
Pergamon

0893-6080(95)00041-0

Neural Networks, Voi. 8, No. 9, pp. 1359-1365, 1995
Copyright © 1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0893-6080/95 $9.50 + .00

N E U R A L N E T W O R K S L E T T E R

Learning a Class of Large Finite State Machines with a
Recurrent Neural Network

C. LEE GILES, 1 B. G . HORNE AND T. LIN 2

NEC Research Institute

Abstract--One o f the issues in any learning model is how it scales with problem size. The problem o f learning finite
state machine (FSMs) from examples with recurrent neural networks has been extensively explored. However, these
results are somewhat disappointing in the sense that the machines that can be learned are too small to be competitive
with existing grammatical inference algorithms. We show that a type o f recurrent neural network (Narendra &
Parthasarathy, 1990, IEEE Trans. Neural Networks, 1, 4-27) which has feedback but no hidden state neurons can
learn a special type o f F S M called a finite memory machine (FMM) under certain constraints. These machines have
a large number o f states (simulations are for 256 and 512 state FMMs) but have minimal order, relatively small
depth and little logic when the F M M is implemented as a sequential machine,

Keywords---Recurrent neural network, Finite state machine, Grammatical inference, Automata, Sequential
machine, Memory, Temporal sequences, NNIIR, NARX.

1. INTRODUCTION

Dynamically-driven recurrent neural networks
(DRNNs) have empirically shown the ability to
perform inference in problems as diverse as grammar
induction (Cleeremans et al. 1989; Mozer &
Bachrach, 1990; Pollack, 1991; Giles et al., 1992)
and system identification in control (Barto, 1990). We
discuss results concerning the learning of temporal
sequences for a particular class of discrete-time
recurrent neural network architectures which has
tapped delays both on the input and on the feedback
of the output (Narendra & Parthasarathy, 1990).
Such models are similar to feedback networks
described by others (Jordan, 1986; Back & Tsoi,
1991; Poddar & Unnikrishnan, 1991; Billings et al.,
1992; Vries and Principe, 1992; Frasconi et al., 1992).

We show that this model is able to learn to emulate
large finite state machines (FSMs) when trained on
example strings of their associated grammars. The

finite state machines that were easily learned are from
a subclass of FSMs called f in i te memory machines
(FMMs) (Kohavi, 1978). These FMMs, defined by
the type of memory used and how fed back, have
relatively low depth; and when implemented as a
sequential machine require minimal memory and
simple combinational logic.

2. FINITE STATE, FINITE M E M O R Y AND
SEQUENTIAL MACHINES

We briefly introduce finite state machines (FSMs)
and their properties. An FSM is an abstraction of a
device that can be described by a labeled directed
acyclic graph that consists of inputs, states and
outputs. In this paper all FSMs are deterministic. A
sequential machine (SM) refers specifically to the
logical implementation of an FSM, consisting of logic
and fed back memory functions, for example delay
lines, latches, flip-flops, etc. All SMs described in this
paper are synchronous.

1Also with UMIACS, University of Maryland, College Park,
MD 20742, USA.

ZAlso with EE Department, Princeton University, Princeton,
NJ 08540, USA.

Acknowledgements: The authors would like to acknowledge
K. Lang for insightful suggestions and useful discussions with
P. Ashar, S. Chakradhar, L. Leerink and C. Omlin.

Requests for reprints should be sent to C. Lee Giles, NEC
Research Institute, 4 Independence Way, Princeton, NJ 08540,
USA.

2.1. Finite State Machines

Finite state machines operate with a finite number of
input and output symbols and have a finite number of
internal states. An output is defined for each
corresponding input. Formally,

DEFINITION 1. A f in i te s tate machine (F S M) is a
sextuple J / = (Q, ~, A, 6, A, qo), where Q is a f in i te

1359

1360 C. L. Giles, B. G. Home and T. Lin

set o f states; ~ is a finite set o f symbols called the input
alphabet; A is a finite set of symbols called the output
alphabet; 6 : Q x E ---* Q is a transition function;
A : Q x ~ ---* A is an output function; and qo is the
initial state.

