothesis that similar improvements in learning long-term dependencies can be achieved with other classes of recurrent neural network
axchitectures simply by increasing the order of the embedded memory. In particular we explore the impact of learning simple long-term
dependency problems on three classes of recurrent neural network architectures: globally recurrent networks, locally recurrent networks, and
NARX (output feedback) networks.

Comparing the performance of these architectures with different orders of embedded memory on two simple long-term dependencies
problems shows that all of these classes of network architectures demonstrate significant improvement on learning long-term dependencies
when the orders of embedded memory are increased. These results can be important to a user comfortable with a specific recurrent neural
network architecture because simply increasing the embedding memory order of that architecture will make it more robust to the problem of
long-term dependency learning.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recurrent neural networks (RNNS) are capable of
representing arbitrary nonlinear dynamical systems (Seidl
and Lorenz, 1991) and can be computationally quite power-
ful (Siegelmann and Sontag, 1995). However, various
empirical studies suggest that sometimes learning even
simple behavior can be quite difficult when using gradient-
descent learning algorithms. Recently, it has been demon-
strated that at least part of this difficulty can be attributed to
the problem oflong-term dependencies(Bengio et al., 1994;
Mozer, 1992), i.e. those problems for which the desired
output of a system at timeT depends on inputs presented
at timest , T.

In particular (Bengio et al., 1994) showed that if a system
is to latch information robustly, then the fraction of the

gradient in a gradient-based training algorithm due to
information n time steps in the past approaches zero asn
becomes large. This effect is called the problem ofvanish-
ing gradiant. Bengio et al. claimed that the problem of a
vanishing gradient is the essential reason why gradiant-
descent methods are not sufficiently powerful to learn
long-term dependencies. Several appraoches were
suggested to circumvent the problem of vanishing gradients
in training RNNS. One possible approach is to preset initial
weights by using prior knowledge (Frasconi et al., 1995;
Giles and Omlin, 1992; Omlin and Giles, 1996) but this is
often not available in many applications. Another approach
is to use alternative optimization methods instead of
gradient-based methods (Bengio et al., 1994), but, those
algorithms can perform as poorly as gradient methods, or
require far more computational resources. Alternatively, the
input data can be altered to represent a reduced description
that makes global features more explicit and more readily* Requests for reprints should be addressed to C. Lee Giles.
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detectable (Mozer, 1992). Unfortunately, this approach may
fail if short-term dependencies are equally as important.
Hochreiter and Schmidhuber (1995) propose a specific
architectural approach which utilizes high-order gating
units. It was also suggested that a network architecture
that operates on multiple time scales might be useful
(Gori et al., 1994; Hihi and Bengio, 1996) and so would
architectures that find or learn the appropriate memory
orders (Lin et al., 1997; Pedersen and Hansen, 1995).

We have shown that a class of recurrent neural networks
called NARX networks can perform much better at learning
long-term dependencies when using a gradient descent
training algorithm than previously reported in the literature
(Lin et al., 1996b; Lin et al., 1996a). The intuitive explana-
tion for this behavior is that the output memories of a NARX
neural network are manifested as jump-ahead connections
in the time-unfolded network that is often associated with
algorithms as backpropagation through time (BPTT). These
jump-ahead connections provide shorter paths for propagat-
ing gradient information, thus reducing the sensitivity of the
network to long-term dependencies. We hypothesize that
the similar improvement on learning long-term dependen-
cies can be achieved in other classes of recurrent neural
network architectures by increasing the orders of embedded
memory. It is worth noting that one of the first uses of
embedded memory in recurrent network architectures was
that of Jordan (1986).

