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Abstract--A modified Recurrent Neural Network (RNN)  is used to learn a Self-Routing Interconnection Network 
(SRIN)  from a set o f  routing examples. The R N N  is modified so that it has several distinct initial states. This is 
equivalent to a single R N N  learning multiple different synchronous sequential machines. We define such a sequential 
machine structure as augmented and show that a S R I N  is essentially an Augmented Synchronous Sequential 
Machine ( A S S M ) .  As an example, we learn a small six-switch SRIN. After training we extract the network's 
internal representation o f  the A S S M  and corresponding SRIN. 
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1. INTRODUCTION 

The use of  Recurrent  Neural Networks (RNNs) to 
learn Synchronous Sequential Machines (SSMs) from 
examples is a problem which has been studied 
extensively. A related topic that, to the authors '  
knowledge, has not  been studied previously is the use 
of  RNNs  to learn SSMs for which several distinct 
initial s tates  are possible. 

This problem is interesting because it maps directly 
into the problem of  learning the structure of  an 
Interconnection Network (IN) from examples. 
Learning an IN from examples is an unusual 
approach. Traditionally, INs have been designed 
(and not  learned) based on several criteria, including 
speed, complexity, ease of  route calculation, and fault 
tolerance. Numerous  different types of  INs have been 
proposed. A detailed description of  many of  the INs 
that have been applied to parallel computing can be 
found in Siegel's book (Siegel, 1990). 

tThis paper is adapted from (Goudreau, 1993, Chapter 6). A 
shortened version of this paper was published in (Goudreau & 
Giles, 1993). 
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In this paper, the learning of  Self-Routing 
Interconnection Networks (SRINs) is discussed. 
SRINs are described in detail in Section 2. They 
can be used to describe many commonly used INs. If 
one considers a parallel computing system, the idea is 
that the processors have certain communication 
requirements with other processors, and certain 
message headers (also described in Section 2) must 
be used that allow the message to pass through the 
SRIN and reach the desired destination processor. 
The message headers provide routing information to 
the switches in the SRIN. 

The method that is proposed makes use of  a 
second-order Single-Layer Recurrent Neural Net- 
work (SLRNN) to learn the training data. The 
training data is a table of  source processors, message 
headers, and destination processors. Once the 
training data has been learned, the structure of  the 
SRIN can be extracted from the SLRNN.  

One topic that is related to the learning of  INs was 
presented by Hillis (Hillis, 1990). In that paper, Hillis 
makes use of  simulated evolution to construct sorting 
networks. It should be also mentioned that neural 
networks have been previously used for interconnec- 
tion network routing: for example, see (Brown, 1989; 
Brown & Liu, 1990; Funabiki et al., 1991; Funabiki et 
al., 1993; Goudreau & Giles, 1992; Hakim & 
Meadows, 1990; Lee & Chang, 1993; Marrakchi & 
Troudet,  1989; Melsa et al., 1990a; Melsa ct al., 
1990b; Takefuji & Lee, 1991; Thomopoulos  et al., 
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1991; Troudet  & Waiters, 1991). However,  none of  
these methods learned the structure of  the inter- 
connection networks; the structure of  the intercon- 
nection network was always directly mapped into the 
neural network. 

The learning of  interconnection networks is a new 
idea; as such there are no existing applications. That  
said, this paper  can be viewed as an at tempt  to look 
at interconnection network design in a different light. 
Rather  than start with the design of  an interconnec- 
tion network and have the structure of  the 
interconnection network determine the routes, it is 
possible to start with a set of  desired routes and use 
them to determine the structure of  an interconnection 
network. The possibility that this technique can be 
useful has been made more likely by automata  rule 
encoding and extraction methods recently developed 
for recurrent neural networks (Andrews et al., 1995; 
Giles & Omlin, 1993; Maclin & Shavlik, 1993). 

2. S E L F - R O U T I N G  I N T E R C O N N E C T I O N  
N E T W O R K S  

In this section we describe SRINs.  The purpose of  a 
SRIN is to allow a set of  processors to communicate 
amongst  themselves using a store-and-forward meth- 
odology. For  store-and-forward routing, a message 
travels along the path towards its designation one 
switch at a time. A switch can be thought of  as a 
simple processor that accepts a message and then 
routes the message to the appropr ia te  output  line. 
Once a switch has sent a message to the next switch, it 
is free to be used to route a different message. 

A S R I N  does not use an external controller to 
route messages. Rather, the switches in a SRIN are 
smart; they examine the message that is being sent 
and decide which way to route it. 

A message, as it is defined in this paper, consists of  
two parts: a header and a body. The header and the 
body are separated by an end-symbol, which will be 
denoted by e. A schematic diagram of  a message is 
shown in Figure 1. 

The S R I N  uses self-routing switches to route 
messages. A self-routing switch with M inputs and 
N outputs will be called a M x N self-routine switch. 
A drawing of  a I × N self-routing switch is shown in 
Figure 2. Figure 3 is a drawing of  a M x N self- 
routing switch. 

Intuitively, the routing works in the following 

end-symbol 

t  ea er r 
FIGURE 1. A message for a SRIN. The header is a string of 
symbols. The body is also a string of symbols. The header is 
separated from the body by the end-symbol, ~. 

m o ~  

S 

%%% 
% 

e 

=tl 
N-1 

FIGURE 2. A I x N sel f - rout ing switch. If the leading header 
symbol is a i l ,  the message is routed from input m0 to output n I .  