For this work, both the input and output
alphabets will be binary, i.e. E = A = {0, 1}.

A finite state machine is minimal if it is the
machine with the fewest number of states for a given
input/output behavior. The FSMs described here are
all minimal. A useful measure for characterizing an
FSM is its depth, which is the smallest integer d such
that every state in the FSM can be reached from the
starting state in no more than d steps.

Grammatical inference (Fu & Booth, 1975) is the
problem of finding an FSM consistent with a set of
labelled strings. These results are typically defined in
terms of deterministic finite-state automata (DFA),
however it is straightforward to map a DFA into an
FSM. Grammatical inference is known to be NP-
complete (Angluin, 1978). However, some ap-
proaches have been suggested which seem to work
well on relatively large problems (Lang, 1992).

2.2. Finite Memory Machines

Consider the subclass of FSMs known as finite
memory-machines (FMMs).

DEFINITION 2. A finite state machine ~ is said to be
a-finite memory machine o f input-order n and output-
order m if n and m are the least integers, such that the
present state o f ~¢¢ can always be determined uniquely
from the knowledge o f the last n inputs and the last m
outputs for all possible sequences of length max(n, m).

Note that this definition excludes the possibility of
any knowledge of the initial state of the machine.

For example, the FSM shown in Figure 1, has
input-order two and output-order one, since for any
input sequence of length two, the state of the FSMs
can always be determined from a knowledge of the
past two inputs and the last output as illustrated in
the table in Figure 1. Not all FSMs are FMMs. For
example, the FSM shown in Figure 2 would require
infinite order since one can observe an infinite
sequence of ones at the input and an infinite
sequence of zeros at the output without being able
to determine whether the FSM is in state q2 or q3
(unless one has a knowledge of the initial state of the
machine).

Given an arbitrary FSM there exist efficient
algorithms to determine if the machine is an F M M
and, if so, its corresponding order (Kohavi, 1978).

2.3. Sequential Machines

A sequential machine (SMs) is an implementation of

1/1

0/1 * ~ ~ 0/1 0/0 * ~

r(k-1) u(k-2) . (k - l) state

0 0 0 q3
0 0 1 qa
0 1 0 q3
0 1 1 q3
1 0 O q2
1 0 1 qo
1 1 0 ql

1 1 1 qo

FIGURE 1. The state transition diagram of a finite memory
machine (FMM) of input-order 2 and output-order 1.

an FSM which consists of logic and memory elements.
An example of an SM is shown in Figure 3a.

We can explicitly associate time with an FSM in
the following way. The input, output and state of the
machine at time k will be denoted by, respectively,
u(k), y(k) and x(k), and are typically encoded as
binary values. Logic functions can be used to relate
x(k + 1) and y(k) to x(k) and u(k), to define the SM.

In an FMM, the state depends only on a finite
number of previous inputs and outputs, so it can
always be implemented as a SM with tapped delay
lines (TDLs) on the input and output and a block of
combinational logic as shown in Figure 3b.

3. RECURRENT NEURAL NETWORKS

In the past few years several recurrent neural network
(RNN) models have been proposed (Back & Tsoi,
1991; Billings et al., 1992; Elman, 1990; Frasconi et
al., 1992; Giles et al., 1992; Jordan, 1986; Poddar &
Unnikrishnan, 1991; Robinson & Fallside, 1988; de
Vries & Principe, 1992; Watrous & Kuhn, 1992;
Williams & Zipser, 1989). Here we use a class of
networks in which output is computed as a nonlinear
function of a window of past inputs and outputs

(

0/0

~)~ 1/0
1/1

0/1

"-,~ 1/0
Y - 1/o

0/0 0/0

.(?
FIGURE 2. An FSM that has Infinite order.