In this article, we empirically justify this hypothesis by
showing the relationship between the memory order of a RNN
and its sensitivity to long-term dependencies. In Section 2, we
discuss three classes of conventional recurrent neural net-
works architectures: globally recurrent networks (the architec-
ture, not the training procedure, used by Elman, 1990); locally
recurrent networks (in particular the model of Frasconi et al.,
1992); NARX networks (Chen et al., 1990; Narendra and
Parthasarathy, 1990), and their corresponding models with a
high order embedded memory. In Section 3, we provide a
empirical comparison of these architectures by investigating
their performance on learning two simple long-term depen-
dencies problems: the latching problem and a grammatical
inference problem. The simulations show that these classes
of recurrent neural network architectures all demonstrate sig-
nificant improvement on learning long-term dependencies
when the embedded memory order is increased and weights
remain relatively the same. Thus, a user of one of these
recurrent architectures can readily improve their robustness
to long-term memory problems simply by increasing the
amount of embedded memory, all other variables remaining
constant.

2. Embedding high order memory in recurrent neural
network architectures

Several recurrent neural network architectures have been
proposed; for a collection of papers on the variety see Giles

et al. (1994). One taxonomic classification for these archi-
tectures can be based on the observability of their states:
specifically they can be broadly divided into two groups
depending on whether or not the state variables of the net-
work are observable or not (Horne and Giles, 1995). For
another taxonomic approach based on memory types, see
Mozer (1994). For this study we picked three classes of
networks: globally recurrent (GR) networks (Elman,
1990), locally recurrent networks (LR, Frasconi et al.,
1992), and NARX networks (Narendra and Parthasarathy,
1990; Chen et al., 1990), and their corresponding architec-
tures with high-order embedded memory. It should be
pointed out that our embedded memory simply consists of
simple tapped delayed values to various neurons and not
more sophisticated embedded memory structures (Mozer,
1994; de Vries and Principe, 1992). NARX networks are a
typical model of networks with observable state variables.
GR networks are a popular class of network with globally
connected hidden state variables, and LR networks belong
to locally recurrent network architecture class also with
hidden state variables.

2.1. Globally connected rnns

These networks (which we will call GR networks) are a
class of recurrent networks in which the feedback connec-
tions come from the state vector to the hidden layer, as
illustrated in Fig. 1(a). The hidden state variables are some-
times calledcontext unitsin the literature. Suppose such a
network withnu input nodes,nh hidden nodes, andny output
nodes, the dynamic equation can be described by:

oi(t) ¼ f
∑nh

j ¼ 1
wh

ij oj(t ¹ 1) þ
∑nu

k¼ 1
wu

ikuk(t) þ wb
i

 !
(1)

yi(t) ¼ f
∑nh

j ¼ 1
wy

ij oj(t) þ wb
i

 !
(2)

whereo(t) and y(t) denote the real valued outputs of the
hidden and output neurons at timet, andf is the nonlinear
function.

This network with a high order of embedded memory
differs from standard globally connected recurrent network
in that they have more than one state vector per feedback
loop. Specially, for a GR network with embedded memory
of orderm, the dynamic equations of hidden nodes become:

oi(t) ¼ f
∑m
k¼ 1

∑nh

j ¼ 1
wh

ijmoj(t ¹ k) þ
∑nu

k¼ 1

wu
ikuk(t) þ wb

i

 !
(3)

Fig. 1(b) illustrates an GR network with embedded memory
of order two.

2.2. Locally recurrent networks

In this class of networks, the feedback connections are
only allowed from neurons to themselves, and the nodes are
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connected together in a feed forward architecture (Back and
Tsoi, 1991; Frasconi et al., 1992; Sastry et al., 1994; Tsoi
and Back, 1994). Specifically, we consider networks pro-
posed by Frasconi et al. (1992) (we will call LR), as shown
in Fig. 2(a). The computational power of these networks is
discussed in Frasconi and Gori (1996). The dynamic
neurons of LR networks can be described by

oi(t) ¼ f wh
ii oi(t ¹ 1) þ

∑
j

wu
ij uj(t) þ wb

i

 !
(4)

whereoi(t) denotes the output of theith node at timet, andf
is the nonlinearity. For a network with embedded memory
of orderm, the output of the dynamic neurons becomes

oi(t) ¼ f
∑m
n¼ 1

wh
ii oi(t ¹ n) þ

∑
j

wu
ij uj(t) þ wb

i

 !
(5)

Fig. 2(b) shows a LR network with embedded memory of
order two. Locally recurrent models usually differ in where
and how much output feedback is permitted; see Tsoi and
Back (1994) for a discussion of architectural differences.

