
LETTER Communicated by José Principe

Learning Chaotic Attractors by Neural Networks

Rembrandt Bakker
DelftChemTech, Delft University of Technology, 2628 BL Delft, The Netherlands

Jaap C. Schouten
Chemical Reactor Engineering, Eindhoven University of Technology, 5600 MB Eind-
hoven, The Netherlands

C. Lee Giles
NEC Research Institute, Princeton, NJ 08540, U.S.A.

Floris Takens
Departmentof Mathematics,Universityof Groningen, 9700AV Groningen, The Nether-
lands

Cor M. van den Bleek
DelftChemTech, Delft University of Technology,5600 MB Eindhoven, The Netherlands

An algorithm is introduced that trains a neural network to identify chaotic
dynamics from a single measured time series. During training, the algo-
rithm learns to short-term predict the time series. At the same time a
criterion, developed by Diks, van Zwet, Takens, and de Goede (1996) is
monitored that tests the hypothesis that the reconstructed attractors of
model-generated and measured data are the same. Training is stopped
when the prediction error is low and the model passes this test. Two other
features of the algorithm are (1) the way the state of the system, consist-
ing of delays from the time series, has its dimension reduced by weighted
principal component analysis data reduction, and (2) the user-adjustable
prediction horizon obtained by “error propagation”—partially propagat-
ing prediction errors to the next time step.

The algorithm is �rst applied to data from an experimental-driven
chaotic pendulum, of which two of the three state variables are known.
This is a comprehensive example that shows how well the Diks test
can distinguish between slightly different attractors. Second, the algo-
rithm is applied to the same problem, but now one of the two known
state variables is ignored. Finally, we present a model for the laser data
from the Santa Fe time-series competition (set A). It is the �rst model
for these data that is not only useful for short-term predictions but also
generates time series with similar chaotic characteristics as the measured
data.

Neural Computation 12, 2355–2383 (2000) c° 2000 Massachusetts Institute of Technology

2356 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

1 Introduction

A time series measured from a deterministic chaotic system has the ap-
pealing characteristic that its evolution is fully determined and yet its pre-
dictability is limited due to exponential growth of errors in model or mea-
surements. A variety of data-driven analysis methods for this type of time
series was collected in 1991 during the Santa Fe time-series competition
(Weigend & Gershenfeld, 1994). The methods focused on either character-
ization or prediction of the time series. No attention was given to a third,
and much more appealing, objective: given the data and the assumption
that it was produced by a deterministic chaotic system, �nd a set of model
equations that will produce a time series with identical chaotic character-
istics, having the same chaotic attractor. The model could be based on �rst
principles if the system is well understood, but here we assume knowl-
edge of just the time series and use a neural network–based, black-box
model. The choice for neural networks is inspired by the inherent stability
of their iterated predictions, as opposed to for example, polynomial models
(Aguirre & Billings, 1994) and local linear models (Farmer & Sidorowich,
1987). Lapedes and Farber (1987) were among the �rst who tried the neu-
ral network approach. In concise neural network jargon, we formulate our
goal: train a network to learn the chaotic attractor. A number of authors
have addressed this issue (Aguirre & Billings, 1994; Principe, Rathie, &
Kuo, 1992; Kuo & Principe, 1994; Deco & Schürmann, 1994; Rico-Martṍ nez,
Krischer, Kevrekidis, Kube, & Hudson, 1992; Krischer et al., 1993; Albano,
Passamente, Hediger, & Farrell, 1992). The common approach consists of
two steps:

1. Identify a model that makes accurate short-term predictions.

2. Generate a long time series with the model by iterated prediction, and
compare the nonlinear-dynamic characteristics of the generated time
series with the original, measured time series.

Principe et al. (1992) found that in many cases, this approach fails; the
model can make good short-term predictionsbut has not learned the chaotic
attractor. The method would be greatly improved if we could minimize
directly the difference between the reconstructed attractors of the model-
generated and measured data rather than minimizing prediction errors.
However, we cannot reconstruct the attractor without �rst having a predic-
tion model. Therefore, research is focused on how to optimize both steps.

We highly reduce the chance of failure by integrating step 2 into step 1,
the model identi�cation. Rather than evaluating the model attractor after
training, we monitor the attractor during training, and introduce a new test
developed by Diks, van Zwet, Takens, and de Goede (1996) as a stopping cri-
terion. It tests the null hypothesis that the reconstructed attractors of model-
generated and measured data are the same. The criterion directly measures

Learning Chaotic Attractors 2357

the distance between two attractors, and a good estimate of its variance
is available. We combined the stopping criterion with two special features
that we found very useful: (1) an ef�cient state representation by weighted
principal component analysis (PCA) and (2) a parameter estimation scheme
based on a mixture of the output-error and equation-error method, previ-
ously introduced as the compromisemethod (Werbos, McAvoy, & Su, 1992).
While Werbos et al. promoted the method to be used where equation error
fails, we here use it to make the prediction horizon user adjustable. The
method partially propagates errors to the next time step, controlled by a
user-speci�ed error propagation parameter.

In this article we present three successful applications of the algorithm.
First, a neural network is trained on data from an experimental driven and
damped pendulum. This system is known to have three state variables, of
which one is measured and a second, the phase of the sinusoidal driving
force, is known beforehand. This experiment is used as a comprehensive
visualisation of how well the Diks test can distinguish between slightly
different attractors and how its performance depends on the number of
data points. Second, a model is trained on the same pendulum data, but
this time the information about the phase of the driving force is completely
ignored. Instead, embedding with delays and PCA is used. This experiment
is a practical veri�cation of the Takens theorem (Takens, 1981), as explained
in section 3. Finally, the error propagation feature of the algorithm becomes
important in the modeling of the laser data (set A) from the 1991 Santa
Fe time-series prediction competition. The resulting neural network model
opens new possibilities for analyzing these data because it can generate
time series up to any desired length and the Jacobian of the model can be
computed analytically at any time, which makes it possible to compute the
Lyapunov spectrum and �nd periodic solutions of the model.

Section 2 gives a brief description of the two data sets that are used to
explain concepts of the algorithm throughout the article. In section 3, the
input-output structure of the model is de�ned: the state is extracted from
the single measured time series using the method of delays followed by
weighted PCA, and predictions are made by a combined linear and neural
network model. The error propagation training is outlined in section 4,
and the Diks test, used to detect whether the attractor of the model has
converged to the measured one, in section 5. Section 6 contains the results
of the two different pendulum models, and section 7 covers the laser data
model. Section 8 concludes with remarks on attractor learning and future
directions.

2 Data Sets

Two data sets are used to illustrate features of the algorithm: data from an
experimental driven pendulum and far-infrared laser data from the 1991
Santa Fe time-series competition (set A). The pendulum data are described

2358 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

Figure 1: Plots of the �rst 2000 samples of (a) driven pendulum and (b) Santa
Fe laser time series.

in section 2.1. For the laser data we refer to the extensive description of
Hübner, Weiss, Abraham, & Tang (1994). The �rst 2048 points of the each
set are plotted in Figures 1a and 1b.