Learning a Class o f Large Finite State Machines 1361

(a)

(b)

!
Combinational

Logic

Finite Memory
(Delays)

t y(k)

Combinational
Logic

- - y ~

~1)
u~

FIGURE 3. Sequential machines: (a) conventional Implementa-
tion and (b) implementation of a finite memory machine.

(Narendra & Parthasarathy, 1990), i.e.

y(t) =f(u(t),u(t-- 1) , . . . , u (t - n),
y(t - 1),y(t- 2), . . . ,y(t- m)),

where n and m are the size of the input and output
windows respectively. Note that the activations o f
hidden neurons are not f e d back. The only recurrent
connection is f r o m the output o f the network. Because
of their similarity to infinite impulse filters (IIRs),
these networks are often referred to as neural
network IIRs (NNIIRs). Many variations of this
model have been proposed and used extensively for
system identification and control problems (Naren-
dra & Parthasarathy, 1990). In the most general
model, the function f(-) is implemented as a multi-
layer perceptron. These architectures are also referred
to as NARX neural networks (Billings et al., 1992).

Since multilayer networks are capable of imple-
menting arbitrary logic functions, it follows that these
models are capable of implementing arbitrary FMMs
using the implementation shown in Figure 3b, when
the logic is replaced by a multilayer perceptron.

4. LEARNING FINITE MEMORY MACHINES

4.1. Example Problems

We have successfully been able to learn various
FMMs using the NNI IR model. Finding example
FMMs with a large number of states is nontrivial.
One could potentially pick the tap size and logic
function of an SM implementation randomly.

However, the resulting F M M more often than not
has a smaller order than the choice of taps and an
unpredictable number of states. Instead, we devel-
oped a theory which devises a method for construct-
ing machines which we then use for example learning
problems (Giles et al., 1994). This theory allows us to
construct FMMs and have a certain amount of
control over a number of properties of the F M M
including the order, number of states, and the
complexity of the logic function which defines the
mapping from previous inputs and outputs to the
current output.

We have found that a machine can be easily
learned if it can be described by a simple logic
function, and is of minimal order and low depth. The
problem of learning FMMs is simpler than that of
learning general FSMs since there is no state
assignment problem. The only problem is to learn
the logic function of the sequential machine
implementation. Thus, it makes sense that as that
function becomes more complex, the learning
problem becomes more difficult. The depth must be
kept low to keep the training set small. Finally, the
order is related to both the depth and complexity of
logic and so must also be kept small.

In this paper we present results for learning two
FMMs, although we have successfully learned many
other similar machines. The first machine has 512
states and corresponds to the relatively simple logic
function

y (k) = ~ (k - 5)~(k)+~(k- 5)y(k-4)

+ u (k) u (k - 5)~(k -4) , (1)

where ~ represents the complement of x. The FSM is
shown in Figure 4. It has an input-order of 5, an
output-order of 4, and a depth of 9.

The second machine has 256 states and has the
more complex, though still learnable, logic function

y(k) --~(k - 1)[~(k - 4)y(k - 4)~(k)

+ u(k - 4)u(k) + u(k - 4)y(k - 4)]

+ u(k - 1)37(k - l)[u(k - 4)y(k - 4)u(k)

+ ~(k - 4)~(k - 4) + ~(k - 4)~(k)]

+ u(k - 1)y(k - 1)[~(k - 4)y(k - 4)u(k)

+ u(k - 4)~(k - 4) + u(k - 4)~(k)]. (2)

This machine has an input and output order of 4, and
also has a depth of 9.

4.2. Training and Testing Set

It can be shown that the set of strings of length 1
through d + 1 is sufficient to uniquely identify an
arbitary F M M (Giles et al., 1994). To create training

1362 C. L. Giles, B. G. Horne and T. Lin

FIGURE 4. A 512 state finite memory machine of minimal order.

sets, we began with this complete set consisting of
2046 strings (since d = 9 for both problems) and
randomly selected a subset of strings for training and
reserved the remaining samples for testing. A similar
approach was taken by Lang (1992), and we feel it is
a reasonable technique for generating data for this
kind of problem.