2.3. NARX recurrent neural networks

An important class of discretetime nonlinear systems is
the Nonlinear AutoRegressive with eXogenous inputs
(NARX) model (Chen et al., 1990; Ljung, 1987; Su and
McAvoy, 1991; Su et al., 1992):

y(t) ¼ f u(t ¹ Du), …,u(t ¹ 1), u(t), y(t ¹ Dy), …,y(t ¹ 1)
ÿ �

(6)

whereu(t) andy(t) represent input and output of the network
at time t, Du and Dy are the input-memory and output-
memory order, and the functionf is a nonlinear function.

Fig. 1. (a) A standard GR network. (b) A GR network with embedded memory of order 2.

Fig. 2. (a) A standard LR network. (b) A LR network with embedded memory of order 2.
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When the functionf can be approximated by a multilayer
perceptron, the resulting system is called aNARX recurrent
neural network(Chen et al., 1990; Narendra and Parthasar-
athy, 1990). Computationally, such networks have been
shown to be at least Turing equivalent (Siegelmann et al.,
1997). In this paper, we shall consider NARX networks with
zero input order. Thus the operation of the network is
defined by

y(t) ¼ f u(t), y(t ¹ Dy), …, y(t ¹ 1)
ÿ �

(7)

Fig. 3 shows a NARX architecture with output memory of
order 3.

3. Experimental results

Simulations were performed to explore the effect of
embedded memory on learning long-term dependencies in
these three different recurrent network architectures. The
long-term dependency problems investigated were the latch-
ing problem and a grammatical inference problem. These
problems were chosen because they are simple and should
be easy to learn but exemplify the long-term dependency
issue. For more complex problems involving long-term
dependencies see (Hochreiter and Schmidhuber, 1995).

In order to establish some metric for comparison in the
experimental results, we gave the recurrent networks suffi-
cient resources (number of weights and training examples,
adequate training time) to readily solve the problem but held
the the number of weights approximately invariant across all
architectures. Also note that in some cases the order of the
embedded memory is the same.

3.1. The latching problem

This experiment evaluates the performance of different
recurrent network architectures with various orders of
embedded memory on a problem already used for studying
the difficulty in learning long-term dependencies (Bengio et
al., 1994; Hihi and Bengio, 1996; Lin et al., 1996b).

This problem is a minimal task designed as a test that
must necessarily be passed in order for a network to robustly

latch information (Bengio et al., 1994). In this two-class
problem, the class of a sequence depends only on the first
three time steps, the remaining values in the sequence is
uniform noise. There are three inputsu1(t), u2(t), and a
noise inpute(t). Both u1(t) andu2(t) are zero for all times
t . 1. At time t ¼ 1, u1(1) ¼ 1 andu2(1) ¼ 0 for samples
from class 1, andu1(1) ¼ 0 andu2(1) ¼ 1 for samples from
class 2. The class information of each strings is contained in
u1(t) andu2(t). We used two delay elements for bothu1(t)
andu2(t) in order to hold the class information untilt ¼ 3. It
is not necessary to hold the class information untilt ¼ 3.
Without the delay elements, the networks are still able to
learn the problem. The reason to use delay elements is to
make our simulation environment identical to (Bengio et al.,
1994). The noise inpute(t) is given by

e(t)
0 t # 3

U( ¹ b, b) 3 , t # T

(
(8)

whereU( ¹ b, b) are samples drawn uniformly from [¹
0.155, 0.155]. Target information was only provided at the
end of each sequence. For comparison, our training particu-
lars are identical to those of Bengio et al. (1994). For strings
from class one, a target value of 0.8 was chosen, for class
two, ¹ 0.8 was chosen. The length of the noisy sequence
could be varied in order to control the span of long-term
depenendencies. Fig. 4 shows the architecture for the latch-
ing problem.