2.1 Pendulum Data. The pendulum we use is a type EM-50 pendulum
produced by Daedalon Corporation (see Blackburn, Vik, & Binruo, 1989, for
details and Figure 2 for a schematic drawing). Ideally, the pendulum would

Figure 2: Schematic drawing of the experimental pendulum and its driving
force. The pendulum arm can rotate around its axis; the angle h is measured.
During the measurements, the frequency, of the driving torque was 0.85 Hz.

Learning Chaotic Attractors 2359

obey the following equations of motion, in dimensionless form,

d
dt

0

@
h

v

w

1

A D

0

@
v

¡c v ¡ sinh C a sin w

vD

1

A , (2.1)

where h is the angle of the pendulum, v its angular velocity, c is a damping
constant, and (a, vD, w) are the amplitude, frequency, and phase, respec-
tively, of the harmonic driving torque. As observed by De Korte, Schouten,
& van den Bleek (1995), the real pendulum deviates from the ideal behavior
of equation 2.1 because of its four electromagnetic driving coils that repulse
the pendulum at certain positions (top, bottom, left, right). However, from
a comparison of Poincaré plots of the ideal and real pendulum by Bakker,
de Korte, Schouten, Takens, & van den Bleek (1996), it appears that the real
pendulum can be described by the same three state variables (h , v, w) as the
equations 2.1. In our setup the angle h of the pendulum is measured at an
accuracy of about 0.1 degree. It is not a well-behaved variable, for it is an
angle de�ned only in the interval [0, 2p] and it can jump from 2p to 0 in a
single time step. Therefore, we construct an estimate of the angular velocity
v by differencing the angle time series and removing the discontinuities.
We call this estimate V.

3 Model Structure

The experimental pendulum and FIR-laser are examplesof autonomous, de-
terministic, and stationary systems. In discrete time, the evolution equation
for such systems is

ExnC1 D F(Exn), (3.1)

where F is a nonlinear function, and Exn is the state of the system at time
tn D t0 C nt , and t is the sampling time. In most real applications, only a
single variable is measured, even if the evolution of the system depends on
several variables. As Grassberger, Schreiber, and Schaffrath (1991) pointed
out, it is possible to replace the vector of “true” state variables by a vector that
contains delays of the single measured variable. The state vector becomes a
delay vector Exn D (yn¡mC1, . . . , yn), where y is the single measured variable
and m is the number of delays, called embedding dimension. Takens (1981)
showed that this method of delays will lead to evolutions of the type of
equation 3.1 if we choose m ¸ 2D C 1, where D is the dimension of the
system’s attractor. We can now use this result in two ways:

1. Choose an embedding a priori by �xing the delay time t and the
number of delays. This results in a nonlinear auto regressive (NAR)
model structure—in our context, referred to as a time-delay neural
network.

2360 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

2. Do not �x the embedding, but create a (neural network) model struc-
ture with recurrent connections that the network can use to learn an
appropriate state representation during training.

Although the second option employs a more �exible model representa-
tion (see, for example, the FIR network model used by Wan, 1994, or the
partially recurrent network of Bulsari & Saxén, 1995), we prefer to �x the
state beforehand since we do not want to mix learning of two very differ-
ent things: an appropriate state representation; and the approximation of F
in equation 3.1. Bengio, Simard, and Frasconi (1994) showed that this mix
makes it very dif�cult to learn long-term dependencies, while Lin, Horne,
Tins, and Giles (1996) showed that this can be solved by using the NAR(X)
model stucture. Finally, Siegelmann, Horne, and Giles (1997) showed that
the NAR(X) model structure may be not as compact but is computationally
as strong as a fully connected recurrent neural network.

3.1 Choice of Embedding. The choice of the delay time t and the em-
bedding m is highly empirical. First we �x the time window, with length
T D t (m¡1)C 1. For a properchoice of T, we consider that it is too short if the
variation within the delay vector is dominated by noise, and it is longer than
necessary if it exceeds the maximum prediction horizon of the system—that
is, if the �rst and last part of the delay vector have no correlation at all. Next
we choose the delay time t . Figure 3 depicts two possible choices of t for
a �xed window length. It is important to realize that t equals the one-step-
ahead prediction horizon of our model. The results of Rico-Martinez et al.
(1992) show that if t is chosen large (such that successive delays show little
linear correlation), the long-term solutions of the model may be apparently
different from the real system due to the very discrete nature of the model.
A second argument to choose t small is that the further we predict ahead
in the future, the more nonlinear will be the mapping F in equation 3.1. A
small delay time will require the lowest functional complexity.

Choosing t (very) small introduces three potential problems:

1. Since we �xed the time window, the delay vector becomes very long,
and subsequent delays will be highly correlated. This we solve by
reducing its dimension with PCA (see section 3.2).

2. The one-step prediction will be highly correlated with the most recent
delays, and a linear model will already make good one-step predic-
tions (see section 3.4). We adopt the error-propagation learning algo-
rithm (see section 4) to ensure learning of nonlinear correlations.

3. The time needed to compute predictions over a certain time interval
is inversely proportional to the delay time. For real-time applications,
too small a delay time will make the computation of predictions pro-
hibitively time-consuming.

Learning Chaotic Attractors 2361

Figure 3: Two examples of an embedding with delays, applied to the pendulum
time series of Figure 1a. Compared to (a), in (b) the number of delays within
the �xed time window is large, there is much (linear) correlation between the
delays, and the one-step prediction horizon is small.

The above considerations guided us for the pendulum to the embedding of
Fig. 3b, where t D 1, and T D m D 25.

3.2 Principal Component Embedding. The consequence of a small de-
lay time in a �xed time window is a large embedding dimension, m ¼ T/t ,
causing the model to have an excess number of inputs that are highly cor-
related. Broomhead and King (1986) proposed a very convenient way to
reduce the dimension of the delay vector. They called it singular system
analysis, but it is better known as PCA. PCA transforms the set of delay
vectors to a new set of linearly uncorrelated variables of reduced dimen-
sion (see Jackson, 1991, for details). The principal component vectors Ezn are
computed from the delay vectors Exn

Ezn ¼ VTExn, (3.1)

where V is obtained from USVT D X, the singular value decomposition
of the matrix X that contains the original delay vectors Exn. An essential
ingredient of PCA is to examine how much energy is lost for each element of
Ez that is discarded. For the pendulum, it is found that the �rst 8 components

2362 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

Figure 4: Accuracy (RMSE—root mean square error) of the reconstruction of
the original delay vectors (25 delays) from the principal component vectors (8
principal components) for the pendulum time series: (a) nonweighted PCA;
(c) weighted PCA; (d) weighted PCA and use of update formula equation 4.1.
The standard pro�le we use for weighted PCA is shown in (b).

(out of 25) explain 99.9% of the variance of the original data. To reconstruct
the original data vectors, PCA takes a weighted sum of the eigenvectors of
X (the columns of V). Note that King, Jones, and Broomhead (1987) found
that for large embedding dimensions, principal components, are essentially
Fourier coef�cients and the eigenvectors are sines and cosines.