In principle, the neural network is capable of
learning machines with a larger depth. However, in
order to run a large number of experiments in a
reasonable amount of time, we have limited ourselves
to machines with relatively low depth, and thus to
small training and testing sets. It should be noted that
the size of these sets would become unmanageably
large as the depth of the target machine increases.
For example, a machine of depth 20 would give a set
of 4,194,302 strings. The strings were encoded such
that input values of 0s and I s and target output labels
"negative" and "positive" correspond to floating
point values of 0.0 and 1.0, respectively. However,
many experiments in which we tried different
encodings such as -1 .0 and 1.0 did not give
significantly different results.

It is possible to generate target outputs as
intermediate points in each string for a given training
set. For example, if the string "0" is a negative string,
then any string that begins with "0" can be assigned a
target output of 0.0 on the first time step. Similarly, if
the string "10" is a positive string, then any string
that begins with "10" can be assigned a target value

of 1.0 on the second time step. By utilizing all of this
information, many intermediate target values can be
constructed for each string. One benefit of inter-
mediate labeling is to give an improved error measure
for each string. In addition, teacher forcing (Williams
& Zipser, 1989) can be used to force the target value
into the feedback loop to improve the speed of
convergence, and indeed to enhance the ability of the
network to converge at all.

4.3. Network Architecture and Learning Algorithm

The N N IR architecture for both problems had five
input taps and four output taps. On the first
problem, we used a two layer network with four
nodes in the hidden layer and one output node, on
the second problem we used 15 hidden layer nodes.
Each node used the standard sigmoid nonlinearity.
The initial values of all delay elements were chosen
to be zero. The networks had 49 and 181
adjustable weights, respectively, with the initial
values randomly chosen from a uniform distribu-
tion in the range [-0.1, 0.1].

The network was trained with the backpropaga-
tion through time algorithm (Williams & Peng, 1990),
augmented with a number of heuristics found useful
for grammatical inference problems. No batching
was done on the training set, i.e. the weights were
updated after processing each string (although see

Learning a Class of Large Finite State Machines 1363

comment below on selective updating). Weight decay
(Krogh & Hertz, 1992) was used with a weight decay
parameter of 0.0001.

For sample presentation we used teacher forcing.
When target values are available at intermediate
points during the processing of a string, these target
values are used in the feedback loop instead of the
actual node output values. When the network is run
during the testing phase, it can only feedback the
actual node outputs. This can lead to poor
performance if the fed-back values are not suffi-
ciently close to the teacher forced values. In order to
compensate for this effect, we replaced the output
node's nonlinearity with a hard limiter during testing.
This assures that the network feeds back values that
are either 0 or 1. In addition, this effectively converts
the feedforward part of the network to a logic
function, which can be immediately used to extract an
FSM from the final network.

We used a selective updating scheme in which the
weights were only updated if the absolute error on the
training sample currently being processed was greater
than 0.2. This effectively speeds up the learning
algorithm by avoiding gradient calculations for
weight updates that only add a marginal improve-
ment to the overall performance.

We have also found it useful to encourage the
network to learn the shortest strings first by using an
incremental training algorithm. In this algorithm the
training set is ordered lexicographically, and an
epoch is terminated if there are more than 30
samples that have an absolute error greater than
0.2. Thus, the network must learn the shortest strings
first in order to train on longer strings. Additionally,
we imposed the condition that an initial set of 50
samples must be learned to within an absolute error
of 0.2 before the remaining samples are used for
training. Once this initial set is learned, an additional
50 samples are added and then these must be learned
to within the same error, then another 50 samples are
added, and so on.

