
Pergamon

0893-6080(95)00025-9

Neural Networks, Vol. 8, No. 5, pp. 79~804, 1995
Copyright © 1995 Elsevier Science Ltd

Printed in USA. All rights reserv¢~l
0893-6080/95 $9.50+ .00

CONTRIB UTED AR TICLE

Using Recurrent Neural Networks to Learn the Structure of
Interconnection Networkst

M A R K W . G O U D R E A U 1 AND C. L E E G ILES 2

tUniversity of Central Florida, 2NEC Research Institute, Inc. and UMIACS, University of Maryland

(Received 24 March 1994; revised and accepted 1 February 1995)

Abstract--A modified Recurrent Neural Network (RNN) is used to learn a Self-Routing Interconnection Network
(SRIN) from a set o f routing examples. The R N N is modified so that it has several distinct initial states. This is
equivalent to a single R N N learning multiple different synchronous sequential machines. We define such a sequential
machine structure as augmented and show that a S R I N is essentially an Augmented Synchronous Sequential
Machine (A S S M) . As an example, we learn a small six-switch SRIN. After training we extract the network's
internal representation o f the A S S M and corresponding SRIN.

Keywords---Interconnection networks, Recurrent networks, Real-Time training, Knowledge extraction,
Sequential machines, Finite-State automata.

1. INTRODUCTION

The use of Recurrent Neural Networks (RNNs) to
learn Synchronous Sequential Machines (SSMs) from
examples is a problem which has been studied
extensively. A related topic that, to the authors '
knowledge, has not been studied previously is the use
of RNNs to learn SSMs for which several distinct
initial s tates are possible.

This problem is interesting because it maps directly
into the problem of learning the structure of an
Interconnection Network (IN) from examples.
Learning an IN from examples is an unusual
approach. Traditionally, INs have been designed
(and not learned) based on several criteria, including
speed, complexity, ease of route calculation, and fault
tolerance. Numerous different types of INs have been
proposed. A detailed description of many of the INs
that have been applied to parallel computing can be
found in Siegel's book (Siegel, 1990).

tThis paper is adapted from (Goudreau, 1993, Chapter 6). A
shortened version of this paper was published in (Goudreau &
Giles, 1993).

Acknowledgement: The authors would like to acknowledge
useful discussions with Sanjcev Kulkarni and Cliff B. Miller. The
authors would also like to thank an anonymous reviewer whose
comments led to several improvements in the paper.

Requests for reprints should be sent to Dr. C. Lee Giles, NEC
Research Institute, Inc., 4 Independence Way, Princeton, NJ
08540.

793

In this paper, the learning of Self-Routing
Interconnection Networks (SRINs) is discussed.
SRINs are described in detail in Section 2. They
can be used to describe many commonly used INs. If
one considers a parallel computing system, the idea is
that the processors have certain communication
requirements with other processors, and certain
message headers (also described in Section 2) must
be used that allow the message to pass through the
SRIN and reach the desired destination processor.
The message headers provide routing information to
the switches in the SRIN.

The method that is proposed makes use of a
second-order Single-Layer Recurrent Neural Net-
work (SLRNN) to learn the training data. The
training data is a table of source processors, message
headers, and destination processors. Once the
training data has been learned, the structure of the
SRIN can be extracted from the SLRNN.

One topic that is related to the learning of INs was
presented by Hillis (Hillis, 1990). In that paper, Hillis
makes use of simulated evolution to construct sorting
networks. It should be also mentioned that neural
networks have been previously used for interconnec-
tion network routing: for example, see (Brown, 1989;
Brown & Liu, 1990; Funabiki et al., 1991; Funabiki et
al., 1993; Goudreau & Giles, 1992; Hakim &
Meadows, 1990; Lee & Chang, 1993; Marrakchi &
Troudet, 1989; Melsa et al., 1990a; Melsa ct al.,
1990b; Takefuji & Lee, 1991; Thomopoulos et al.,

794 M. W. Goudreau and C. L. Giles

1991; Troudet & Waiters, 1991). However, none of
these methods learned the structure of the inter-
connection networks; the structure of the intercon-
nection network was always directly mapped into the
neural network.

The learning of interconnection networks is a new
idea; as such there are no existing applications. That
said, this paper can be viewed as an at tempt to look
at interconnection network design in a different light.
Rather than start with the design of an interconnec-
tion network and have the structure of the
interconnection network determine the routes, it is
possible to start with a set of desired routes and use
them to determine the structure of an interconnection
network. The possibility that this technique can be
useful has been made more likely by automata rule
encoding and extraction methods recently developed
for recurrent neural networks (Andrews et al., 1995;
Giles & Omlin, 1993; Maclin & Shavlik, 1993).

2. S E L F - R O U T I N G I N T E R C O N N E C T I O N
N E T W O R K S

In this section we describe SRINs. The purpose of a
SRIN is to allow a set of processors to communicate
amongst themselves using a store-and-forward meth-
odology. For store-and-forward routing, a message
travels along the path towards its designation one
switch at a time. A switch can be thought of as a
simple processor that accepts a message and then
routes the message to the appropr ia te output line.
Once a switch has sent a message to the next switch, it
is free to be used to route a different message.

A S R I N does not use an external controller to
route messages. Rather, the switches in a SRIN are
smart; they examine the message that is being sent
and decide which way to route it.

A message, as it is defined in this paper, consists of
two parts: a header and a body. The header and the
body are separated by an end-symbol, which will be
denoted by e. A schematic diagram of a message is
shown in Figure 1.

The S R I N uses self-routing switches to route
messages. A self-routing switch with M inputs and
N outputs will be called a M x N self-routine switch.
A drawing of a I × N self-routing switch is shown in
Figure 2. Figure 3 is a drawing of a M x N self-
routing switch.

Intuitively, the routing works in the following

end-symbol

t ea er r
FIGURE 1. A message for a SRIN. The header is a string of
symbols. The body is also a string of symbols. The header is
separated from the body by the end-symbol, ~.

m o ~

S

%%%
%

e

=tl
N-1

FIGURE 2. A I x N sel f - rout ing switch. If the leading header
symbol is a i l , the message is routed from input m0 to output n I .