In particular for the case of time-series prediction, where recent delays
are more important than older delays, it is important to know how well each
individual component of the delay vector Exn can be reconstructed from Ezn.
Figure 4a shows the average reconstruction error (RMSE, rootmean squared
error) for each individual delay, for the pendulum example where we use 8
principal components. It appears that the error varies with the delay, and, in
particular, the most recent and the oldest measurement are less accurately
represented than the others. This is not a surprise since the �rst and last delay
have correlated neighbors only on one side. Ideally, one would like to put
some more weight on recent measurements than older ones. Grassberger et
al. (1991) remarked that this seems not easy when using PCA. Fortunately
the contrary is true, since we can do a weighted PCA and set the desired

Learning Chaotic Attractors 2363

accuracy of each individual delay: each delay is multiplied by a weight
constant. The larger this constant is, the more the delay will contribute
to the total variance of the data, and the more accurately this delay will
need to be represented. For the pendulum we tried the weight pro�le of
Figure 4b. It puts a double weight on the most recent value, to compensate
for the neighbor effect. The reconstruction result is shown in Figure 4c. As
expected, the reconstruction of recent delays has become more accurate.

3.3 Updating Principal Components. In equation 3.1, the new state of
the system is predicted from the previous one. But the method of delays
has introduced information from the past in the state of the system. Since
it is not sound to predict the past, we �rst predict only the new measured
variable,

ynC1 D F0 (Exn), (3.2)

and then update the old state Exn with the prediction ynC1 to give ExnC1. For de-
lay vectors Exn D (yn¡mC1, . . . , yn), this update simply involves a shift of the
time window: the oldest value of y is removed and the new, predicted value
comes in. In our case of principal components Exn D Ezn, the update requires
three steps: (1) reconstruct the delay vector from the principal components,
(2) shift the time window, and (3) construct the principal components from
the updated delay vector. Fortunately, these three operations can be done
in a single matrix computation that we call update formula (see Bakker, de
Korte, Schouten, Takens, & van den Bleek, 1997, for a derivation):

EznC1 D AEzn C EbynC1 (3.3)

with

Aij D
mX

kD2

V¡1
i,k Vk¡1, jI Ebi D V¡1

i,1 . (3.4)

Since V is orthogonal, the inverse of V simply equals its transpose, V¡1 D
VT. The use of the update formula, equation 3.3, introduces some extra
loss of accuracy, for it computes the new state not from the original but
from reconstructed variables. This has a consequence, usually small, for the
average reconstruction error; compare for the pendulum example Figures 4c
to 4d.

A �nal important issue when using principal components as neural net-
work inputs is that the principal components are usually scaled according
to the value of their eigenvalue. But the small random weights initialization
for the neural networks that we will use accounts for inputs that are scaled
approximately to zero mean and unit variance. This is achieved by replacing
V by its scaled version W D VS and its inverse by W¡1 D (XTXW)T . Note
that this does not affect reconstruction errors of the PCA compression.

2364 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

Figure 5: Structure of the prediction model. The state is updated with a new
value of the measured variable (update unit), then fed into the linear model and
an MLP neural network to predict the next value of the measured variable.

3.4 Prediction Model. After de�ning the state of our experimental sys-
tem, we need to choose a representation of the nonlinear function F in equa-
tion 2.1. Because we prefer to use a short delay time t , the one-step-ahead
prediction will be highly correlated with the most recent measurement, and
a linear model may already make accurate one-step-ahead predictions. A
chaotic system is, however, inherently nonlinear and therefore we add a
standard multilayer perceptron (MLP) to learn the nonlinearities. There are
two reasons for using both a linear and an MLP model, even though the
MLP itself can represent a linear model: (1) the linear model parameters can
be estimated quickly beforehand with linear least squares, and (2) it is in-
structive to see at an early stage of training if the neural network is learning
more than linear correlations only. Figure 5 shows a schematic representa-
tion of the prediction model, with a neural network unit, a linear model
unit, and a principal component update unit.

4 Training Algorithm

After setting up the structure of the model, we need to �nd a set of param-
eters for the model such that it will have an attractor as close as possible to
that of the real system. In neural network terms, train the model to learn
the attractor. Recall that we would like to minimize directly the discrepancy
between model and system attractor, but stick to the practical training ob-
jective: minimize short-term prediction errors. The question arises whether
this is suf�cient: will the prediction model also have approximately the

Learning Chaotic Attractors 2365

same attractor as the real system? Principe et al. (1992) showed in an ex-
perimental study that this is not always the case, and some years later Kuo
and Principe (1994) and also Deco and Schürmann (1994) proposed, as a
remedy, to minimize multistep rather than just one-step-ahead prediction
errors. (See Haykin & Li, 1995, and Haykin & Principe, 1998, for an overview
of these methods.) This approach still minimizes prediction errors (and can
still fail), but it leaves more room for optimization as it makes the predic-
tion horizon user adjustable. In this study we introduce, in section 4.1, the
compromisemethod (Werbos et al., 1992) as a computationally very ef�cient
alternative for extending the prediction horizon. In section 5, we assess how
best to detect differences between chaotic attractors. We will stop training
when the prediction error is small and no differences between attractors can
be detected.

4.1 Error Propagation. To train a prediction model, we minimize the
squared difference between the predicted and measured future values. The
prediction is computed from the principal component state Ez by

OynC1 D F0 (Ezn). (4.1)

In section 3.1 we recommended choosing the delay time t small. As a con-
sequence, the one-step-ahead prediction will be highly correlated with the
most recent measurements and eventually may be dominated by noise. This
will result in bad multistep-ahead predictions. As a solution, Su, McAvoy,
and Werbos (1992) proposed to train the network with an output error
method, where the state is updated with previously predicted outputs in-
stead of measured outputs. They call this a pure robust method and applied
it successfully to nonautonomous, nonchaotic systems. For autonomous
systems, applying an output error method would imply that one trains
the model to predict the entire time series from only a single initial con-
dition. But chaotic systems have only a limited predictability (Bockmann,
1991), and this approach must fail unless the prediction horizon is limited to
just a few steps. This is the multistep-ahead learning approach of Kuo and
Principe (1994), Deco and Schürmann (1994), and Jaeger and Kantz (1996):
a number of initial states are selected from the measured time series, and
the prediction errors over a small prediction sequence are minimized. Kuo
and Principe (1994) related the length of the sequences to the largest Lya-
punov exponent of the system, and Deco and Schürmann (1994) also put
less weight on longer-term predictions to account for the decreased pre-
dictability. Jaeger and Kantz (1996) address the so-called error-in-variables
problem: a standard least-squares �t applied to equation 4.1 introduces a
bias in the estimated parameters because it does not account for the noise
in the independent variables Ezn.