The learning algorithm was stopped when all
examples in the training set yield an absolute error
less than 0.2 or if the network exceeded 5000 epochs
for the 512-state or 10,000 epochs for the 256-state
FMM, respectively. On the first experiment, the
algorithm typically required about 500 epochs to
converge. It did not converge in only nine of the 1500
experiments. On the second experiment, the algo-
rithm required about 2500 epochs and did not
converge on 68 of the 1500 experiments.

All of the parameters discussed above were
selected by trial and error and our experiences with
learning smilar problems. For every simulation we
used a learning and momentum rate of 0.25. No
effort was made to try to optimize any of the
parameters described.

4.4. Experimental Results

We ran many experiments to determine the general-
ization ability and the size of the extracted FSM
implemented by the learned network as a function of
the size of the training set. For learning the 512-state
F MM we chose 30 different training set sizes ranging
from 10 to 300 samples in increments of 10, while for
the 256-state F M M the set sizes ranged from 25 to
750 in increments of 25. For each training set size we
ran 50 experiments. In each case a different random
sample of strings was chosen, and the weights of the
network were initialized differently each time.

The generalization was determined by computing
the performance on the samples which were not
chosen for training from the 2046 possible samples
needed to completely specify the machine. The results
are shown in Figure 5. The average error rate is
plotted with an error bar of one standard deviation
around the mean for the two problems in Figures 5a
and 5c.

It is easy to extract the FSM that the network
learns. By replacing the nonlinearity of the output
node with a hard limiter, the network effectively
implements a logic function since all input and output
values are zeros and ones. This logic function defines
an FSM for that machine. This FSM can be
minimized using a standard FSM minimization
algorithm (see, for example, Hopcroft & Ullman,
1979). The average sizes of the extracted FSMs are
plotted in Figures 5b and 5d with an error bar of one
standard deviation around the mean.

4.5. Discussion of Experimental Results

For learning the 512-state FMM, one notices from
Figure 5a that as the percentage of training strings
increases, the testing set error decreases and finally
approaches zero with zero error. Similar behavior is
noticed for extraction size in Figure 5b as the
extracted F M M approaches the correct size. Note
that the number of strings needed for perfect
generalization was about 250. This is approximately
an order of magnitude less than the complete set of
2046 strings which uniquely identify the FMM.

For learning the 256-state F M M we see similar
behavior, although the network is not usually able to
achieve perfect generalization. In fact, when the
sigmoid is replaced by a hard-limiting threshold
function, the network does not even correctly classify
the training set most of the time. This implies that the
network may actually be utilizing the transition
region of the sigmoid in order to solve the problem,
and so a more complex extraction algorithm
(Watrous & Kuhn, 1992; Tino & Sajda, 1995) may
be needed, although we have not investigated this.
Nevertheless, the extracted F M M does not get the

1364 C. L. Giles, B. G. Home and T. Lin

|

O.5 , ~

°-,5 t i i i 1
. i . i [.. i

I ! 0.25

0.2 '"

0.15

0.1 ~i

o

numbs" o1 sumples lout of 2046)

(a)

o ~ ~
number of lampl~ (out of 2046)

(b)

0.5

.... itli i i i i 0.25 1

0.2

o.1 -

o .o5

o

number of slt mplss (out of 2046)

(c)

i . ~...
25 i r i ~ * i ' x ~ ~ '~ - ~ i ' ~ ~ ; i

5O . i "

o - - = i i i i
100 2oo 3o0 4o0 5o0 000 700

number of nmplu (out of 2040)

(d)
FIGURE 5. Genera l izagon and extraction as a funct ion of training set size: (a) generalization on the 512-state FMM; (b) extraction on the
512-state FMM; (c) generalization on the 256-state FMM; and (d) extraction on the 256-state FMM.

majority of test samples correct and infers an FMM
with size comparable to the target machine.

For the 512-state FMM, the order or number of
taps in the recurrent net was exactly equal to the
order of the target machine, while for the 256-state
F M M there was a single unnecessary tap in the
recurrent net. It would be interesting to explore how
the NNIIR ' s performance changes as the number of
input and output taps (or order) is varied.