For each of these three architectures, several networks
with different orders of embedded memory were trained.
To compare the effects of different orders of embedded
memory in every class of networks on learning long-term
dependencies while holding as many other factors as possi-
ble constant, particular attention was paid to equalize the
number of weights. Table 1 gives a detailed description of
all networks used in the latching problem. The noise input
e(t) connects to several units, and thus has several weights
connected to it. The weight connected to the noise input was
fixed as 1.0. In order to learn the task, the networks have to
develop two attractors to latch the information and still
remain inside the basin of the attractors of being resistant

Fig. 3. A NARX network with output memory of order 3.

Fig. 4. The network used for the latching problem. The recurrerent neural
network is to implement the latching system. Different network architec-
tures used in this experiment are described in Table 1. The delay elements
connected withu1(t) andu2(t) are to hold the class information untilt ¼ 3.
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to noise whent . 3. The ability to learn this minimal pro-
blem is a measure of the effectiveness of propagating the
gradient for different neural network architectures with var-
ious memory order.

We varied the length of noisy inputs,T, from 10 to 60 in
increments of 2. For each value ofT, we ran 50 simulations.
For each simulation, we generated 30 strings from each
class and the initial weights were randomly distributed in
the range [¹ 0.5, 0.5]. The network was trained with a MSE
cost function using simple BPTT algorithm with a learning
rate of 0.1 for a maximum of 200 epochs. Updates occurred at
the end of each string and the error was back-propagated the
full length of the string. If the absolute error between the
output of the network and the target value was less than 0.6
on all strings, the simulation was terminated and determined
successful. If the simulation exceeded 200 epochs and did not
correctly classify all strings, then the simulation was ruled a
failure. Fig. 5(a)–(c) shows plots of the percentages of those
runs that were successful for different classes of networks with
different orders of embedded memory. It is clear from these
plots that the network architectures with high order embedded
memory become increasingly less sensitive to long-term
dependencies as the memory order was increased. An inter-
esting comparison between the architectures GR(1) and
NARX(6) is shown in Fig. 5(d). Since the two architectures
have the exact same number of weights, hidden nodes, and
state variables, the only difference is the amount of memory
order. Clearly, NARX networks perform far better than the
GR networks at learning the latching problem.

3.2. Grammatical inference (tree automata) problem

In previous problem, the inputs to the network were fol-
lowed by a noise term. In this experiment, we consider
learning to classify strings of boolean values, which are
labeled according to some prespecified automata.

In this example, the class of a string is completely deter-
mined by its input symbol at some prespecified timet. For
instance, Fig. 6 shows a five-state automaton, in which the

class of each string is determined by the third input symbol.
Therefore the decision time ist ¼ 3. When that symbol is 1,
the string is accepted; otherwise, it is rejected. By increasing
the length of the strings to be learned, we will be able to
control the span of long-term dependencies, in which the
output will depend on input values far in the past.

For this experiment all inputs were encoded into one
input neuron with the two alphabets encoded, respectively,
as 0.0 and 1.0. For each simulation, we randomly generated
a training set and an independent testing set, each consisting
of 500 strings of lengthT such that there were an equal
number of positive and negative strings. We variedT from
10 to 30. For the accepted strings, a target value of 0.8 was
chosen, for the rejected strings¹ 0.8 was chosen. All other
experimental parameters were the same as the previous
experiment.

Because memory order LR(1) networks were experimen-
tally unable to learn sequences of length greater than 10,
different LS networks were used. Table 2 shows all the archi-
tectures used in this experiment. The network was trained by
using a simple BPTT algorithm with a learning rate 0.01 for a
maximum of 200 epochs. If the simulation exceeded 200
epochs and did not correctly classify all strings in the training
set, then the simulation was ruled a failure. We found that
when the network learned the training set perfectly, then it
would consistently perform perfectly on the testing set as
well. For each value ofT, we ran 80 simulations. Fig.
7(a)–(c) shows plots of the percentage of the runs that were
successful in each case. A comparison between NARX net-
works and GR networks was shown in Fig. 7(d). Again, we
note the same improvement on learning long-term dependen-
cies obtained by increasing the order of embedded memory in
each class of recurrent neural network architectures.