Messages are buffered until they can be routed. Messages are
routed In a First-in, First-Out (FIFO) basis.

manner. When a message arrives at a switch, the
switch strips off the first symbol of the message
header and examines it. I f the symbol is not the end-
symbol, e, the switch sends the message (minus the
header symbol that it just examined) through the
appropriate output port. I f the symbol is the end-
symbol, then the message should be given to the
processor that is associated with the switch. In other
words, once the header has been stripped down so
that only the end-symbol is left, the message does not
get passed through the SRIN any longer.

Although it is not shown in Figures 2 and 3, it
must be remembered that there is a connection from
each switch to its associated processor. This can be
thought of as another output port for the end-
symbol, e.

The switches work in a First-In, First-Out (FIFO)
manner. I f a message can not be routed immediately,
it is buffered until it can be routed.

2.1. A Formal Description of a Self-Routing
Interconnection Network

We will now present a more formal description of an
SRIN. The S R I N will have a set of M processors,
P = {P0, Pl, . - . , PM-1}. Each processor, pj, will be
associated with a set of switches, Qj. Each set Qj must
contain at least one switch. (Otherwise, the processor
would have no way to communicate with the other
processors.)

Note that not all the switches in the SRIN need to
be associated with a processor. Some switches in an
SRIN might never be used to connect to a processor.
Such switches are called don't care switches, or free
switches. A message can be routed through a free

I I m =' , ~ - - - - = =/It

%% % S f S S • % •

• •

" 1 / "-'-J "
raM-1 -I [= r/N-1

FIGURE 3. An M x N self-routing switch. Again, input messages
are routed on a First-In, First-Out (FIFO) basis.

Recurrent Neural Networks 795

switch, but a free switch should never be the first
switch nor last switch in a route; to do so would
imply that the free switch is associated with some
processor. For the sake of convenience, we will
associate some processor with each free switch, even
though such an association is meaningless since it is
never used. Now, the SRIN has the set of switches
Q = Q0 t.J Ql tJ . . . tJ QM-I. The processor function,
/3, performs the mapping,/3 : Q ~ P. That is, if q is a
switch, then/~(q) is the processor associated with that
switch.

We will let R be the finite input alphabet for the
header and the body. The end-symbol, ~, is not a
member of R; that is, ~ ¢ R. The end-symbol is only
used to separate the header from the body. One
typical alphabet would be R = {r0, rl}.

In general, however, the magnitude of the alphabet
can be greater than two. Since most computing
environments are binary, the situation becomes more
complicated when the magnitude of the alphabet is
greater than two. In such cases, the members of the
alphabet must be encoded in some way.

There does not need to be a size limitation for the
header nor the body. In a binary system, the end-
symbol might consist o f a string of zeros and ones
that is illegal in the header. Alternatively, one might
send the header and the body separately, in which
case the position of the end-symbol will be under-
stood by the receiving switch. Another approach
would be to designate the first byte of the header to
represent the length of the header. There are many
different ways to implement the end-symbol, but for
our purposes here we will assume the end-symbol is
just a symbol that can be transmitted in one time
step.

We now define the switch transition function, ~b,
which performs the mapping, ~b: Q x R ~ Q. If q is a
switch and r is the input symbol that is taken from the
front of the header, then q~(q, r) is the next switch
that the message will be sent to.

Finally, when processor pj sends a message, it
starts the message off f rom one of the switches in the
set Qj. Each processor will have a switch that is
designated for this purpose. We define the switch
function, 7, which performs the mapping, 7 : P ~ Q.
I f p is a processor, then 7(P) is the switch that
performs the first stage of the routing for any
messages that p sends. We will call the switch 7(P)
the designated switch for processor p.

The SRIN can now be defined formally.

DEFINITION 1. A self-routing interconnection net-
work is a 7-tuple, (P, Q, R, ~b,/3, 7, c), where:

• P is a finite, nonempty set o f processors.
• Q is a finite, nonempty set of switches.
• R is a finite, nonempty set of input symbols.

• ~b : Q x R --~ Q is the switch transition function.
• ~ : Q -~ P is the°processor function.
• "r : P ---' Q is the switch function.
• e is the end-symbol.

2.2. An Example of Serf-Routing Interconnection
Network

Figure 4 shows an example of a SRIN. This SRIN
has the set of switches Q = {qo, ql, q2, q3, q4, qs}. In
Figure 4, the switches are shown as white boxes with
their labels in the upper left comer. The outputs,
labeled r0 and rh are on the right side of each switch.
The inputs come to the left side of the switch. A
switch with a * in its lower left comer is a designated
switch.

The set of processors is P = {Po, pl , p2, p3}. In
Figure 4, the processors are represented by shaded
areas.

For this example, we have the input alphabet
R ----- {to, rl}. Thus, each switch has two output ports.
In practice, not all of the output ports need to be
connected; some can be don't cares if they are never
used for routing.

The number of input ports for each switch can be
zero or any larger integer. If a switch has zero input
ports, it must be a designated switch or it will have no
purpose in the SRIN.

FIGURE 4. A sample self-routing interconnection nelwork.

796 M. W. Goudreau and C. L. Giles

The processor function/3, is shown here:

/~(qo) = P0

/~(ql) = P o

/~(q2) =Pl

/~(q3) = P2

fl(q4) =P3

~(qs) = P3

(i)

The switch transition function, ~b, is shown here:

~(qo, ~o) = q4 ~(qo, r~) = q2

~b(ql, ro) = q3 ~b(ql, r l) = q3

~b(q2, ro) = ql ~b(q2, r l) = q4

~b(q3, ro) = qo O(q3, r l) : q4

~b(q4, ro) = ql ~b(q4, r l) : q5

~b(q5, r0) = q5 ~(qs, r l) = q2

(2)

Finally, the switch function, 7, is shown here:

7(P0) = qo

7 (P l) = q2

7(P2) = q3

7(P3) = qa

(3)

Suppose processorp! has data to send to processor
P2. One possible way to send the data there is to use
the header rlrorl. The message starts in switch
q2 = 7(Pl)- The switch q2 strips off the left-most
symbol in the header, in this case rl, and routes the
message to q4 : ~b(q2, rl). The message then goes to
switch ql = ~b(q4, r0), and at last to switch
q3 : ~b(ql, rl). At this point, the header has been
spent and the message is led by the end-symbol.
Switch q3 therefore delivers the message to processor

p2 : / 3 (q 3) .