Messages are buffered until they can be routed. Messages are 
routed In a First-in, First-Out (FIFO) basis. 

manner.  When a message arrives at a switch, the 
switch strips off the first symbol of  the message 
header and examines it. I f  the symbol is not the end- 
symbol, e, the switch sends the message (minus the 
header symbol that it just examined) through the 
appropriate  output  port. I f  the symbol is the end- 
symbol, then the message should be given to the 
processor that  is associated with the switch. In other 
words, once the header has been stripped down so 
that only the end-symbol is left, the message does not 
get passed through the SRIN any longer. 

Although it is not  shown in Figures 2 and 3, it 
must be remembered that there is a connection from 
each switch to its associated processor. This can be 
thought of  as another  output  port  for the end- 
symbol, e. 

The switches work in a First-In, First-Out (FIFO) 
manner.  I f  a message can not be routed immediately, 
it is buffered until it can be routed. 

2.1. A Formal Description of a Self-Routing 
Interconnection Network 

We will now present a more formal description of an 
SRIN. The S R I N  will have a set of  M processors, 
P = {P0, Pl, . - . ,  PM-1}. Each processor, pj, will be 
associated with a set of  switches, Qj. Each set Qj must 
contain at least one switch. (Otherwise, the processor 
would have no way to communicate with the other 
processors.) 

Note  that  not all the switches in the SRIN need to 
be associated with a processor. Some switches in an 
SRIN might never be used to connect to a processor. 
Such switches are called don't care switches, or free 
switches. A message can be routed through a free 

I I m =' , ~ - - - - =  =/It 
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" 1 /  "-'-J " 
raM-1 -I [ = r/N-1 

FIGURE 3. An M x N self-routing switch. Again, input messages 
are routed on a First-In, First-Out (FIFO) basis. 
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switch, but a free switch should never be the first 
switch nor last switch in a route; to do so would 
imply that the free switch is associated with some 
processor. For  the sake of  convenience, we will 
associate some processor with each free switch, even 
though such an association is meaningless since it is 
never used. Now, the SRIN has the set of  switches 
Q = Q0 t.J Ql tJ . . .  tJ QM-I. The processor function, 
/3, performs the mapping,/3 : Q ~ P. That  is, if  q is a 
switch, then/~(q) is the processor associated with that 
switch. 

We will let R be the finite input alphabet for the 
header and the body. The end-symbol, ~, is not a 
member of  R; that is, ~ ¢ R. The end-symbol is only 
used to separate the header from the body. One 
typical alphabet would be R = {r0, rl}. 

In general, however, the magnitude of  the alphabet 
can be greater than two. Since most computing 
environments are binary, the situation becomes more 
complicated when the magnitude of  the alphabet is 
greater than two. In such cases, the members of  the 
alphabet must be encoded in some way. 

There does not  need to be a size limitation for the 
header nor the body. In a binary system, the end- 
symbol might consist o f  a string of  zeros and ones 
that is illegal in the header. Alternatively, one might 
send the header and the body separately, in which 
case the position of  the end-symbol will be under- 
stood by the receiving switch. Another approach 
would be to designate the first byte of  the header to 
represent the length of  the header. There are many 
different ways to implement the end-symbol, but for 
our purposes here we will assume the end-symbol is 
just a symbol that can be transmitted in one time 
step. 

We now define the switch transition function, ~b, 
which performs the mapping, ~b: Q x R ~ Q. If  q is a 
switch and r is the input symbol that is taken from the 
front of  the header, then q~(q, r) is the next switch 
that the message will be sent to. 

Finally, when processor pj sends a message, it 
starts the message off f rom one of  the switches in the 
set Qj. Each processor will have a switch that is 
designated for this purpose. We define the switch 
function, 7, which performs the mapping, 7 : P ~ Q. 
I f  p is a processor, then 7(P) is the switch that 
performs the first stage of  the routing for any 
messages that p sends. We will call the switch 7(P) 
the designated switch for processor p. 

The SRIN can now be defined formally. 

DEFINITION 1. A self-routing interconnection net- 
work is a 7-tuple, (P, Q, R, ~b,/3, 7, c), where: 

• P is a finite, nonempty set o f  processors. 
• Q is a finite, nonempty set of  switches. 
• R is a finite, nonempty set of  input symbols. 

• ~b : Q x R --~ Q is the switch transition function. 
• ~ : Q -~ P is the°processor function. 
• "r : P ---' Q is the switch function. 
• e is the end-symbol. 

2.2. An Example of Serf-Routing Interconnection 
Network 

Figure 4 shows an example of  a SRIN. This SRIN 
has the set of  switches Q = {qo, ql, q2, q3, q4, qs}. In 
Figure 4, the switches are shown as white boxes with 
their labels in the upper left comer. The outputs, 
labeled r0 and rh  are on the right side of  each switch. 
The inputs come to the left side of  the switch. A 
switch with a * in its lower left comer  is a designated 
switch. 

The set of  processors is P = {Po, pl ,  p2, p3}. In 
Figure 4, the processors are represented by shaded 
areas. 

For  this example, we have the input alphabet 
R ----- {to, rl}. Thus, each switch has two output  ports. 
In practice, not  all of  the output ports need to be 
connected; some can be don't  cares if they are never 
used for routing. 