4. Conclusion

In this article, we explore the impact of embedded mem-
ory on various recurrent neural networks architectures for

Table 1
Architecture description of different recurrent networks used for the latch-
ing problem. We used the hyperbolic tangent function as the nonlinear
function for each neuron

Architec-
ture

Network description No. weights

Memory
order

No. states No. hidden
neurons

In-hid-out

GR(1) 1 6 6 nodes 3-6-1 85
GR(2) 2 10 5 nodes 3-5-1 91
GR(3) 3 12 4 nodes 3-4-1 81
NARX(2) 2 2 11 nodes 3-11-1 111
NARX(4) 4 4 8 nodes 3-8-1 97
NARX(6) 6 6 6 nodes 3-6-1 85
LR(1) 1 14 14 nodes 3-14-1 109
LR(2) 2 22 11 nodes 3-11-1 110
LR(3) 3 27 9 nodes 3-9-1 111

Table 2
Architectural description of different recurrent network architecture used
for the tree automata problem. We used the hyperbolic tangent function in
each neuron

Architec-
ture

Network description No. weights

Memory
order

No. states No. hidden
neurons

In-hid-out

GR(1) 1 6 6 nodes 1-6-1 55
GR(2) 2 10 5 nodes 1-5-1 66
GR(3) 3 12 4 nodes 1-4-1 61
NARX(2) 2 1 1 nodes 1-11-1 56
NARX(4) 4 4 8 nodes 1-8-1 57
NARX(6) 6 6 6 nodes 1-6-1 55
LR(2) 2 22 11 nodes 1-11-1 56
LR(4) 4 32 8 nodes 1-8-1 57
LR(6) 6 36 6 nodes 1-6-1 55
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learning long-term dependency problems, i.e. when the
desired output depends on inputs presented at times far in
the past, which has been shown to be difficult for gradient
based algorithms. Motivated by the analysis of the problem of
learning long-term dependencies and the success of NARX
networks on problems including grammatical inference and
nonlinear system identification (Horne and Giles, 1995), we
explored the ability of other recurrent neural networks with a
high order of embedded memory on problems that involve
long-term dependencies. We chose three classes of recurrent
neural network architectures based on state observability: hid-
den state globally recurrent and locally recurrent networks,
and observable state NARX networks.

We tested this approach of extending memory in conven-
tional recurrent neural networks on two simple long-term

dependency problems. However, a specific architecture can
perform well if signals and noisy inputs can be separated in
high dimensional input space (Hochreiter and Schmidhuber,
1995). Our experimental results show that in each of these
classes of recurrent neural networks architectures can
demonstrate significant improvement on learning long-
term dependencies when the memory order of the network
is increased. We speculate such improvement will occur for
any recurrent neural network architecture. The intuitive
explanation for this behavior is that the embedded memories
are manifested as jump-ahead connections in the unfolded
network that is often used to describe algorithms like Back-
propagation Through Time. These jump-ahead connections
provide a shorter path for propagating gradient information,
thus reducing the sensitivity of the network to long-term

Fig. 5. Performance on the latching problem. Plots of percentage of successful simulations from 50 runs as a function ofT, the length of input strings, for
different classes of network architectures with different orders of embedded memory: (a) globally connected RNN (GR); (b) locally connected RNN (LR); (c)
NARX; (d) NARX vs GR(1).
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dependencies. Another explanation is that the states do not
necessarily need to propagate through nonlinearities at
every time step, which may avoid a degradation in the
gradient caused by the partial derivative of the nonlinearity.
We speculate that using increased memory order will also
help other recurrent network architectures on learning long-
term dependency problems. Although specific architectures
can be constructed for this problem, the approach of increas-
ing memory order can easily be applied to any recurrent
architecture already in use, of course at the cost of increased
numbers of weights. It is an open question as to how other
embedded memory models will affect the problem of learning
long-term dependencies.

Fig. 7. Tree automata problem. Plots of percentage of successful simulations out of 80 as a function ofT, the length of input strings, for different classes of
networks with different orders of embedded memory: (a) globally connected RNN (GR); (b) locally connected RNN (LR); (c) NARX; (d) NARX vs GR.

Fig. 6. A five-state tree automaton. The unlabeled arrow is the start state and
the double circled state is the the acceptance state.
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