3. S YNC HR ONOUS SEQUENTIAL MACHINES
(SMMS)

In this section we discuss the relationship between
SSMs and SRINs. SSMs are thoroughly described in
(Hopcroft & Ullman, 1979, Kohavi, 1978). We will
use the definition of SSMs that is provided in
(Kohavi, 1978). 1 (A finite state automata is a
restricted case of a sequential machine that has
reduced output alphabet of accept or reject of input
sequences.)

DEFINITION 2. A synchronous sequential machine is
a quintuple, (O, S , / , 6, A), where:

• O is a finite, nonempty set of outputs symbols.

Specifically, our definition is for a Moore machine.

• S is a finite, nonempty set of states.
• I is a finite, nonempty set of inputs symbols.
• 6 : S x I ~ S is the state transition function.
• A: S ---, O is the output function.

From Definitions 1 and 2, it is clear that SRINs
and SSMs are very similar. In fact, it only takes a
slight expansion of the definition of SSMs to make
them directly equivalent to SRINs. We will describe
how SRINs are equivalent to Augmented SSMs
(ASSMs), which will be defined below.

Let each processor in P be an output symbol in O.
Similarly, let switch in Q be a state in S, and each
input symbol in R be an input symbol in I. The switch
transition function, ~b, becomes the state transition
function, 6. The processor function, /3, becomes the
output function, A.

Now the only components of the SRIN that are
not equivalent to components in the SSM are the
end-symbol, e, and the switch function, 7. The ASSM
will have an end-symbol, ~. The meaning of the end-
symbol in this context is merely that the input string
has reached its conclusion, and the ASSM can now
output the value corresponding to the input string.
The ASSM will also have a state function, p. The
state function p performs the mapping, p : O --+ S. In
this context, the state function allows for some set of
initial states in the ASSM. Thus, each input string
that is to be entered into the ASSM must have an
output symbol associated with it. This output symbol
allows the ASSM to choose the correct starting state.

The ASSM can now be defined formally.

D E F I N I T I O N 3. As augmented synchronous sequen-
tial machine is a 7-tuple (O, S, L 6, A, p, ~), where:

• O is a finite, nonempty set of outputs.
• S is a finite, nonempty set of states.
• I is a finite, nonempty set of inputs.
• 6 : S x I -~ S is the state transition function.
• A : S --* O is the output function.
• p : O ~ S is the state function.
• ~; is the end-symbol.

It is now clear from Definitions 1 and 3 that
SRINs and ASSMs are equivalent.

4. MACHINE INFERENCE

Since SRINs and ASSMs are equivalent, there are
many issues that have been explored for ASSMs that
can now be used for SRINs. For example, just as one
can minimize the size of an ASSM by merging
equivalent states (Kohavi, 1978), one can minimize
the size of a SRIN by merging equivalent switches.

What we are interested in is the inference of a
SRIN from examples. A great deal of work has been

Recurrent Neural Networks

done on the problem of machine inference. It has been
shown that, in the worst case, inferring a SSM from
sparse data is an intractable problem (Angluin, 1978;
Gold, 1978; Kearns & Valiant, 1989; Pitt &
Warmuth, 1989). Approaches that can be used to
infer SSMs will now be examined.

4.1. Recurrent Neural Network Approaches

The literature on the use of neural networks for
grammatical inference and finite-state machine
learning is now well-established (Cleeremans et al.,
1989; Giles et al., 1992a; Giles et al., 1992b; Mozer &
Bachrach, 1991; Pollack, 1991; Watrous & Kuhn,
1992; Zent et al., 1993). These approaches use RNNs
to represent SSMs. For the work done in this paper,
the approach described in (Giles et al., 1992a; Giles et
al., 1992b) will be used (see Section 5.2). We refer
readers who are interested in the details to those
references. In Section 5, there is a qualitative
explanation of the RNN approach to learning
SRINs.

Until recently, the RNN approach for SSM
inference that is used in this paper had only been
possible for unknown SSMs with a small number of
states (approximately 30). It should be pointed out
that the limited success of this approaches is due to
the learning algorithms. Generally, the RNNs have
rich representational capabilities. However, recent
work has shown that certain types of large SSMs,
with thousands of states, are learnable (Clouse et al.,
1994; Giles et al., 1995). Furthermore, the perfor-
mance of the RNNs can sometimes be improved by
using "hints" if partial information about the
structure of the SSM is known (Giles & Omlin, 1993).

Other approaches that use neural networks for
grammatical inference exist that will not be used in
this paper. For example, the use of update graphs has
been proposed by Rivest and Schapire (Rivest &
Schapire, 1987a; Rivest & Schapire, 1987b; Schapire,
1988). An update graph is an alternate representation
of a SSM that can be much smaller than the SSM for
certain environments that often arise in practice.
Update graphs can be mapped to a connectionist
system that can learn the environment from examples
(Mozer & Bachrach, 1990; Mozer & Bachrach, 1991).

4.2. Traditional Approaches

Other methods for grammatical inference, which do
not use neural networks, have demonstrated some
promising results. In fact, a polynomial time
algorithm proposed by Trakhtenbrot and Barzdin
(Trakhtenbrot & Barzdin, 1973) has been shown to
be able to infer some very large finite automata. The
algorithm produces a machine that is consistent with
a sparsely labeled tree, but the machine that is

797

TABLE 1
An example ot training data for s SRIN. The data is consistent

with the SRIN in Figure 4

source destination
processor header processor

/3o rl Pl
P2 r l rl rotor1 Pl
P2 rororo 130
I:)3 for1 [32
P l r l I"1 ro P3

: : :

produced is not necessarily the minimum machine
that is consistent with the data. Lang (Lang, 1992)
performed several experiments using this algorithm
for random finite automata with 1000 states and 2000
transitions. Given enough training examples, the
algorithm was almost always able to construct a
machine that was similar to the correct machine.

5. RECURRENT NEURAL NETWORKS TO
LEARN INTERCONNECTION NETWORKS

The problem that we are trying to solve is posed in
the following form. We have a training list of source
processor, header, and destination processor combi-
nations that must be implemented by a SRIN. For
example, Table 1 contains data for some such
problem. The data in Table 1 is consistent with the
SRIN in Figure 4. We must infer a SRIN that can
accomplish all of the routings described in the
training list. Hopefully, the SRIN will also be able
to generalize. That is, we would like the SRIN to
perform correct routings even for examples that are
not on the training list.