The number  of  input ports for each switch can be 
zero or any larger integer. If  a switch has zero input 
ports, it must be a designated switch or it will have no 
purpose in the SRIN. 

FIGURE 4. A sample self-routing interconnection nelwork. 
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The processor function/3, is shown here: 

/~(qo) = P0 

/~(ql ) = P o  

/~(q2) =Pl  

/~(q3) = P2 

fl(q4) =P3 

~(qs) = P3 

(i) 

The switch transition function, ~b, is shown here: 

~(qo, ~o) = q4 ~(qo, r~) = q2 

~b(ql, ro) = q3 ~b(ql, r l )  = q3 

~b(q2, ro) = ql ~b(q2, r l)  = q4 

~b(q3, ro) = qo O(q3, r l )  : q4 

~b(q4, ro) = ql ~b(q4, r l)  : q5 

~b(q5, r0) = q5 ~(qs,  r l )  = q2 

(2) 

Finally, the switch function, 7, is shown here: 

7(P0) = qo 

7 (P l )  = q2 

7(P2) = q3 

7(P3) = qa 

(3) 

Suppose processorp! has data to send to processor 
P2. One possible way to send the data there is to use 
the header rlrorl. The message starts in switch 
q2 = 7(Pl)- The switch q2 strips off the left-most 
symbol in the header, in this case rl, and routes the 
message to q4 : ~b(q2, rl). The message then goes to 
switch ql = ~b(q4, r0), and at last to switch 
q3 : ~b(ql, rl). At this point, the header has been 
spent and the message is led by the end-symbol. 
Switch q3 therefore delivers the message to processor 

p2 : / 3 ( q 3 ) .  

3. S YNC HR ONOUS SEQUENTIAL MACHINES  
(SMMS) 

In this section we discuss the relationship between 
SSMs and SRINs. SSMs are thoroughly described in 
(Hopcroft  & Ullman, 1979, Kohavi, 1978). We will 
use the definition of  SSMs that is provided in 
(Kohavi,  1978). 1 (A finite state automata is a 
restricted case of  a sequential machine that has 
reduced output alphabet of  accept or reject of  input 
sequences.) 

DEFINITION 2. A synchronous sequential machine is 
a quintuple, (O, S , / ,  6, A), where: 

• O is a finite, nonempty set of  outputs symbols. 

Specifically, our definition is for a Moore machine. 

• S is a finite, nonempty set of  states. 
• I is a finite, nonempty set of  inputs symbols. 
• 6 : S x I ~ S is the state transition function. 
• A: S ---, O is the output function. 

From Definitions 1 and 2, it is clear that SRINs 
and SSMs are very similar. In fact, it only takes a 
slight expansion of  the definition of  SSMs to make 
them directly equivalent to SRINs. We will describe 
how SRINs are equivalent to Augmented SSMs 
(ASSMs), which will be defined below. 

Let each processor in P be an output  symbol in O. 
Similarly, let switch in Q be a state in S, and each 
input symbol in R be an input symbol in I. The switch 
transition function, ~b, becomes the state transition 
function, 6. The processor function, /3, becomes the 
output function, A. 

Now the only components of  the SRIN that are 
not equivalent to components in the SSM are the 
end-symbol, e, and the switch function, 7. The ASSM 
will have an end-symbol, ~. The meaning of  the end- 
symbol in this context is merely that the input string 
has reached its conclusion, and the ASSM can now 
output the value corresponding to the input string. 
The ASSM will also have a state function, p. The 
state function p performs the mapping, p : O --+ S. In 
this context, the state function allows for some set of 
initial states in the ASSM. Thus, each input string 
that is to be entered into the ASSM must have an 
output symbol associated with it. This output symbol 
allows the ASSM to choose the correct starting state. 

The ASSM can now be defined formally. 

D E F I N I T I O N  3. As augmented synchronous sequen- 
tial machine is a 7-tuple (O, S, L 6, A, p, ~), where: 

• O is a finite, nonempty set of  outputs. 
• S is a finite, nonempty set of  states. 
• I is a finite, nonempty set of  inputs. 
• 6 : S x I -~ S is the state transition function. 
• A : S --* O is the output function. 
• p : O ~ S is the state function. 
• ~; is the end-symbol. 

It is now clear from Definitions 1 and 3 that 
SRINs and ASSMs are equivalent. 

4. MACHINE INFERENCE 

Since SRINs and ASSMs are equivalent, there are 
many issues that have been explored for ASSMs that 
can now be used for SRINs. For  example, just as one 
can minimize the size of  an ASSM by merging 
equivalent states (Kohavi, 1978), one can minimize 
the size of  a SRIN by merging equivalent switches. 

What we are interested in is the inference of  a 
SRIN from examples. A great deal of  work has been 
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done on the problem of machine inference. It has been 
shown that, in the worst case, inferring a SSM from 
sparse data is an intractable problem (Angluin, 1978; 
Gold, 1978; Kearns & Valiant, 1989; Pitt & 
Warmuth, 1989). Approaches that can be used to 
infer SSMs will now be examined. 

4.1. Recurrent Neural Network Approaches 

The literature on the use of neural networks for 
grammatical inference and finite-state machine 
learning is now well-established (Cleeremans et al., 
1989; Giles et al., 1992a; Giles et al., 1992b; Mozer & 
Bachrach, 1991; Pollack, 1991; Watrous & Kuhn, 
1992; Zent et al., 1993). These approaches use RNNs 
to represent SSMs. For the work done in this paper, 
the approach described in (Giles et al., 1992a; Giles et 
al., 1992b) will be used (see Section 5.2). We refer 
readers who are interested in the details to those 
references. In Section 5, there is a qualitative 
explanation of the RNN approach to learning 
SRINs. 