We investigate a second possibility to make the training of models for
chaotic systems more robust. It recognizes that the decreasing predictability

2366 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

of chaotic systems can alternatively be explained as a loss of information
about the state of the system when time evolves. From this point of view,
the output error method will fail to predict the entire time series from only
an initial state because this single piece of information will be lost after
a short prediction time—unless additional information is supplied while
the prediction proceeds. Let us compare the mathematical formulation of
the three methods: one-step ahead, multistep ahead, and output error with
addition of information. All cases use the same prediction equation, 4.1.
They differ in how they use the update formula, equation 3.3. The one-step-
ahead approach updates each time with a new, measured value,

Ezr
nC1 D AEzr

n C EbynC1. (4.2)

The state is labeled Ezr because it will be used as a reference state later
in equation 4.9. Trajectory learning, or output error learning with limited
prediction horizon, uses the predicted value

EznC1 D AEzn C Eb OynC1. (4.3)

For the third method, the addition of information must somehow �nd its
source in the measured time series. We propose two ways to update the
state with a mixture of the predicted and measured values. The �rst one is

EznC1 D AEzn C Eb[(1 ¡ g)ynC1 C g OynC1], (4.4)

or, equivalently,

EznC1 D AEzn C Eb[ynC1 C gen], (4.5)

where the prediction error en is de�ned en ´ OynC1 ¡ ynC1. Equation 4.5 and
the illustrations in Figure 6 make clear why we call g the error propagation
parameter: previous prediction errors are propagated to the next time step,
depending on g that we must choose between zero and one. Alternatively,
we can adopt the view of Werbos et al. (1992), who presented the method as
a compromise between the output-error (pure-robust) and equation-error
method. Prediction errors are neither completely propagated to the next
time step (output-error method) nor suppressed (equation-error method)
but they are partially propagated to the next time step. For g D 0, error
propagation is switched off, and we get equation 4.2. For g D 1, we have
full error propagation, and we get equation 4.3, which will work only if
the prediction time is small. In practice, we use g as a user-adjustable pa-
rameter intended to optimize model performance by varying the effective
prediction horizon. For example, for the laser data model in section 7, we
did �ve neural network training sessions, each with a different value of g,

Learning Chaotic Attractors 2367

Figure 6: Three ways to make predictions: (a) one-step-ahead, (b) multistep-
ahead, and (c) compromise (partially keeping the previous error in the state of
the model).

ranging from 0 to 0.9. In the appendix, we analyze error propagation train-
ing applied to a simple problem: learning the chaotic tent map. There it is
found that measurement errors will be suppressed if a good value for g is
chosen, but that too high a value will result in a severe bias in the estimated
parameter. Multistep-ahead learning has a similar disadvantage; the length
of the prediction sequence should not be chosen too high.

The error propagation equation, 4.5, has a problem when applied to the
linear model, which we often add before even starting to train the MLP (see
section 3.4). If we replace the prediction model, 4.4, by a linear model,

ynC1 D CExn, (4.6)

and substitute this in equation 4.4, we get,

EznC1 D AEzn C Eb[(1 ¡g)ynC1 C gCEzn] (4.7)

or

EznC1 D (A C gEbC)Ezn C Eb(1 ¡ g)ynC1. (4.8)

This is a linear evolution of Ez with y as an exogeneous input. It is BIBO
(bounded input, bounded output) stable if the largest eigenvalue of the
matrix A C gEbC is smaller than 1. This eigenvalue is nonlinearly dependent
on g, and we found many cases in practice where the evolution is stable
when g is zero or one, but not for a range of in-between values, thus making
error propagation training impossible for these values of g. A good remedy
is to change the method into the following, improved error propagation
formula,

EznC1 D A[Ezr
n C g(Ezn ¡ Ezr

n)] C Eb[ynC1 C gen], (4.9)

2368 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

where the reference state Ezr
n is the state obtained without error propagation,

as de�ned in equation 4.2. Now stability is assessed by taking the eigenval-
ues ofg(A C EbC), which areg times smaller than the eigenvalues of (A C EbC),
and therefore error propagation cannot disturb the stability of the system
in the case of a linear model. We prefer equation 4.9 over equation 4.5, even
if no linear model is added to the MLP.

4.2 Optimization and Training. For network training we use backprop-
agation through time (BPTT) and conjugate gradient minimization. BPTT
is needed because a nonzero error propagation parameter introduces re-
currency into the network. If a linear model is used parallel to the neural
network, we always optimize the linear model parameters �rst. This makes
convergence of the MLP initially slow (the easy part has already been done)
and normal later on. The size of the MLPs is determined by trial and error.
Instead of using “early stopping” to prevent over�tting, we use the Diks
monitoring curves (see section 5) to decide when to stop: select exactly the
number of iterations that yields an acceptable Diks test value and a low
prediction error on independent test data. The monitoring curves are also
used to �nd a suitable value for the error propagation parameter; we pick
the value that yields a curve with the least irregular behavior (see the exam-
ples in sections 6 and 7). Fortunately, the extra work to optimize g replaces
the search for an appropriate delay time. We choose that as small as the
sampling time of the measurements.

In a preliminary version of the algorithm (Bakker et al., 1997), the pa-
rameter g was taken as an additional output of the prediction model, to
make it state dependent. The idea was that the training procedure would
automatically choose g large in regions of the embedding space where the
predictability is high, and small where predictability is low. We now think
that this gives the minimization algorithm too many degrees of freedom,
and we prefer simply to optimize g by hand.

5 Diks Test Monitoring

Because the error propagation training does not guarantee learning of the
system attractor, we need to monitor a comparison between the model and
system attractor. Several authors have used dynamic invariants such as
Lyapunov exponents, entropies, and correlation dimension to compare at-
tractors (Aguirre & Billings, 1994; Principe et al., 1992; Bakker et al., 1997;
Haykin & Puthusserypady, 1997). These invariants are certainly valuable,
but they do not uniquely identify the chaotic system, and their con�dence
bounds are hard to estimate. Diks et al. (1996) has developed a method
that is unique: if the two attractors are the same, the test value will be zero
for a suf�cient number of samples. The method can be seen as an objec-
tive substitute for visual comparison of attractors plotted in the embedding

Learning Chaotic Attractors 2369

space. The test works for low- and high-dimensional systems, and, unlike
the previouslymentioned invariants, its variance can be well estimated from
the measured data. The following null hypothesis is tested: the two sets of
delay vectors (model generated, measured) are drawn from the same multidimen-
sional probability distribution. The two distributions, r 0

1(Er) and r 0
2(Er), are �rst

smoothed using gaussian kernels, resulting inr1(Er) and r2(Er), and then the
distance between the smoothed distributions is de�ned to be the volume
integral over the squared difference between the two distributions:

Q D
Z

dEr(r 0
1(Er) ¡ r 0

2(Er))2. (5.1)

The smoothing is needed to make Q applicable to the fractal probability dis-
tributions encountered in the strange attractors of chaotic systems. Diks et
al. (1996) provide an unbiased estimate for Q and for its variance, Vc, where
subscript c means “under the condition that the null hypothesis holds.” In
that case, the ratio S D OQ /

p
Vc is a random variable with zero mean and unit

variance. Two issues need special attention: the test assumes independence
among all vectors, and the gaussian kernels use a bandwidth parameter d
that determines the length scale of the smoothing. In our case, the succes-
sive states of the system will be very dependent due to the short prediction
time. The simplest solution is to choose a large time interval between the de-
lay vectors—at least several embedding times—and ignore what happens
in between. Diks et al. (1996) propose a method that makes more ef�cient
use of the available data. It divides the time series in segments of length l
and uses an averaging procedure such that the assumption of independent
vectors can be replaced by the assumption of independent segments. The
choice of bandwidth d determines the sensitivity of the test. Diks et al. (1996)
suggest using a small part of the available data to �nd out which value of
d gives the highest test value and using this value for the �nal test with the
complete sets of data.