In Section 5.1, the recurrent neural network that is
used to learn the interconnection network is
described. The training algorithm is also discussed.
Section 5.2 contains a training example and explains
the specific encodings used. Finally, extracting the
SRIN from the trained recurrent neural network is
described in Section 5.3.

5.1. Recurrent Neural Network with Several Distinct
Initial States

The structure of a general SLRNN is shown in Figure
5. There are M inputs lines, xl, x2, . . . , xM. The value
ofinput xi(1 < i < M) at time t is x~. There is a single
layer of N neurons, y~, Y2, . . . , YN. The output value
of neuron y/(1 < i < N) at time t is y~. At each time
step, these output values are stored in a bank of
latches to act as the "state" of the network. The state
is fed back as an input to the layer of neurons on the
subsequent time step. In general, all of the state
values can be considered as output values, but it

798 M. W. Goudreau and C. L. Giles

~N

I I ' ' - I I I t-I t-1
YN Yl

t • • • • • t
x~ XM

FIGURE 5. A Single-Layer Recurrent Neural Network (SLRNN).
There are M Input values, N slate values, and (up to) N output
values. The bank of N latches is shown on the right.

might be that the problem domain only requires some
number K output values where 1 < K < N. In this
case, only the first K neurons are considered to
provide output values, although all N neurons are
providing state values.

For a second-order SLRNN, neu ron j and input k
have a combined effect on neuron i that is quantified
by the parameter WOk, which is called a weight. The
output of neuron i is defined by the following
equation:

Yi = g w~kyj x k (4)
j=-I k = l

This multiplication and summing occurs inside the
neurons shown in Figure 5. The activation function,
g (x) , is the sigmoid function shown here:

1
g(x) - 1 + e -~ (5)

The second-order SLRNN is used to infer the
ASSM that is equivalent to the unknown SRIN.
Again, the approach used in (Giles et al., 1992a; Giles
et al., 1992b) will be used here. The SLRNN will
learn the training data, and the ASSM will be
extracted from the SLRNN.

The training algorithm that is used is a variation of
the Real-Time Recurrent-Training (RTRL) algo-
rithm proposed by Williams and Zipser (Williams &
Zipser, 1989). The original RTRL algorithm was
proposed for first-order SLRNNs, but the version
used here is for second-order SLRNNs. The R T R L
algorithm is an on-line, gradient-descent-based
algorithm. Other recurrent training algorithms could
be used for this application, e.g., backpropagation
through time or the extended Kalman estimator.

Recall that the training data is in the form of Table
1. Each line in the table is called a table entry. In
order to use the SLRNN, it is necessary to encode the
symbols of a table entry into binary vectors that can
be recognized by the SLRNN. The source processor

defines the initial state vector of the S L R N N (i.e., the
values of y0 for 1 < i < N). Thus, each source
processor must be assigned a distinct, N-bit binary
vector. The input symbols in the header (along with
the end-symbol) correspond to the input vectors of
the SLRNN (i.e., the values of x~ for 1 < i < M).
Thus, each input symbol (and the end-symbol) must
be assigned a distinct, M-bit binary vector. Note that
the inputs to the S LRN N change over time, with the
binary vector of the first input symbol applied at
t = 1, the binary vector of the second input symbol
applied at t -- 2, etc. After the binary vectors for the
sequence of input symbols have been applied, the
binary vector for the end-symbol is applied as the
final input vector. At this point it is possible to check
the resulting output vector of the S LRN N (i.e., the
values of y r for 1 < i < K where T is the final time
step) against the desired result. The desired result is a
K-bit binary vector that represents the destination
processor, so each destination processor must be
assigned a distinct, K-bit binary vector.

Intuitively, the input vectors of the SLRNN
represent the inputs and the end-symbol of the
ASSM (and therefore the input symbols and the
end-symbol of the SRIN). The state vectors of
the SLRNN represent the states of the ASSM
(and the switches of the SRIN). And the output
vectors of the SLRNN represent the outputs of the
ASSM (and the processors of the SRIN).

It is important to note that the binary vectors that
are chosen to represent the source processors, the
input symbols, the end symbol, and the destination
processors are arbitrary. However, we will use simple
one-hot encodings for all of the necessary binary
vectors. Recall that a one-hot code is a code for
which each symbol is represented by a vector that has
one element equal to one while all of the other
elements are equal to zero. This structure is chosen
because it is known that (given enough neurons) a
solution will exist to map the S L R N N to the desired
ASSM (Goudreau et al., 1994). The solution that is
known to exist requires the use of one-hot codes for
the states and the inputs. The representation that the
SLRNN actually learns, however, can have states
that are not in a one-hot code. The S LRN N might
construct a solution that is different from the one-hot
solution.

Clearly, there must be enough neurons to
represent the processors (outputs) with a one-hot
code. Therefore, the number of neurons must at least
be equal to the number o f processors. For the one-
hot solution to exist, however, there must be one
neuron for each switch as well. Unfortunately, one
does not generally know the number of switches
beforehand. It is necessary to estimate the number of
switches, and provide at least that many neurons.
This is one of the weaknesses that is common to

Recurrent Neural Networks 799

many neural network approaches: often it is not clear
what size neural network would be best. One
approach is to start with as many switch neurons as
reasonably possible; if training is successful, then
reduce the number of neurons using a destructive
heuristic (Giles & Omlin, 1994).

Assume that the values ~ r for 1 < i < K constitute
the binary vector that represents the desired output
vector. Training occurs for this table entry if, for any
i(1 < i < K) we have lyr-~rl > H, where ~ = 0.2
for our simulations. I f it is determined that training
should occur for this table entry, we use the learning
algorithm to incrementally change the weights in the
direction opposite that of the gradient of the mean-
square-error cost function, Er:

K

Er = E 0 'r - ~r)2. (6)
/=1

The weights of the SLRNN will therefore potentially
be updated after each table entry is examined. As a
result, the learning algorithm does not perform true
gradient descent for the entire table o f data; rather, it
approximates true gradient descent.