Until recently, the RNN approach for SSM 
inference that is used in this paper had only been 
possible for unknown SSMs with a small number of 
states (approximately 30). It should be pointed out 
that the limited success of this approaches is due to 
the learning algorithms. Generally, the RNNs have 
rich representational capabilities. However, recent 
work has shown that certain types of large SSMs, 
with thousands of states, are learnable (Clouse et al., 
1994; Giles et al., 1995). Furthermore, the perfor- 
mance of the RNNs can sometimes be improved by 
using "hints" if partial information about the 
structure of the SSM is known (Giles & Omlin, 1993). 

Other approaches that use neural networks for 
grammatical inference exist that will not be used in 
this paper. For example, the use of update graphs has 
been proposed by Rivest and Schapire (Rivest & 
Schapire, 1987a; Rivest & Schapire, 1987b; Schapire, 
1988). An update graph is an alternate representation 
of a SSM that can be much smaller than the SSM for 
certain environments that often arise in practice. 
Update graphs can be mapped to a connectionist 
system that can learn the environment from examples 
(Mozer & Bachrach, 1990; Mozer & Bachrach, 1991). 

4.2. Traditional Approaches 

Other methods for grammatical inference, which do 
not use neural networks, have demonstrated some 
promising results. In fact, a polynomial time 
algorithm proposed by Trakhtenbrot and Barzdin 
(Trakhtenbrot & Barzdin, 1973) has been shown to 
be able to infer some very large finite automata. The 
algorithm produces a machine that is consistent with 
a sparsely labeled tree, but the machine that is 
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TABLE 1 
An example ot training data for s SRIN. The data is consistent 

with the SRIN in Figure 4 

source destination 
processor header processor 

/3o rl Pl 
P2 r l rl rotor1 Pl 
P2 rororo 130 
I:)3 for1 [32 
P l  r l  I"1 ro P3 

: : : 

produced is not necessarily the minimum machine 
that is consistent with the data. Lang (Lang, 1992) 
performed several experiments using this algorithm 
for random finite automata with 1000 states and 2000 
transitions. Given enough training examples, the 
algorithm was almost always able to construct a 
machine that was similar to the correct machine. 

5. RECURRENT NEURAL NETWORKS TO 
LEARN INTERCONNECTION NETWORKS 

The problem that we are trying to solve is posed in 
the following form. We have a training list of source 
processor, header, and destination processor combi- 
nations that must be implemented by a SRIN. For 
example, Table 1 contains data for some such 
problem. The data in Table 1 is consistent with the 
SRIN in Figure 4. We must infer a SRIN that can 
accomplish all of the routings described in the 
training list. Hopefully, the SRIN will also be able 
to generalize. That is, we would like the SRIN to 
perform correct routings even for examples that are 
not on the training list. 

In Section 5.1, the recurrent neural network that is 
used to learn the interconnection network is 
described. The training algorithm is also discussed. 
Section 5.2 contains a training example and explains 
the specific encodings used. Finally, extracting the 
SRIN from the trained recurrent neural network is 
described in Section 5.3. 

5.1. Recurrent Neural Network with Several Distinct 
Initial States 

The structure of a general SLRNN is shown in Figure 
5. There are M inputs lines, xl, x2, . . . ,  xM. The value 
ofinput xi(1 < i < M) at time t is x~. There is a single 
layer of N neurons, y~, Y2, . . . ,  YN. The output value 
of neuron y/(1 < i < N) at time t is y~. At each time 
step, these output values are stored in a bank of 
latches to act as the "state" of the network. The state 
is fed back as an input to the layer of neurons on the 
subsequent time step. In general, all of the state 
values can be considered as output values, but it 
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~N 

I I ' ' - I I  I t-I t-1 
YN Yl 

t • • • • • t 
x~ XM 

FIGURE 5. A Single-Layer Recurrent Neural Network (SLRNN). 
There are M Input values, N slate values, and (up to) N output 
values. The bank of N latches is shown on the right. 

might be that the problem domain only requires some 
number K output  values where 1 < K < N. In this 
case, only the first K neurons are considered to 
provide output  values, although all N neurons are 
providing state values. 

For  a second-order SLRNN, neu ron j  and input k 
have a combined effect on neuron i that is quantified 
by the parameter  WOk, which is called a weight. The 
output  of  neuron i is defined by the following 
equation: 

Yi = g w~kyj x k (4) 
j=-I k = l  

This multiplication and summing occurs inside the 
neurons shown in Figure 5. The activation function, 
g ( x ) ,  is the sigmoid function shown here: 

1 
g(x) - 1 + e -~  (5) 

The second-order SLRNN is used to infer the 
ASSM that is equivalent to the unknown SRIN. 
Again, the approach used in (Giles et al., 1992a; Giles 
et al., 1992b) will be used here. The SLRNN will 
learn the training data, and the ASSM will be 
extracted from the SLRNN. 