In our practical implementation, we compress the delay vectors to prin-
cipal component vectors, for computational ef�ciency, knowing that

kEx1 ¡ Ex2k2 ¼ kU(Ez1 ¡ Ez2)k2 D kEz1 ¡ Ez2k2, (5.2)

since U is orthogonal. We vary the sampling interval randomly between
one and two embedding times and use l D 4. We generate 11 independent
sets with the model, each with a length of two times the measured time-
series length. The �rst set is used to �nd the optimum value for d, and
the other 10 sets to get an estimate of S and to verify experimentally its
standard deviation that is supposed to be unity. Diks et al. (1996) suggest
rejecting the null hypothesis with more than 95% con�dence for S > 3. Our
estimate of S is the average of 10 evaluations. Each evaluation uses new and
independent model-generated data, but the same measured data (only the

2370 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

Figure 7: Structure of pendulum model I that uses all available information
about the pendulum: the measured angleh , the known phase of the driving force
w , the estimated angular velocity V, and nonlinear terms (sines and cosines) that
appear in the equations of motion, equation 2.1.

sampling is done again). To account for the 10 half-independent evaluations,
we lower the 95% con�dence threshold to S D 3 /

p
(1/2 ¢ 10) ¼ 1.4. Note

that the computational complexity of the Diks test is the same as that of
computing correlation entropies or dimensions—roughly O(N2), where N
is the number of delay vectors in the largest of the two sets to be compared.

6 Modeling the Experimental Pendulum

In this chapter, we present two models for the chaotic, driven, and damped
pendulum that was introduced in section 2.1. The �rst model, pendulum
model I, uses all possible relevant inputs, that is, the measured angle, the
known phase of the driving force, and some nonlinear terms suggested by
the equations of motion of the pendulum. This model does not use error
propagation or principal component analysis; it is used just to demonstrate
the performance of the Diks test. The second model, pendulum model II,
uses a minimum of different inputs—just a single measured series of the
estimated angular velocity V (de�ned in section 2.1). This is a practical
veri�cation of the Takens theorem (see section 3), since we disregard two
of the three “true” state variables and use delays instead. We will reduce
the dimension of the delay vector by PCA. There is no need to use error
propagation since the data have a very low noise level.

6.1 Pendulum Model I. This model is the same as that of Bakker et al.
(1996), except for the external input that is notpresent here. The input-output
structure is shown in Figure 7. The network has 24 nodes in the �rst and
8 in the second hidden layer. The network is trained by backpropagation

Learning Chaotic Attractors 2371

Figure 8: Development of the Poincaré plot of pendulum model I during train-
ing, to be compared with the plot of measured data (a). The actual development
is not as smooth as suggested by (b–f), as can be seen from the Diks test moni-
toring curves in Figure 9.

with conjugate gradient minimization on a time series of 16,000 samples
and reaches an error level for the one-step-ahead prediction of the angle h
as low as 0.27 degree on independent data. The attractor of this system is the
plot of the evolutions of the state vectors (V , h , Q)n in a three-dimensional
space. Two-dimensional projections, called Poincaré sections, are shown in
Figure 8: each time a new cycle of the sinusoidal driving force starts, when
the phase Q is zero, a point (V, h)n is plotted. Figure 8a shows measured
data, while Figures 8b through 8f show how the attractor of the neural
network model evolves as training proceeds. Visual inspection reveals that
the Poincaré section after 8000 conjugate gradient iterations is still slightly
different from the measured attractor, and it is interesting to see if we would
draw the same conclusion if we use the Diks test. To enable a fair comparison
with the pendulum model II results in the next section, we compute the
Diks test not directly from the states (V , h , Q)n (that would probably be
most powerful), but instead reconstruct the attractor in a delay space of the
variable V, the onlyvariable that will be available inpendulum model II, and
use these delay vectors to compute the Diks test. To see how the sensitivity of
the test depends on the length of the time series, we compute it three times,

2372 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

Figure 9: Diks test monitoring curve for pendulum model I. The Diks test con-
verges to zero (no difference between model and measured attractor can be
found), but the spikes indicate the extreme sensitivity of the model attractor for
the model parameters.

using 1, 2, and 16 data sets of 8000 points each. These numbers should
be compared to the length of the time series used to create the Poincaré
sections: 1.5 million points, of which each 32nd point (when the phase Q
is 0) is plotted. The Diks test results are printed in the top-right corner of
each of the graphs in Figure 8. The test based on only one set of 8000 (Diks
8K) points cannot see the difference between Figures 8a and 8c, whereas the
test based on all 16 sets (Diks 128K) can still distinguish between Figures 8a
and 8e.

It may seem from the Poincaré sections in Figures 8b through 8f that the
model attractor gradually converges toward the measured attractor when
training proceeds. However, from the Diks test monitoringcurve in Figure 9,
we can conclude that this isnotat all the case. The spikes in the curve indicate
that even after the model attractor gets very close to the measured attractor,
a complete mismatch may occur from one iteration to the other. We will
see a similar behavior for the pendulum model II (see section 6.2) and the
laser data model (see section 7), and address the issue in the discussion (see
section 8).

6.2 Pendulum Model II. This model uses information from just a single
variable, the estimated angular velocity V. From the equations of motion,
equation 2.1, it follows that the pendulum has three state variables, and the
Takens theorem tells us that in the case of noise-free data, an embedding of
7(2 ¤ 3 C 1) delays will be suf�cient. In our practical application, we take the
embedding of Figure 3b with 25 delays, which are reduced to 8 principal
components by weighted PCA. The network has 24 nodes in the �rst and 8
in the second hidden layer, and a linear model is added. First, the network
is trained for 4000 iterations on a train set of 8000 points; then a second set
of 8000 points is added, and training proceeds for another 2000 iterations,

Learning Chaotic Attractors 2373

reaching an error level of 0.74 degree, two and a half times larger than
model I. The Diks test monitoring curve (not shown) has the same irregular
behavior as for pendulum model I. In between the spikes, it eventually
varies between one and two. Compare this to model I after 2000 iterations,
as shown in Figure 8e, which has a Diks test of 0.6: model II does not learn
the attractor as well as model I. That is the price we pay for omitting a priori
information about the phase of the driving force and the nonlinear terms
from the equations of motion.