The table of training data is cycled through
repeatedly until none of the table entries require
updating of the weights. Once the entire table is
learned, the structure of the underlying ASSM is
extracted from the SLRNN. This procedure is
described in Section 5.3. The state vectors that are
created through the use of the learning algorithm are
not examined during training, but they are examined
after training to describe the structure of the
underlying ASSM. As mentioned before, these states
actually represent switches in the SRIN. Since the
neurons have a continuous activation function, it is
generally necessary to use some partitioning and
clustering techniques to make a group of states
equivalent. After this is done, an ASSM can be
extracted from the SLRNN. The extracted ASSM
might not be minimal, but in this case standard SSM
minimization techniques can be used.

It is instructive to compare learning an ASSM with
learning a SSM, which has been extensively studied
by the neural network community. The problem of
inferring an ASSM, as opposed to inferring an SSM,
is that in an ASSM there will generally be several
possible initial states. In an SSM, a single initial state
is generally assumed. With this in mind, the reader
should be able to see that the S L R N N that is trying
to learn an ASSM will, in fact, be trying to learn a
SSM for each possible initial state. However, all of
these SSMs will have the same structure; the only
difference is that the initial state varies. Since all of
the SSMs have the same structure, it can reasonably
be hoped that the SLRNN will try to merge these
multiple SSMs into a single ASSM. In fact, this turns

out to be the case. Rather than learning several
different SSMs in different sections of the state space,
the SLRNN will take advantage of the identical
structures of the SSMs and merge them.

5.2. A Training Example

Perhaps the easiest way to describe the mapping to
the SLRNN would be to describe the structure of the
SLRNN given data for the SRIN from Figure 4. We
will choose to have N = 8 neurons in the SLRNN.
The choice of N = 8 is somewhat arbitrary; however,
we did want to give the recurrent network enough
neurons to easily learn the interconnection network.
Recall that we do not know the structure of the SRIN
and are trying to learn it from routing strings. Since
one-hot codes will be used, four initial states vectors
are necessary, corresponding to the four source
processors that are present in the data table. In
reality, however, it should be remembered that the
state vectors in the S L R N N will actually correspond
to switches from the SRIN, rather than processors.
Thus, when we choose state vectors for the four
source processors, we are really choosing state
vectors for their respective designated switches (as
shown in eqn 3). Let hn, m be vector of dimension n
that has a value "1" in position m and a value "0" in
all of the other positions. These are the initial values
of the Yi vectors. For example, h5,2 = [0, 1, 0, 0, 0] r.
When the source processor is processor Po (which is
equivalent to saying that the designated switch is qo,
see eqn 3) the initial state vector will be hs, 1.
Similarly, source processor pl will make the initial
state vector hs, 3, source processor P2 will make the
initial state vector hs, 4, and source processor P3 will
make the initial state vector ha, 5. Messages always
start at these source processors. This mapping of
source processors to initial state vectors can be made
arbitrarily. There is no reason not to use vector ha, 2,
for example. The only reason that this vector was not
used was because of the way the training data was
generated.

Now the input symbols, ro and rl, as well as the
end-symbol, e, can be mapped to input vectors. There
are three symbols that must be mapped to input
vectors, so we will have three vectors of length three
for this purpose. Let r0 correspond to input vector
h3,1, rl correspond to input vector h3,2, and c
correspond to input vector h3, 3.

Finally, the processors can now be mapped to
output vectors. There are eight neurons in the
SLRNN, but only the outputs of four of them are
needed for the output vectors. Therefore, the output
values will only be taken from neurons 0, 1, 2, and 3.
Destination processor Po will correspond to output
vector h4, I, destination processor Pl will correspond
to output vector h4, 2, destination processor P2 will

800

correspond to output vector h4,3, and destination
processor P3 will correspond to output vector h4, 4.

In summary, the second-order SLRNN network
that is used for this example is shown in Figure 5 and
has N = 8 neurons and M = 3 input bits. When the
output values are examined, only the first four
neurons are used (K = 4).

Now that the specifics of the encoding have been
explained, we can use the training data to train the
SLRNN. The data table contained an entry for every
header up to length 11 (including the end-symbol) for
every processor. The data table starts with strings of
length one and concludes with strings of length 11.
The SLRNN does not try to learn all of the data in
this table simultaneously. Rather, it first learns the
first 20 lines of the data table for each possible
starting state. Then the resulting SLRNN is checked
against the rest of the data table to see how it
generalizes. I f perfect generalization does not occur,
the SLRNN adds 20 more lines to its training data.
Once these 40 lines are learned, generalization is
checked again. This process is repeated until all o f the
lines in the data table have been learned. This
heuristic approach, which involves incremental
expansion of the training data, has proven to be
quite successful in practice.

For our experiment, by the time the SLRNN
learned the first 280 lines of the table, the SLRNN
was able to generalize for all of the remaining strings
in the table. The full table had 8188 lines.

5.3. Extraction of the Interconnection Network from
the Trained Neural Network

It was mentioned in Section 5.1 that this problem can
be thought of as the problem of learning several
separate SSMs, in this case four. Given this fact, one
can examine the four separate SSMs that are
generated from the four different initial states.

TABLE 2
Machine M1, the unminlmlzed SSM with Initial state

corresponding to switch q0- Column S contains the state.
Column O contains the oulpuL Column NSo contains the
next state given Input O. Column NS1 contains the next
state given Input 1. Column QR contains the quantlzed

representation for the state in the SLRNN

S Q NSo NS 1 QR

1 1 2 3 10000000
2 4 4 5 01111100
3 2 4 6 00100001
4 1 7 7 11000O11
5 4 8 9 11010100
6 4 4 5 01011100
7 3 10 6 00010101
8 4 11 9 11001101
9 2 4 2 00100101

10 1 6 3 10000001
11 4 11 9 11011101

M. IV. Goudreau and C. L. Giles

TABLE 3
Machine M2, the unminimlzed SSM with initial stab)

corresponding to switch q2

S Q NSo NS 1 QR

1 2 2 3 oo 10o00o
2 1 4 4 11000011
3 4 2 5 01011110
4 3 6 7 00010101
5 4 8 9 11010100
6 1 7 10 10000101
7 4 2 5 01011100
8 4 11 12 11001101
9 2 2 7 01100101