The training algorithm that is used is a variation of  
the Real-Time Recurrent-Training (RTRL) algo- 
rithm proposed by Williams and Zipser (Williams & 
Zipser, 1989). The original RTRL algorithm was 
proposed for first-order SLRNNs, but the version 
used here is for second-order SLRNNs. The R T R L  
algorithm is an on-line, gradient-descent-based 
algorithm. Other recurrent training algorithms could 
be used for this application, e.g., backpropagation 
through time or the extended Kalman estimator. 

Recall that the training data is in the form of  Table 
1. Each line in the table is called a table entry. In 
order to use the SLRNN, it is necessary to encode the 
symbols of  a table entry into binary vectors that can 
be recognized by the SLRNN. The source processor 

defines the initial state vector of  the S L R N N  (i.e., the 
values of  y0 for 1 < i < N). Thus, each source 
processor must be assigned a distinct, N-bit binary 
vector. The input symbols in the header (along with 
the end-symbol) correspond to the input vectors of 
the SLRNN (i.e., the values of  x~ for 1 < i < M). 
Thus, each input symbol (and the end-symbol) must 
be assigned a distinct, M-bit binary vector. Note that 
the inputs to the S LRN N  change over time, with the 
binary vector of  the first input symbol applied at 
t = 1, the binary vector of  the second input symbol 
applied at t -- 2, etc. After the binary vectors for the 
sequence of  input symbols have been applied, the 
binary vector for the end-symbol is applied as the 
final input vector. At this point it is possible to check 
the resulting output vector of  the S LRN N  (i.e., the 
values of  y r  for 1 < i < K where T is the final time 
step) against the desired result. The desired result is a 
K-bit binary vector that represents the destination 
processor, so each destination processor must be 
assigned a distinct, K-bit binary vector. 

Intuitively, the input vectors of  the SLRNN 
represent the inputs and the end-symbol of the 
ASSM (and therefore the input symbols and the 
end-symbol of  the SRIN). The state vectors of 
the SLRNN represent the states of  the ASSM 
(and the switches of  the SRIN). And the output 
vectors of  the SLRNN represent the outputs of the 
ASSM (and the processors of  the SRIN). 

It is important to note that the binary vectors that 
are chosen to represent the source processors, the 
input symbols, the end symbol, and the destination 
processors are arbitrary. However, we will use simple 
one-hot encodings for all of  the necessary binary 
vectors. Recall that a one-hot code is a code for 
which each symbol is represented by a vector that has 
one element equal to one while all of  the other 
elements are equal to zero. This structure is chosen 
because it is known that (given enough neurons) a 
solution will exist to map the S L R N N  to the desired 
ASSM (Goudreau et al., 1994). The solution that is 
known to exist requires the use of  one-hot codes for 
the states and the inputs. The representation that the 
SLRNN actually learns, however, can have states 
that are not in a one-hot code. The S LRN N  might 
construct a solution that is different from the one-hot 
solution. 

Clearly, there must be enough neurons to 
represent the processors (outputs) with a one-hot 
code. Therefore, the number of  neurons must at least 
be equal to the number o f  processors. For  the one- 
hot solution to exist, however, there must be one 
neuron for each switch as well. Unfortunately, one 
does not generally know the number of  switches 
beforehand. It is necessary to estimate the number of 
switches, and provide at least that many neurons. 
This is one of  the weaknesses that is common to 
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many neural network approaches: often it is not clear 
what size neural network would be best. One 
approach is to start with as many switch neurons as 
reasonably possible; if training is successful, then 
reduce the number of  neurons using a destructive 
heuristic (Giles & Omlin, 1994). 

Assume that the values ~ r  for 1 < i < K constitute 
the binary vector that represents the desired output 
vector. Training occurs for this table entry if, for any 
i(1 < i <  K) we have lyr-~rl > H, where ~ = 0.2 
for our simulations. I f  it is determined that training 
should occur for this table entry, we use the learning 
algorithm to incrementally change the weights in the 
direction opposite that of  the gradient of  the mean- 
square-error cost function, Er:  

K 

Er = E 0 'r  - ~r)2. (6) 
/=1 

The weights of  the SLRNN will therefore potentially 
be updated after each table entry is examined. As a 
result, the learning algorithm does not  perform true 
gradient descent for the entire table o f  data; rather, it 
approximates true gradient descent. 

The table of  training data is cycled through 
repeatedly until none of  the table entries require 
updating of  the weights. Once the entire table is 
learned, the structure of  the underlying ASSM is 
extracted from the SLRNN. This procedure is 
described in Section 5.3. The state vectors that are 
created through the use of  the learning algorithm are 
not  examined during training, but  they are examined 
after training to describe the structure of  the 
underlying ASSM. As mentioned before, these states 
actually represent switches in the SRIN. Since the 
neurons have a continuous activation function, it is 
generally necessary to use some partitioning and 
clustering techniques to make a group of  states 
equivalent. After this is done, an ASSM can be 
extracted from the SLRNN. The extracted ASSM 
might not be minimal, but in this case standard SSM 
minimization techniques can be used. 

It is instructive to compare learning an ASSM with 
learning a SSM, which has been extensively studied 
by the neural network community. The problem of  
inferring an ASSM, as opposed to inferring an SSM, 
is that in an ASSM there will generally be several 
possible initial states. In an SSM, a single initial state 
is generally assumed. With this in mind, the reader 
should be able to see that the S L R N N  that is trying 
to learn an ASSM will, in fact, be trying to learn a 
SSM for each possible initial state. However,  all of  
these SSMs will have the same structure; the only 
difference is that the initial state varies. Since all of 
the SSMs have the same structure, it can reasonably 
be hoped that the SLRNN will try to merge these 
multiple SSMs into a single ASSM. In fact, this turns 

out to be the case. Rather  than learning several 
different SSMs in different sections of  the state space, 
the SLRNN will take advantage of  the identical 
structures of  the SSMs and merge them. 