5. CONCLUSIONS

The problem of learning finite state machines (FSMs)
from examples with recurrent neural networks has
been extensively explored. However, these results are
somewhat disappointing in the sense that the
machines that can be learned are too small to be
competitive with existing grammatical inference
algorithms. In this paper we show that large finite
state machines can be learned if we limit the class of
machines and choose a neural network whose
structure is representationally biased towards the
problem class to be learned.

We showed that an N N I I R is capable of

learning large (up to 512 states) finite memory
machines (FMMs) when trained on grammatical
strings encoded as temporal sequences. After
training on a sufficiently sized training set, the
correct F MM, or at least one with a very low error
rate, could be consistently extracted from the
trained NNIIR. However, certain restrictions were
required in order to make the problem tractable.
These restrictions include limiting the order (which
is related to the required tap delay length) and
depth (which impacts the size of the training set)
of the FSM. Furthermore the sequential machine
implementation of the F M M could only have
relatively simple logic. (Recently, Clouse et al.
(1994) has achieved similar results for feedforward
networks.) As the logic becomes more complex, the
task of finding an appropriate set of weights
becomes more difficult. We speculate that the task
of learning arbitrary logic functions, i.e. the loading
problem (Blum & Rivest, 1988), is the greatest
barrier for learning arbitrary FMMs. It is impor-
tant to keep in mind that the restrictions on order,
depth, and logic define a small class of all possible
FMMs.

Learning a Class of Large Finite State Machines 1365

It might be possible to identify other types of
DRNNs which have a representational bias towards
other classes of FSMs. For example, it would be
interesting to establish if networks with local
recurrence (Back & Tsoi, 1991; Poddar & Unnikrish-
nan, 1991; Frasconi et al., 1992; Vries & Principe,
1992; Giles, et al., 1995; Kremer, 1996) correspond to
some other sublass of FSMs, or if they are capable of
implementing arbitrary FSMs. The reader should
keep in mind that this analogy is somewhat limited
since it has been shown that the nonlinearity in simple
DRNNs enables them to be computationally very
powerful (Siegelmann & Sontag, 1992).

REFERENCES

Angluin, D. (1978). On the complexity of minimum inference of
regular sets. Information and Control, 39, 337-350.

Back, A., & Tsoi, A. (1991). FIR and I lR synapses, a new neural
network architecture for time series modelling. Neural
Computation, 3(3), 375-385.

Barto, A. G. (1990). Connectionist leaning for control. In W.
Miller, R. Sutton, & P. Werbos (Eds.), Neural networks for
control. Cambridge, MA: MIT Press.

Billings, S. A., Jamaluddin, H. B., & Cben, S. (1992). Properties of
neural networks with applications to modelling non-linear
dynamical systems. International Journal of Control, 55(1), 193-
224.

Blum, A., & Rivers, R. L. (1988). Training a 3-node neural network
is NP-complete. In Proceedings of the Computational Learning
Theory (COLT) Conference, (pp. 9-18). Morgan Kaufmann.

Clecremans, A., Servan-Schreiber, D., & McClelland, J. (1989).
Finite state automata and simple recurrent networks. Neural
Computation, 1(3), 372-381.

Clouse, D. S., Giles, C. L., Hone, B. G., & Cottreli, G. W. (1994).
Leaning large De Bruijn automata with feed-forward neural
networks. Technical Report CS94-398, Computer Science and
Engineering, University of California at San Diego, La Jolla,
CA.

Elman, J. L. (1990). Finding structure in time. Cognitive Science,
14, 179-211.

Fraseoni, P., Gori, M., & Soda, G. (1992). Local feedback
multilayered networks. Neural Computation, 4, 120-130.

Fu, K. S., & Booth, T. L. (1975). Grammatical inference:
Introduction and survey - - Part I. IEEE Transactions on
Systems, Man and Cybernetics, 5, 195-111.