10 2 2 7 oo 10000 1
11 4 11 12 11011101
12 2 2 13 00100101
13 4 2 5 01111100

Table 2 shows the unminimized SSM with initial
state corresponding to switch q0 that was extracted
from the SLRNN. This machine shall be called M 1.
One of the advantages of using second-order
SLRNNs is the ease with which automata can be
extracted from the trained or training networks.
However, first-order SLRNNs could also be used
(Manolios & Fanelli, 1994; Miller & Giles, 1993).
Details on the method of SSM extraction that we
used can be found in (Giles et al., 1992a; Giles et al.,
1992b). The left column (S) contains the number of
each state. State "1" in Tables 2 to 9 corresponds to
the initial state. The next column (O) contains the
output value associated with that state. The following
two columns contain the next state given input zero
(NSo) and given input one (NSl). The final column
(QR) contains the quantized representation for the
state in the SLRNN. It should be kept in mind that
the S LRN N actually uses real valued state vectors, as
does the clustering algorithm that was used for SSM
extraction. The SSM extraction algorithm makes use
of a real valued representative vector for each state. In
the SLRNN, whenever a state vector is "close" to a

TABLE 4
Machine M3, the unminimlzed SSM with initial stab)

corresponding to switch q3

S 0 NSo NS 1 QR

1 3 2 3 00010000
2 1 3 4 100001O1
3 4 5 6 010111 O0
4 2 5 3 O01 00001
5 1 7 7 11000011
6 4 8 9 11010100
7 3 2 10 00010101
8 4 11 12 11001101
9 2 5 3 01100101

10 4 5 6 01010100
11 4 8 9 11011101
12 2 5 13 00100101
13 4 5 6 01111100

Recurrent Neural Networks

TABLE 5
Machine M4, the unminimized SSM with initial state

corresponding to switch q4

S 0 N ~ NS1 QR

1 4 2 3 00001000
2 1 4 4 11000011
3 4 5 6 11000101
4 3 7 8 00010101
5 4 9 10 11001101
6 2 2 11 01100101
7 1 11 12 10000101
8 4 2 13 01010100
9 4 9 10 11011101

10 2 2 14 00100101
11 4 2 13 01011100
12 2 2 11 00100001
13 4 5 6 11010100
14 4 2 13 01111100

representative state vector, it is assumed that the two
vectors implement the same state. To simplify our
analysis, the real valued representative state vectors
are quantized. Any value greater than or equal to 0.5
in a representative state vector is set to 1 after
quantization, while any value less than 0.5 is set to 0.
Henceforth, when state vectors are mentioned, we
will actually be talking about these quantized
representative state vectors. Thus, in general, the
state vectors in Table 2 actually represent some
volume of the state space.

The unminimized SSMs given designated switches
q2, q3, and q4 are shown in Tables 3 (machine M2), 4
(machine M3), and 5 (machine M4), respectively.

Once the unminimized SSMs and their state vector
representations are known, the SSMs can be
minimized and merged. Table 6 contains the
minimized SSM that is extracted from the SLRN N
when the initial state vector corresponds to
designated switch q0. Each state in the minimized
machine can be associated with one or more state
vectors. For example, state 1 of the SSM in Table 6 is
associated with two state vectors, 10000000 and
10000001.

The minimal SSMs with initial states correspond-

TABLE 6
The minimal SSM with initial state corresponding to swilch q0.

This SBM is equivalent to machine M1 in Table 2

S 0 NSo NS 1 QR

1 1 2 3 10000000
10000001

,? 4 4 5 01011100
01111100

3 2 4 2 00100001
00100101

4 1 6 6 11000011
5 4 5 3 11001101

11010100
11011101

6 3 1 2 00010101

801

TABLE 7
The minimal SSM with initial state corresponding to switch q=.

This SSM is equivalent to machine M2 in Table 3

S 0 NSo NS 1 QR

1 2 2 3 00100000
00100001
00100101
01100101

2 1 4 4 11000011
3 4 2 5 01011100

01011110
01111110

4 3 6 3 00010101
5 4 5 1 11001101

11010100
11011101

6 1 3 1 10000101

ing to designated switches q2, q3, and q4 are shown in
Tables 7, 8, and 9, respectively. With the information
in Table 6 to 9, we can merge the SSMs into an
ASSM. States in the SSMs with any overlapping
vector representations are assumed to be equivalent.
The results show that the S L R N N has indeed
"merged" the SSMs.

In fact, if we ignore the quantized representations
of the states, the four minimal SSMs are equivalent
except for the fact that they have different initial
states. That is, if we ignore the initial states, the four
SSMs can be relabeled so that they are identical.

It should be clear how Table 6 corresponds to the
SRIN in Figure 4. State 1 corresponds to switch q0,
state 2 corresponds to switch q4, state 3 corresponds
to switch q2, state 4 corresponds to switch ql, state 5
corresponds to switch qs, and state 6 corresponds to
switch q3- Simple observation will show that the other
three SSMs also correspond to the SRIN in Figure 4.

Table 10 merges this information to show how the
S LRN N represents the switches of Figure 4. State
vectors are shown and the machines that utilized
them are presented.

Examination of Table 10 shows that, for the most

TABLE 8
The minimal SSM with initial state corresonding to switch q3.

This SSM is equivalent to machine M3 in Table 4

S 0 NSo NS 1 QR

1 3 2 3 00010000
00010101

2 1 3 4 10000101
3 4 5 6 01010100

01011100
01111100

4 2 5 3 00100001
00100101
01100101

5 1 1 1 10000101
6 4 6 4 11001101

11010100
11011101

8O2

TABLE 9
The minimal SSM with initial state corresponding to switch q4-

This BSM Is equivalent to machine M4 In Table 5

S 0 NSo NS 1 OR

1 4 2 3 00001000
01010100
01011100
01111100

2 1 4 4 11000011
3 4 3 5 11000101

11001101
11010100
11011101

4 3 6 1 00010101
5 2 2 1 00100001

00100101
01100101

6 1 1 5 10000101

part, machines M1, M2, M3, and M4 make use of
state vectors that are approximately equal. For
example, all four machines use the state region
00010101 to represent switch q3 from Figure 4.