5.2. A Training Example 

Perhaps the easiest way to describe the mapping to 
the SLRNN would be to describe the structure of  the 
SLRNN given data for the SRIN from Figure 4. We 
will choose to have N = 8 neurons in the SLRNN. 
The choice of  N = 8 is somewhat arbitrary; however, 
we did want to give the recurrent network enough 
neurons to easily learn the interconnection network. 
Recall that we do not  know the structure of  the SRIN 
and are trying to learn it from routing strings. Since 
one-hot codes will be used, four initial states vectors 
are necessary, corresponding to the four source 
processors that are present in the data table. In 
reality, however, it should be remembered that the 
state vectors in the S L R N N  will actually correspond 
to switches from the SRIN, rather than processors. 
Thus, when we choose state vectors for the four 
source processors, we are really choosing state 
vectors for their respective designated switches (as 
shown in eqn 3). Let hn, m be vector of  dimension n 
that has a value "1"  in position m and a value "0" in 
all of  the other positions. These are the initial values 
of  the Yi vectors. For  example, h5,2 = [0, 1, 0, 0, 0] r. 
When the source processor is processor Po (which is 
equivalent to saying that the designated switch is qo, 
see eqn 3) the initial state vector will be hs, 1. 
Similarly, source processor pl will make the initial 
state vector hs, 3, source processor P2 will make the 
initial state vector hs, 4, and source processor P3 will 
make the initial state vector ha, 5. Messages always 
start at these source processors. This mapping of 
source processors to initial state vectors can be made 
arbitrarily. There is no reason not to use vector ha, 2, 
for example. The only reason that this vector was not 
used was because of  the way the training data was 
generated. 

Now the input symbols, ro and rl, as well as the 
end-symbol, e, can be mapped to input vectors. There 
are three symbols that must be mapped to input 
vectors, so we will have three vectors of  length three 
for this purpose. Let  r0 correspond to input vector 
h3,1, rl correspond to input vector h3,2, and c 
correspond to input vector h3, 3. 

Finally, the processors can now be mapped to 
output  vectors. There are eight neurons in the 
SLRNN,  but  only the outputs of  four of  them are 
needed for the output  vectors. Therefore, the output 
values will only be taken from neurons 0, 1, 2, and 3. 
Destination processor Po will correspond to output 
vector h4, I, destination processor Pl will correspond 
to output  vector h4, 2, destination processor P2 will 
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correspond to output  vector h4,3, and destination 
processor P3 will correspond to output vector h4, 4. 

In summary, the second-order SLRNN network 
that is used for this example is shown in Figure 5 and 
has N = 8 neurons and M = 3 input bits. When the 
output values are examined, only the first four 
neurons are used (K = 4). 

Now that the specifics of  the encoding have been 
explained, we can use the training data to train the 
SLRNN. The data table contained an entry for every 
header up to length 11 (including the end-symbol) for 
every processor. The data table starts with strings of  
length one and concludes with strings of  length 11. 
The SLRNN does not  try to learn all of  the data in 
this table simultaneously. Rather, it first learns the 
first 20 lines of  the data table for each possible 
starting state. Then the resulting SLRNN is checked 
against the rest of  the data table to see how it 
generalizes. I f  perfect generalization does not occur, 
the SLRNN adds 20 more lines to its training data. 
Once these 40 lines are learned, generalization is 
checked again. This process is repeated until all o f  the 
lines in the data table have been learned. This 
heuristic approach, which involves incremental 
expansion of  the training data, has proven to be 
quite successful in practice. 

For  our experiment, by the time the SLRNN 
learned the first 280 lines of the table, the SLRNN 
was able to generalize for  all of  the remaining strings 
in the table. The full table had 8188 lines. 

5.3. Extraction of  the Interconnection Network from 
the Trained Neural Network 

It was mentioned in Section 5.1 that this problem can 
be thought of  as the problem of learning several 
separate SSMs, in this case four. Given this fact, one 
can examine the four separate SSMs that are 
generated from the four different initial states. 

TABLE 2 
Machine M1, the unminlmlzed SSM with Initial state 

corresponding to switch q0- Column S contains the state. 
Column O contains the oulpuL Column NSo contains the 
next state given Input O. Column NS1 contains the next 
state given Input 1. Column QR contains the quantlzed 

representation for the state in the SLRNN 

S Q NSo NS 1 QR 

1 1 2 3 10000000 
2 4 4 5 01111100 
3 2 4 6 00100001 
4 1 7 7 11000O11 
5 4 8 9 11010100 
6 4 4 5 01011100 
7 3 10 6 00010101 
8 4 11 9 11001101 
9 2 4 2 00100101 

10 1 6 3 10000001 
11 4 11 9 11011101 
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TABLE 3 
Machine M2, the unminimlzed SSM with initial stab) 

corresponding to switch q2 

S Q NSo NS 1 QR 

1 2 2 3 oo 10o00o 
2 1 4 4 11000011 
3 4 2 5 01011110 
4 3 6 7 00010101 
5 4 8 9 11010100 
6 1 7 10 10000101 
7 4 2 5 01011100 
8 4 11 12 11001101 
9 2 2 7 01100101 