We also computed Lyapunov exponents, l . For model I, we recall the es-
timated largest exponent of 2.5 bits per driving cycle, as found in Bakker et
al. (1996). For model II, we computed a largest exponent of 2.4 bits per cycle,
using the method of von Bremen et al. (1997) that uses QR-factorizations
of tangent maps along model-generated trajectories. The method actually
computes the entire Lyapunov spectrum, and from that we can estimate the
information dimension D1 of the system, using the Kaplan-Yorke conjec-
ture (Kaplan & Yorke, 1979): take that (real) value of i where the interpo-
lated curve

P
i l i versus i crosses zero. This happens at D1 D 3.5, with an

estimated standard deviation of 0.1. For comparison, the ideal chaotic pen-
dulum, as de�ned by equation 2.1, has three exponents, and as mentioned
in Bakker et al. (1996), the largest is positive, the second zero, and the sum
of all three is negative. This tells us that the dimension must lie between 2
and 3. This means that pendulum model II has a higher dimension than the
real system. We think this is because of the high embedding space (eight
principal components) that is used. Apparently the model has not learned
to make the �ve extra, spurious, Lyapunov exponents more negative than
the smallest exponent in the real system. Eckmann, Kamphorst, Ruelle, and
Ciliberto (1986) report the same problem when they model chaotic data
with local linear models. We also computed an estimate for the correla-
tion dimension and entropy of the time series with the computer package
RRCHAOS (Schouten & van den Bleek, 1993), which uses the maximum
likeliehood estimation procedures of Schouten, Takens, and van den Bleek
(1994a, 1994b). For the measured data, we found a correlation dimension
of 3.1+/¡0.1, and for the model-generated data 2.9+/¡0.1: there was no
signi�cant difference between the two numbers, but the numbers are very
close to the theoretical maximum of three. For the correlation entropy, we
found 2.4+/¡0.1 bits per cycle for measured data, and 2.2+/¡0.2 bits per
cycle for the model-generated data. Again there was no signi�cant differ-
ence and, moreover, the entropy is almost the same as the estimated largest
Lyapunov exponent.

For pendulum model II we relied on the Diks test to compare attractors.
However, even if we do not have the phase of the driving force available as
we did in model I, we can still make plots of cross-sections of the attractor by
projecting them in a two-dimensional space. This is what we do in Figure 10:
every time when the �rst state variable upwardly crosses zero, we plot the
remaining seven state variables in a two-dimensional projection.

2374 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

Figure 10: Poincaré section based on measured (a) and model-generated (b)
data.A series of truncatedstates (z1 , z2, z3)T is reconstructed from the time series;
a point (z2, z3)T is plotted every time z1 crosses zero (upward).

7 Laser Data Model

The second application of the training algorithm is the well-known laser
data set (set A) from the Santa Fe time series competition (Weigend & Ger-
shenfeld, 1994). The model is similar to that reported in Bakker, Schouten,
Giles, & van den Bleek (1998), but instead of using the �rst 3000 points
for training, we use only 1000 points—exactly the amount of data that was
available before the results of the time-series competition were published.
We took an embedding of 40 and used PCA to reduce the 40 delays to 16
principal components. First, a linear model was �tted to make one-step-
ahead predictions. This already explained 80% of the output data variance.
The model was extended with an MLP, having 16 inputs (the 16 principal
components), two hidden layers with 32 and 24 sigmoidal nodes, and a
single output (the time-series value to be predicted). Five separate training
sessions were carried out, using 0%, 60%, 70%, 80%, and 90% error prop-
agation (the percentage corresponds to g ¢ 100). Each session lasted 4000
conjugate gradient iterations, and the Diks test was evaluated every 20 iter-
ations. Figure 11 shows the monitoring results. We draw three conclusions
from it:

1. While the prediction error on the training set (not shown) monoton-
ically decreases during training, the Diks test shows very irregular
behavior. We saw the same irregular behavior for the two pendulum
models.

2. The case of 70% error propagation converges best to a model that
has learned the attractor and does not “forget the attractor” when
training proceeds. The error propagation helps to suppress the noise
that is present in the time series.

Learning Chaotic Attractors 2375

Figure 11: Diks test monitoring curves for the laser data model with (a) 0%,
(b) 60%, (c) 70%, (d) 80%, (e) 90% error propagation. On the basis of these curves,
it is decided to select the model trained with 70% error propagation and after
1300 iterations for further analysis.

3. The common stopping criterion, “stop when error on test set is at its
minimum,” may yield a model with an unacceptable Diks test result.
Instead, we have to monitor the Diks test carefully and select exactly
that model that has both a low prediction error and a good attractor—
a low Diks test value that does not change from one iteration to the
other.

Experience has shown that the Diks test result of each training session
is sensitive for the initial weights of the MLP; the curves are not well re-
producible. Trial and error is required. For example, in Bakker et al. (1998)
where we used more training data to model the laser, we selected 90% error
propagation (EP) to be the best choice by looking at the Diks test monitoring
curves.

For further analysis, we select the model trained with 70% EP after 1300
iterations, having a Diks test value averaged over 100 iterations as low
as ¡0.2. Figure 12b shows a time series generated by this model along
with measured data. For the �rst 1000 iterations, the model runs in 90% EP
mode and follows the measured time series. Then the mode is switched
to free run (closed-loop prediction), or 100% EP, and the model gener-

2376 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

Figure 12: Comparison of time series (c)measured from the laser and (d) closed-
loop (free run) predicted by the model. Plots (a)and (b) show the �rst 2000points
of (c) and (d), respectively.

ates a time-series on its own. In Figure 12d the closed-loop prediction
is extended over a much longer time horizon. Visual inspection of the
time series and the Poincaré plots of Figures 13a and 13b con�rms the
results of the Diks test: the measured and model-generated series look
the same, and it is very surprising that the neural network learned the

Figure 13: Poincaré plots of (a) measured and (b) model-generated laser data.
A series of truncated states (z1, z2, z3 , z4)T is reconstructed from the time series;
a point (z2, z3, z4)T is plotted every time z1 crosses zero (upward).

Learning Chaotic Attractors 2377

chaotic dynamics from 1000 points that containonly three “rise-and-collapse”
cycles.

We computed the Lyapunov spectrum of the model, using series of tan-
gent maps along 10 different model generated trajectories of length 6000.
The three largest exponents are 0.92, 0.09, and ¡1.39 bits per 40 samples. The
largest exponent is larger than the rough estimate by Hübner et al. (1994)
of 0.7. The second exponent must be zero according to Haken (1983). To
verify this, we estimate, from 10 evaluations, a standard deviation of the
second exponent of 0.1, which is of the same order as its magnitude. From
the Kaplan-Yorke conjecture, we estimate an information dimension D1 of
2.7, not signi�cantly different from the value of 2.6 that we found in another
model for the same data (Bakker et al., 1998).

Finally, we compare the short-term prediction error of the model to that
of the winner of the Santa Fe time-series competition (see Wan, 1994). Over
the �rst 50 points, our normalized mean squared error (NMSE) is 0.0068
(winner: 0.0061); over the �rst 100 it is 0.2159 (winner: 0.0273). Given that the
long-term behavior of our model closely resembles the measured behavior,
we want to stress that the larger short-term prediction error does not imply
that the model is “worse” than Wan’s model. The system is known to be
very unpredictable at the signal collapses, having a number of possible
continuations. The model may follow one continuation, while a very slight
deviation may cause the “true” continuation to be another.