Another interesting fact is that the state vectors
that represent equivalent states tend to be close to
each other in the state space. That is, the state vectors
for equivalent states tend to have small Hamming
distances from one another. For example, machine
M1 uses two state regions to represent switch q4,
01011100 and 01111100. This fact leads one to believe
that the SLRNN actually uses something like a
cohesive sub-space for each state. It seems likely that
the unminimized SSMs that were extracted have
equivalent states due to the nature of the SSM
extraction algorithm that is used. I f other clustering
approaches were used (Watrous & Kuhn, 1992; Zeng

TABLE 10
How the SLRNN represents the switches from the SRIN In

Figure 4

switch QR machine

q~ 10000000 M 1
10000001 M1
10000101 M2, M3, M4

ql 11000011 M1, M2, M3, M4
q2 00100000 M2

00100001 M1, M2, M3, M4
00100101 M1, M2, M3, M4
01100101 M2, M3, M4

q3 00010000 M 3
00010101 M1, M2, M3, M4

q4 00001000 M4
01010100 M3, M4
01011100 M1, M2, M3, M4
01011110 M2
01111100 M1, M2, M3, M4

q5 11000101 M4
11001101 M1, M2, M3, M4
11010100 M1, M2, M3, M4
11011101 M1, M2, M3, M4

M. W. Goudreau and C. L. Giles

et al., 1993), it is possible that minimal SSMs could
have been extracted directly from the SLRNN.
Furthermore, values such as 0.49 and 0.51 will have
different values after quantization, although they are
in fact quite close in the state space. Thus, two state
vectors that are quite close in terms of Euclidean
distance (before quantization) might be quite far
from each other after quantization. This is another
possible explanation for the fact that the extracted
SSM was not minimal.

Another observation is that the SLRNN did not
learn anything approaching the one-hot solution that
was described in Section 5. In fact, the only states
vectors that were one-hot after quantization were the
initial state vectors that were forced upon the
SLRNN. However, while these initial state vectors
were not returned to, they did seem to give the
S LRN N a bias on its state representation.

Finally, the fact that the correct SRIN was
extracted means that good generalization for strings
longer than those in the training data has obviously
been achieved.

6. C O N C L U S I O N S

A radical approach to the construction of inter-
connection networks has been presented. This
approach uses training data from an unknown
interconnection network to teach a recurrent neural
network (RNN) to generate an interconnection
network that is capable of routing the training data.

It was shown that this problem maps directly to
the problem of learning a SSM with several distinct
initial states. The proposed approach took advantage
of previous work on the use o f RNNs to inference
synchronous sequential machines (SSMs). However,
it should be noted that the relationship between
interconnection networks and SSMs might also allow
for some non-neural network approaches to be used
for the same problem. It seems likely that such
methods could be varied slightly to accommodate the
interconnection network inference problem, just as
the R N N method for SSM inference can be varied
slightly to perform interconnection network infer-
ence.

It was demonstrated that given a table of training
data, it is possible to use a second-order, single-layer
R N N to generate the structure of an interconnection
network that is capable of routing the training data.
Furthermore, the interconnection network that is
generated might be able to generalize for inputs that
are not in the training data. A sample problem was
used to illustrate the methodology. It is an open
question as to whether other R N N models and/or
training methods can outperform these results.

This work clearly pointed out the need for further
research into the use of RNNs to inference larger

Recurrent Neural Ne tworks 803

SSMs. To date, RNNs have had limited success for
large problems in grammatical inference, but some
recent results are promising (Giles et al., 1995; Clouse
et al., 1994).

The concept of learning interconnection networks
is an unusual one for the interconnection network
community. It remains to be seen whether such
learning approaches will become a useful method for
interconnection network design or analysis.

REFERENCES

Andrews, R., Diederich, J., & Tickle, A. (1995). A survey and
critique of techniques for extracting rules from trained artificial
neural networks. Technical Report QUTNRC-95-01-02,
Neurocomputing Research Centre, Queensland University of
Technology, Brisbane, Australia.

Angluin, D. (1978). On the complexity of minimum inference of
regular sets. Information and Control, 39, 337-350.

Brown, T. X. (1989). Neural networks for switching. IEEE
Communications Magazine, 27, 72-81.

Brown, T. X. & Liu, K.-H. (1990). Neural network design of a
Banyan network controller. IEEE Journal on Selected Areas o f
Communiation, 8, 1428--1438.

Cleeremans, A., Servan-Sehreiber, D., & McClelland, J. L. (1989).
Finite state automata and simple recurrent networks. Neural
Computation, 1, 372-381.

Clouse, D., Giles, C., Home, B., & Cottrell, G. (1994). Learning
large De Bruijn automata with feed-forward neural networks.
Technical Report CS94-398, Computer Science and Engineer-
ing, University of California at San Diego, La Jolla, CA.

Funahiki, N., Takefuji, Y., & Lee, K. C. (1991). A neural network
model for traffic controls in multistage interconnection net-
works. In Proceedings o f the International Joint Conference on
Neural Networks 1991, (pp. A898).

Funabiki, N., Takefuji, Y., & Lee, K. C. (1993). Comparisons of
seven neural network models on traffic control problems in
multistage interconnection networks. IEEE Transactions on
Computers, 42, 497-501.

Giles, C., Home, B., & Lin, T. (1995). Learning a class of large
finite state machines with a recurrent neural network. Neural
Networks (in press).

Giles, C. & Omlin, C. (1993). Extraction, insertion and refinement
of symbolic rules in dynamically-driven recurrent neural
networks. Connection Science, 5, 307-337. Special Issue on
Architectures for Integrating Symbolic and Neural Processes.

Giles, C. & Omlin, C. (1994). Pruning recurrent neural networks
for improved generalization performance. IEEE Transactions
on Neural Networks, 5, 848-851.

Giles, C. L., Miller, C. B., Chert, D., Chen, H. H., Sun, G. Z., &
Lee, Y. C. (1992a). Learning and extracting finite state
automata with second-order recurrent neural networks. Neural
Computation, 4, 393-405.

Giles, C. L., Miller, C. B., Chert, D., Sun, G. Z., Chen, H. H., &
Lee, Y. C. (1992b). Extracting and learning an unknown
grammar with recurrent neural networks. In Moody, J.,
Hanson, S., & Lippmann, R. (Eds.), Advances in neural
information processing systems 4, (pp. 317-324). San Mateo,
CA: Morgan Kaufmann.