10 2 2 7 oo 10000 1 
11 4 11 12 11011101 
12 2 2 13 00100101 
13 4 2 5 01111100 

Table 2 shows the unminimized SSM with initial 
state corresponding to switch q0 that was extracted 
from the SLRNN. This machine shall be called M 1. 
One of  the advantages of  using second-order 
SLRNNs is the ease with which automata can be 
extracted from the trained or training networks. 
However, first-order SLRNNs could also be used 
(Manolios & Fanelli, 1994; Miller & Giles, 1993). 
Details on the method of  SSM extraction that we 
used can be found in (Giles et al., 1992a; Giles et al., 
1992b). The left column (S) contains the number of  
each state. State "1"  in Tables 2 to 9 corresponds to 
the initial state. The next column (O) contains the 
output  value associated with that state. The following 
two columns contain the next state given input zero 
(NSo) and given input one (NSl). The final column 
(QR) contains the quantized representation for the 
state in the SLRNN. It should be kept in mind that 
the S LRN N  actually uses real valued state vectors, as 
does the clustering algorithm that was used for SSM 
extraction. The SSM extraction algorithm makes use 
of  a real valued representative vector for each state. In 
the SLRNN,  whenever a state vector is "close" to a 

TABLE 4 
Machine M3, the unminimlzed SSM with initial stab) 

corresponding to switch q3 

S 0 NSo NS 1 QR 

1 3 2 3 00010000 
2 1 3 4 100001O1 
3 4 5 6 010111 O0 
4 2 5 3 O01 00001 
5 1 7 7 11000011 
6 4 8 9 11010100 
7 3 2 10 00010101 
8 4 11 12 11001101 
9 2 5 3 01100101 

10 4 5 6 01010100 
11 4 8 9 11011101 
12 2 5 13 00100101 
13 4 5 6 01111100 
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TABLE 5 
Machine M4, the unminimized SSM with initial state 

corresponding to switch q4 

S 0 N ~  NS1 QR 

1 4 2 3 00001000 
2 1 4 4 11000011 
3 4 5 6 11000101 
4 3 7 8 00010101 
5 4 9 10 11001101 
6 2 2 11 01100101 
7 1 11 12 10000101 
8 4 2 13 01010100 
9 4 9 10 11011101 

10 2 2 14 00100101 
11 4 2 13 01011100 
12 2 2 11 00100001 
13 4 5 6 11010100 
14 4 2 13 01111100 

representative state vector, it is assumed that the two 
vectors implement the same state. To simplify our 
analysis, the real valued representative state vectors 
are quantized. Any value greater than or equal to 0.5 
in a representative state vector is set to 1 after 
quantization, while any value less than 0.5 is set to 0. 
Henceforth,  when state vectors are mentioned, we 
will actually be talking about these quantized 
representative state vectors. Thus, in general, the 
state vectors in Table 2 actually represent some 
volume of  the state space. 

The unminimized SSMs given designated switches 
q2, q3, and q4 are shown in Tables 3 (machine M2), 4 
(machine M3), and 5 (machine M4), respectively. 

Once the unminimized SSMs and their state vector 
representations are known, the SSMs can be 
minimized and merged. Table 6 contains the 
minimized SSM that is extracted from the SLRN N  
when the initial state vector corresponds to 
designated switch q0. Each state in the minimized 
machine can be associated with one or more state 
vectors. For  example, state 1 of  the SSM in Table 6 is 
associated with two state vectors, 10000000 and 
10000001. 

The minimal SSMs with initial states correspond- 

TABLE 6 
The minimal SSM with initial state corresponding to swilch q0. 

This SBM is equivalent to machine M1 in Table 2 

S 0 NSo NS 1 QR 

1 1 2 3 10000000 
10000001 

,? 4 4 5 01011100 
01111100 

3 2 4 2 00100001 
00100101 

4 1 6 6 11000011 
5 4 5 3 11001101 

11010100 
11011101 

6 3 1 2 00010101 
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TABLE 7 
The minimal SSM with initial state corresponding to switch q=. 

This SSM is equivalent to machine M2 in Table 3 

S 0 NSo NS 1 QR 

1 2 2 3 00100000 
00100001 
00100101 
01100101 

2 1 4 4 11000011 
3 4 2 5 01011100 

01011110 
01111110 

4 3 6 3 00010101 
5 4 5 1 11001101 

11010100 
11011101 

6 1 3 1 10000101 

ing to designated switches q2, q3, and q4 are shown in 
Tables 7, 8, and 9, respectively. With the information 
in Table 6 to 9, we can merge the SSMs into an 
ASSM. States in the SSMs with any overlapping 
vector representations are assumed to be equivalent. 
The results show that the S L R N N  has indeed 
"merged" the SSMs. 

In fact, if  we ignore the quantized representations 
of  the states, the four minimal SSMs are equivalent 
except for the fact that they have different initial 
states. That  is, if  we ignore the initial states, the four 
SSMs can be relabeled so that they are identical. 

It should be clear how Table 6 corresponds to the 
SRIN in Figure 4. State 1 corresponds to switch q0, 
state 2 corresponds to switch q4, state 3 corresponds 
to switch q2, state 4 corresponds to switch ql, state 5 
corresponds to switch qs, and state 6 corresponds to 
switch q3- Simple observation will show that the other 
three SSMs also correspond to the SRIN in Figure 4. 