Giles, C. L., Miller, C. B., Chela, D., Chen, H. H., Sun, G. Z., &
Lee, Y. C. (1992). Leaning and extracting finite state automata
with second-order recurrent neural networks. Neural Computa-
tion, 4(3), 393-°405.

Giles, C. L., Hone , B. G., & Lin, T. (1994). Leaning a class of
large finite state machines with a recurrent neural network.
Technical Report UMIACS-TR-94-94 and CS-TR-3328,
Institute for Advanced Computer Studies, University of
Maryland, College Park, Maryland.

Giles, C. L., Chen, D., Sun, G. Z., Chert, H. H., Lee, Y. C., &
Goudreau, M. W. (1995). Constructive learning of recurrent

neural networks: limitations of recurrent cascade correlation
and a simple solution. IEEE Transactions on Neural Networks,
6(4), 829-836.

Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata
theory, languages, and computation. Reading, MA: Addison-
Wesley.

Jordan, M. I. (1986). Attractor dynamics and parallelism in a
connectionist sequential machine. In Proceedings of the Eighth
Conference of the Cognitive Science Society (pp. 531-546).
Erlbaum.

Kohavi, Z. (1978). Switching andfinite automata theory (2nd edn.).
New York: McGraw-Hill.

Kremer, S. C. (1996). Finite state automata that recurrent cascade-
correlation cannot represent. To appear in D. Touretzky, M.
Mozer, & M. Hasselno (Eds.), Advances in Neural Information
Processing Systems 8. MIT Press.

Krogh, A., & Hertz, J. A. (1992). A simple weight decay can
improve generalization. In J. E. Moody, S. J. Hanson, & R. P.
Lippmann (Eds.), Advances in Neural Information Processing
Systems 4, 950-957.

Lang, K. (1992). Random DFAs can be approximately leaned
from sparse uniform examples. In Proceedings of the Fifth ACM
Workshop on Computational Learning Theory.

Mozer, M. C., & Bachrach, J. (1990). Discovering the structure of a
reactive environment by exploration. Neural Computation, 2(4),
447-457.

Narendra, K. S., & Parthasarathy, K. (1990). Identification and
control of dynamical systems using neural netowrks. 1EEE
Transactions on Neural Networks, 1, 4-27.

Poddar, P., & Unnikrishnan, K. P. (1991). Non-linear prediction of
speech signals using memory neuron networks. In B. H. Juang,
S. Y. Kung, & C. A. Kamm (Eds.), Neural Networks for Signal
Processing: Proceedings of the 1991 IEEE Workshop (pp. 1-10).
IEEE Press.

Pollack, J. B. (1991). The induction of dynamical recognizers.
Machine Learning, 7(2/3), 227-252.

Robinson, A. J., & Fallside, F. (1988). Static and dynamic error
propagation networks with application to speech coding. In
D. Z. Anderson (Ed.), Neural Information Processing Systems
(pp. 632-641). New York: American Institute of Physics.

Siegelmann, H. T., & Sontag, E. D. (1992). On the computational
power of neural networks. In Proceedings of the Fifth ACM
Workshop on Computational Learning Theory (pp. 440-449).
ACM Press.

Tino, P., & Sajda, J. (1995). Leaning and extracting initial mealy
machines with a modular neural network model. Neural
Computation, 7(4), 882-844.

de Vries, B., & Principe, J. C. (1992). The gamma model - - A new
neural network for temporal processing. Neural Networks, 5,
565-576.

Watrous, R. L., & Kuhn, G. M. (1992). Induction of finite-state
languages using second-order recurrent networks. Neural
Computation, 4(3), 406-414.

Williams, R. J., & Zipser, D. (1989). A learning algorithm for
continually running fully recurrent neural networks. Neural
Computation, 1(2), 270-280.

Williams, R. J., & Peng, J. (1990). An efficient gradient-based
algorithm for on-line training of recurrent network trajectories.
Neural Computation, 2(4), 490-501.