8 Summary and Discussion

We have presented an algorithm to train a neural network to learn chaotic
dynamics, based on a single measured time series. The task of the algo-
rithm is to create a global nonlinear model that has the same behavior
as the system that produced the measured time series. The common ap-
proach consists of two steps: (1) train a model to short-term predict the
time series, and (2) analyze the dynamics of the long-term (closed-loop)
predictions of this model and decide to accept or reject it. We demon-
strate that this approach is likely to fail, and our objective is to reduce
the chance of failure greatly. We recognize the need for an ef�cient state
representation, by using weighted PCA; an extended prediction horizon,
by adopting the compromise method of Werbos, McAvoy, & Su, (1992);
and (3) a stopping criterion that selects exactly that model that makes ac-
curate short-term predictions and matches the measured attractor. For this
criterion we propose to use the Diks test (Diks et al., 1996) that compares
two attractors by looking at the distribution of delay vectors in the recon-
structed embedding space. We use an experimental chaotic pendulum to
demonstrate features of the algorithm and then benchmark it by modeling
the well-known laser data from the Santa Fe time-series competition. We
succeeded in creating a model that produces a time series with the same
typical irregular rise-and-collapse behavior as the measured data, learned

2378 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

from a 1000-sample data set that contains only three rise-and-collapse se-
quences.

A major dif�culty with training a global nonlinear model to reproduce
chaotic dynamics is that the long-term generated (closed-loop) prediction of
the model is extremely sensitive for the model parameters. We show that the
model attractor does not gradually converge toward the measured attractor
when training proceeds. Even after the model attractor is getting close to the
measured attractor, a complete mismatch may occur from one training iter-
ation to the other, as can be seen from the spikes in the Diks test monitoring
curves of all three models (see Figures 9 and 11). We think of two possible
causes. First, the sensitivity of the attractor for the model parameters is a
phenomenon inherent in chaotic systems (see, for example, the bifurcation
plots in Aguirre & Billings, 1994, Fig. 5). Also the presence of noise in the
dynamics of the experimental system may have a signi�cant in�uence on
the appearance of its attractor. A second explanation is that the global non-
linear model does not know that the data that it is trained on are actually on
an attractor. Imagine, for example, that we have a two-dimensional state-
space and the training data set is moving around in this space following
a circular orbit. This orbit may be the attractor of the underlying system,
but it might as well be an unstable periodic orbit of a completely different
underlying system. For the short-term prediction error, it does not matter if
the neural network model converges to the �rst or the second system, but
in the latter case, its attractor will be wrong! An interesting development
is the work of Principe, Wang, and Motter (1998), who use self-organizing
maps to make a partitioning of the input space. It is a �rst step toward a
model that makes accurate short-term predictions and learns the outlines of
the (chaotic) attractor. During the review process of this manuscript, such
an approach was developed by Bakker et al. (2000).

Appendix: On the Optimum Amount of Error Propagation: Tent Map
Example

When using the compromise method, we need to choose a value for the
error propagation parameter such that the in�uence of noise on the result-
ing model is minimized. We analyze the case of a simple chaotic system,
the tent map, with noise added to both the dynamics and the available
measurements. The evolution of the tent map is

xt D a|xt¡1 C ut | C c, (A.1)

with a D 2 and c D 1 /2, and where ut is the added dynamical noise, as-
sumed to be a purely random process with zero mean and variance s2

u .
It is convenient for the analysis to convert equation A.1 to the following

Learning Chaotic Attractors 2379

notation,

xt D at(xt¡1 C ut) C c,
»

at D a, (xt¡1 C ut) < 0
at D ¡a, (xt¡1 C ut) ¸ 0 . (A.2)

We have a set of noisy measurements available,

yt D xt C mt, (A.3)

where mt is a purely random process, with zero mean and variance s2
m.

The model we will try to �t is the following:

zt D b|zt¡1 | C c, (A.4)

where z is the (one-dimensional) state of the model and b is the only param-
eter to be �tted. In the alternate notation,

zt D btzt¡1 C c,
»

bt D b, zt¡1 < 0
Bt D ¡b, zt¡1 ¸ 0

. (A.5)

The prediction error is de�ned as

et D zt ¡ yt, (A.6)

and during training we minimize SSE, the sum of squares of this error. If,
during training, the model is run in error propagation (EP) mode, each new
prediction partially depends on previous prediction errors according to

zt D bt(yt¡1 C get¡1) C c, (A.7)

where g is the error propagation parameter. We will now derive how the
expected SSE depends on g, s2

u and s2
m. First eliminate z from the prediction

error by substituting equation A.7 in A.6,

et D bt(yt¡1 C get¡1) C c ¡ yt, (A.8)

and use equation A.3 to eliminate yt and A.2 to eliminate xt:

et D f(bt ¡ at)xt¡1 ¡ atut C btmt¡1 ¡ mtg C btget¡1. (A.9)

Introduce 2 t D f(bt ¡at)xt¡1 ¡atut C bt(1 ¡g)mt¡1g, and assume e0 D 0. Then
the variance s2

e of et, de�ned as the expectation E[e2
t], can be expanded:

s2
e D E[¡mt C 2 t C (btg)2 t¡1 C ¢ ¢ ¢ C (b2g)t¡12 1]2. (A.10)

2380 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

For the tent map, it can be veri�ed that there is no autocorrelation in x (for
typical orbits that have a unit density function on the interval [¡0.5,0.5]
(see Ott, 1993), under the assumption that u is small enough not to change
this property. Because mt and ut are purely random processes, there is no
autocorrelation in m or u, and no correlation between m and u, x, and m.
Equation A.2 suggests a correlation between x and u, but this cancels out
because the multiplier at jumps between ¡1 and 1, independent from u
under the previous assumption that u is small compared to x. Therefore, the
expansion A.10 becomes a sum of the squares of all its individual elements
without cross products:

s2
e D E[m2

t] C E[2 2
t C (btg)2 2 2

t¡1 C ¢ ¢ ¢ C (b2g)2(t¡1) 2 2
1]. (A.11)

From the de�nition of at in equation A.2, it follows that a2
t D a2. A similar

argument holds for bt, and if we assume that at each time t, both the argu-
ments xt¡1 C ut in equation A.2 and yt¡1 C get¡1 in A.7 have the same sign
(are in the same leg of the tent map), we can also write

(bt ¡ at)2 D (b ¡ a)2. (A.12)

Since (btg)2 D (bg)2, the following solution applies for the series A.11:

s2
e D s2

m C s2
2

¡
1 ¡ (bg)2t

1 ¡ (bg)2

¢
, |bg | 6D 1, (A.13)

where s2
2 is the variance of 2 t. Written in full,

s2
e D s2

m C ((b¡a)2s2
x C s2

u C b2(1¡g)2s2
m)

¡
1¡(bg)2t

1¡(bg)2

¢
, |bg | 6D 1, (A.14)

and for large t,

s2
e D s2

m C ((b ¡a)2s2
x C s2

u C b2(1 ¡g)2s2
m)

¡
1

1¡(gb)2

¢
, |gb | 6D 1. (A.15)

Ideally we would like the difference between the model and real-system
parameter, (b ¡ a)2s2

x , to dominate the cost function that is minimized. We
can draw three important conclusions from equation A.15:

1. The contribution of measurement noise mt is reduced when gb ap-
proaches 1. This justi�es the use of error propagation for time series
contaminated by measurement noise.