Table 10 merges this information to show how the 
S LRN N  represents the switches of  Figure 4. State 
vectors are shown and the machines that utilized 
them are presented. 

Examination of  Table 10 shows that, for the most 

TABLE 8 
The minimal SSM with initial state corresonding to switch q3. 

This SSM is equivalent to machine M3 in Table 4 

S 0 NSo NS 1 QR 

1 3 2 3 00010000 
00010101 

2 1 3 4 10000101 
3 4 5 6 01010100 

01011100 
01111100 

4 2 5 3 00100001 
00100101 
01100101 

5 1 1 1 10000101 
6 4 6 4 11001101 

11010100 
11011101 
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TABLE 9 
The minimal SSM with initial state corresponding to switch q4- 

This BSM Is equivalent to machine M4 In Table 5 

S 0 NSo NS 1 OR 

1 4 2 3 00001000 
01010100 
01011100 
01111100 

2 1 4 4 11000011 
3 4 3 5 11000101 

11001101 
11010100 
11011101 

4 3 6 1 00010101 
5 2 2 1 00100001 

00100101 
01100101 

6 1 1 5 10000101 

part,  machines M1, M2, M3, and M4 make use of  
state vectors that are approximately equal. For  
example, all four machines use the state region 
00010101 to represent switch q3 from Figure 4. 

Another  interesting fact is that the state vectors 
that represent equivalent states tend to be close to 
each other in the state space. That  is, the state vectors 
for equivalent states tend to have small Hamming 
distances from one another. For  example, machine 
M1 uses two state regions to represent switch q4, 
01011100 and 01111100. This fact leads one to believe 
that the SLRNN actually uses something like a 
cohesive sub-space for each state. It seems likely that 
the unminimized SSMs that were extracted have 
equivalent states due to the nature of  the SSM 
extraction algorithm that is used. I f  other clustering 
approaches were used (Watrous & Kuhn, 1992; Zeng 

TABLE 10 
How the SLRNN represents the switches from the SRIN In 

Figure 4 

switch QR machine 

q~ 10000000 M 1 
10000001 M1 
10000101 M2, M3, M4 

ql 11000011 M1, M2, M3, M4 
q2 00100000 M2 

00100001 M1, M2, M3, M4 
00100101 M1, M2, M3, M4 
01100101 M2, M3, M4 

q3 00010000 M 3 
00010101 M1, M2, M3, M4 

q4 00001000 M4 
01010100 M3, M4 
01011100 M1, M2, M3, M4 
01011110 M2 
01111100 M1, M2, M3, M4 

q5 11000101 M4 
11001101 M1, M2, M3, M4 
11010100 M1, M2, M3, M4 
11011101 M1, M2, M3, M4 
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et al., 1993), it is possible that minimal SSMs could 
have been extracted directly from the SLRNN. 
Furthermore, values such as 0.49 and 0.51 will have 
different values after quantization, although they are 
in fact quite close in the state space. Thus, two state 
vectors that are quite close in terms of  Euclidean 
distance (before quantization) might be quite far 
from each other after quantization. This is another 
possible explanation for the fact that the extracted 
SSM was not minimal. 

Another observation is that the SLRNN did not 
learn anything approaching the one-hot solution that 
was described in Section 5. In fact, the only states 
vectors that were one-hot after quantization were the 
initial state vectors that were forced upon the 
SLRNN. However, while these initial state vectors 
were not returned to, they did seem to give the 
S LRN N  a bias on its state representation. 

Finally, the fact that the correct SRIN was 
extracted means that good generalization for strings 
longer than those in the training data has obviously 
been achieved. 

6. C O N C L U S I O N S  

A radical approach to the construction of  inter- 
connection networks has been presented. This 
approach uses training data from an unknown 
interconnection network to teach a recurrent neural 
network (RNN) to generate an interconnection 
network that is capable of  routing the training data. 

It was shown that this problem maps directly to 
the problem of  learning a SSM with several distinct 
initial states. The proposed approach took advantage 
of  previous work on the use o f  RNNs to inference 
synchronous sequential machines (SSMs). However, 
it should be noted that the relationship between 
interconnection networks and SSMs might also allow 
for some non-neural network approaches to be used 
for the same problem. It seems likely that such 
methods could be varied slightly to accommodate the 
interconnection network inference problem, just as 
the R N N  method for SSM inference can be varied 
slightly to perform interconnection network infer- 
ence. 

It was demonstrated that given a table of  training 
data, it is possible to use a second-order, single-layer 
R N N  to generate the structure of  an interconnection 
network that is capable of  routing the training data. 
Furthermore,  the interconnection network that is 
generated might be able to generalize for inputs that 
are not in the training data. A sample problem was 
used to illustrate the methodology. It is an open 
question as to whether other R N N  models and/or 
training methods can outperform these results. 

This work clearly pointed out  the need for further 
research into the use of  RNNs to inference larger 
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SSMs. To date, RNNs have had limited success for 
large problems in grammatical inference, but some 
recent results are promising (Giles et al., 1995; Clouse 
et al., 1994). 

The concept of  learning interconnection networks 
is an unusual one for the interconnection network 
community. It remains to be seen whether such 
learning approaches will become a useful method for 
interconnection network design or analysis. 
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