Gold, E. M. (1978). Complexity of automation identification from
given data. Information and Control, 37, 302-320.

Goudreau, M. & Giles, C. (1993). Discovering the structure of a
self-routing interconnection network with a recurrent neural
network. In Alspector, J., Goodman, R., & Brown, T. (Eds.),
International Workshop on Applications o f Neural Networks to

Telecommunications, (pp. 52-59). Hillsdale, NJ: Lawrence
Erlbaum.

Goudreau, M., Giles, C., Chakradbar, S., & Chen, D. (1994). First-
order vs. seennd-order single layer recurrent neural networks.
IEEE Transactions on Neural Networks, 5, 511-513.

Goudreau, M. W. (1993). Neural network applications for
interconnection networks. Ph.D. thesis, Princeton University,
Princeton, NJ.

Goudreau, M. W. & Giles, C. L. (1992). Routing in random
multistage interconnection networks: Comparing exhaustive
search, greedy and neural network approaches. International
Journal o f Neural Systems, 3, 125-142.

Hakim, N. Z. & Meadows, H. E. (1990). A neural network
approach to the setup of the Benes switch. In Infocom 90, (pp.
397--4O2).

Hillis, W. D. (1990). Co-evolving parasites improve simulated
evolution as an optimization procedure. Physics D, 42, 228-234.

Hoperoft, J. E. & Ullman, J. D. (1979). Introduction to automata
theory, languages and computation. Reading, MA: Addison-
Wesley.

Keams, M. & Valiant, L. (1989). Cryptographic limitations on
learning boolean formulae and finite automata. In Proceedings
o f the 21st Annual ACM Symposium on Theory o f Computing.
New York, NY: ACM Press.

Kohavi, Z. (1978). Switching andfinite automata theory (2rid ed.).
New York, NY: McGraw-Hill, Inc.

Lang, K. (1992). Random DFA's can be approximately learned
from sparse uniform examples. In Proceedings o f the Fifth A C M
Workshop on Computational Learning Theory, (pp. 45-52). New
York, NY: ACM Press.

Lee, S.-L. & Chang, S. (1993). Neural networks for routing of
communication networks with unreliable components. IEEE
Transactions on Neural Networks, 4, 854-863.

Maclin, R. & Sbavlik, J. (1993). Using knowledge-based neural
networks to improve algorithms: Refining the Chou-Fasman
algorithm for protein folding. Machine Learning, 11, 195-215.

Manolios, P. & Fanelli, R. (1994). First order recurrent neural
networks and deterministic finite state automata. Neural
Computation, 6, 1154-1172.

Marrakchi, A. M. & Troudet, T. (1989). A neural net arbitrator for
large crossbar packet-switches. IEEE Transactions on Circuits
and Systems, 36, 1039-1041.

Melsa, P. J. W., Kenney, J. B., & Rohrs, C. E. (1990a). A neural
network solution for call routing with preferential call
placement. In Proceedings of the 1990 Global Telecommunica-
tions Conference, (pp. 1377-1382).

Melsa, P. J. W., Kenney, J. B., & Rohrs, C. E. (1990b). A neural
network solution for routing in three stage interconnection
networks. In Proceedings o f the 1990 International Symposium
on Circuits and Systems, (pp. 483-486).

Miller, C. & Giles, C. (1993). Experimental comparison of the effect
of order in recurrent neural networks. International Journal o f
Pattern Recognition and Artificial Intelligence, 7, 849-872.
Special Issue on Neural Networks and Pattern Recognition,
(Eds) I. Guyon, P. S. P. Wang.

Mozer, M. C., & Bachrach, J. (1990). Discovering the structure of a
reactive environment by exploration. Neural Computation, 2,
447--457.

Mozer, M. C., & Bachrach, J. (1991). SLUG: A connectionist
architecture for inferring the structure of finite-state environ-
ments. Machine Learning, 7, 139-160.

Pitt, L., & Warmuth, M. (1989). The minimum DFA consistency
problem cannot be approximated within any polynomial. In
Proceedings of the 21st Annual A C M Symposium on Theory o f
Computing. New York, NY: ACM Press.

Pollack, J. B. (1991). The induction of dynamical recognizers.
Machine Learning, 7, 227-252.

Rivest, R. L. & Schapire, R. E. (1987a). Diversity-based

804 M. W. Goudreau and C. L. Giles

inference of finite automata. In Proceedings of the Twenty-
Eighth Annual Symposium on Foundations of Computer
Science, (pp. 78-87).

Rivest, R. L. & Schapire, R. E. (198T0). A new approach to
unsupervised learning in deterministic environments. In
Langley, P. (Ed.), Proceedings of the Fourth International
Workshop on Machine Learning.

Schapire, R. E. (1988). Diversity-based inference of finite automata.
Master's thesis, Massachusetts Institute of Technology, Cam-
bridge, MA.

Siegel, H. J. (1990). lnterconnection networks for large scale parallel
processing. New York: McGraw-Hill.

Takefuji, Y. & Lee, K. C. (1991). An artificial hysteresis binary
neuron: A model suppressing the oscillatory behavior of neural
dynamics. Biological Cybernetics, 64, 353-356.

Thomopoulos, S. C. A., Zhang, L., & Warm, C. D. (199l). Neural
network implementation of the shortest path algorithm for

traffic routing in communication networks. In Proceedings of
the International Joint Conference on Neural Networks 1991,
(pp. 2693-2702). Singapore.

Trakhtenbrot, B. & Barzdin, Y. (1973). Finite automata: behavior
and synthesis. Amsterdam: North-Holland.

Troudet, T. P. & Walters, S. M. (1991). Neural network
architecture for crossbar switch control. IEEE Transactions on
Circuits and Systems, 38, 42-56.

Watrous, R. L. & Kuhn, G. M. (1992). Induction of finite-state
languages using second-order recurrent networks. Neural
Computation, 4, 406-414.

Williams, R. J. & Zipser, D (1989). A learning algorithm for
continually running fully recurrent neural networks. Neural
Computation, 1, 270-280.

Zeng, Z., Goodman, R. M., & Smyth, P. (1993). Learning finite
state machines with self-clustering recurrent networks. Neural
Computation, 5, 976-990.