2. The contribution of dynamical noise ut is not lowered by error prop-
agation.

Learning Chaotic Attractors 2381

3. During training, the minimization routine will keep b well below 1 /g,
because otherwise the multiplier, 1

1¡(gb)2 , would become large and so
would the cost function. Therefore, b will be biased toward zero if ga
is close to unity.

The above analysis is almost the same for the trajectory learning algo-
rithm (see section 4.1). In that case, g D 1 and equation A.14 becomes

s2
e D s2

m C ((b ¡ a)2s2
x C s2

u)
¡

1 ¡ b2t

1 ¡ b2

¢
, |b| 6D 1. (A.16)

Again, measurement noise can be suppressed by choosing t large. This leads
to a bias toward zero of b because for a given t > 0, the multiplier, 1¡b2t

1¡b2 ,
is reduced by lowering b (assuming b > 1, a necessary condition to have a
chaotic system).

Acknowledgments

This work is supported by the Netherlands Foundation for Chemical Re-
search (SON) with �nancial aid from the Netherlands Organization for Sci-
enti�c Research (NWO). We thank Cees Diks forhishelp with the implemen-
tation of the test for attractor comparison.We also thank the two anonymous
referees who helped to improve the article greatly.

References

Aguirre, L. A., & Billings, S. A. (1994). Validating identi�ed nonlinear models
with chaotic dynamics. Int. J. Bifurcation and Chaos, 4, 109–125.

Albano, A. M., Passamante, A., Hediger, T., & Farrell, M. E. (1992).Using neural
nets to look for chaos. Physica D, 58, 1–9.

Bakker, R., de Korte, R. J., Schouten, J. C., Takens, F., & van den Bleek, C. M.
(1997). Neural networks for prediction and control of chaotic �uidized bed
hydrodynamics: A �rst step. Fractals, 5, 523–530.

Bakker, R., Schouten, J. C., Takens, F., & van den Bleek, C. M. (1996). Neural
network model to control an experimental chaotic pendulum. PhysicalReview
E, 54A, 3545–3552.

Bakker, R., Schouten, J. C., Coppens, M.-O., Takens, F., Giles, C. L., & van den
Bleek, C. M. (2000). Robust learning of chaotic attractors. In S. A. Solla, T. K.
Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems,
12. Cambridge, MA: MIT Press (pp. 879–885).

Bakker, R., Schouten, J. C., Giles, C. L., & van den Bleek, C. M. (1998). Neural
learning of chaotic dynamics—The error propagation algorithm. In proceed-
ings of the 1998 IEEE World Congress on Computational Intelligence (pp. 2483–
2488).

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is dif�cult. IEEE Trans. Neural Networks, 5, 157–166.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0167-2789^28^2958L.1[aid=216109]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0218-348X^28^295L.523[aid=216110,csa=0218-348X^26vol=5^26iss=3^26firstpage=523]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-9227^28^295L.157[aid=216111]

2382 R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den Bleek

Blackburn, J. A., Vik, S., & Binruo, W. (1989). Driven pendulum for studying
chaos. Rev. Sci. Instrum., 60, 422–426.

Bockman, S. F. (1991). Parameter estimation for chaotic systems. In Proceedings
of the 1991 American Control Conference (pp. 1770–1775).

Broomhead, D. S., & King, G. P. (1986). Extracting qualitative dynamics from
experimental data. Physica D, 20, 217–236.

Bulsari, A. B., & Saxén, H. (1995). A recurrent network for modeling noisy tem-
poral sequences. Neurocomputing, 7, 29–40.

Deco, G., & Schürmann, B. (1994). Neural learning of chaotic system behavior.
IEICE Trans. Fundamentals, E77A, 1840–1845.

DeKorte, R. J., Schouten, J. C., & van den Bleek, C. M. (1995). Experimental con-
trol of a chaotic pendulum with unknown dynamics using delay coordinates.
Physical Review E, 52A, 3358–3365.

Diks, C., van Zwet, W. R., Takens, F., & de Goede, J. (1996).Detecting differences
between delay vector distributions. Physical Review E, 53, 2169–2176.

Eckmann, J.-P., Kamphorst, S. O., Ruelle, D., & Ciliberto, S. (1986). Liapunov
exponents from time series. Physical Review A, 34, 4971–4979.

Farmer, J. D., & Sidorowich, J. J. (1987). Predicting chaotic time series. Phys. Rev.
Letters, 59, 62–65.

Grassberger, P., Schreiber, T., & Schaffrath, C. (1991). Nonlinear time sequence
analysis. Int. J. Bifurcation Chaos, 1, 521–547.

Haken, H. (1983). At least one Lyapunov exponent vanishes if the trajectory of
an attractor does not contain a �xed point. Physics Letters, 94A, 71.

Haykin, S., & Li, B. (1995). Detection of signals in chaos. Proc. IEEE, 83, 95–122.
Haykin, S. & Principe, J. (1998). Making sense of a complex world. IEEE Signal

Processing Magazine, pp. 66–81.
Haykin, S., & Puthusserypady, S. (1997). Chaotic dynamics of sea clutter. Chaos,

7, 777–802.
Hübner, U., Weiss, C.-O., Abraham, N. B., & Tang, D. (1994). Lorenz-like chaos

in NH3-FIR lasers (data set A). In Weigend & Gershenfeld (Eds.), Time se-
ries prediction: Forecasting the future and understanding the past. Reading, MA:
Addison-Wesley.

Jackson, J. E. (1991). A user’s guide to principal components. New York: Wiley.
Jaeger, L., & Kantz, H. (1996). Unbiased reconstruction of the dynamics under-

lying a noisy chaotic time series. Chaos, 6, 440–450.
Kaplan, J., & Yorke, J. (1979). Chaotic behavior of multidimensional difference

equations. Lecture Notes in Mathematics, 730.
King, G. P., Jones, R., & Broomhead, D. S. (1987).Nuclear Physics B (Proc. Suppl.),

2, 379.
Krischer, K., Rico-Martinez, R., Kevrekidis, I. G., Rotermund, H. H., Ertl, G.,

& Hudson, J. L. (1993). Model identi�cation of a spatiotemporally varying
catalytic reaction. AIChe Journal, 39, 89–98.

Kuo, J. M., & Principe, J. C. (1994). Reconstructed dynamics and chaotic signal
modeling. In Proc. IEEE Int’l Conf. Neural Networks, 5, 3131–3136.

Lapedes, A., & Farber, R. (1987).Nonlinear signal processingusing neural networks:
Prediction and system modelling (Tech. Rep. No. LA-UR-87-2662).Los Alamos,
NM: Los Alamos National Laboratory.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0034-6748^28^2960L.422[aid=216112]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0167-2789^28^2920L.217[aid=216113]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0925-2312^28^297L.29[aid=216114]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1063-651X^28^2953L.2169[aid=216115]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1050-2947^28^2934L.4971[aid=216116,nlm=9897880]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0018-9219^28^2983L.95[aid=216119,csa=0018-9219^26vol=83^26iss=1^26firstpage=95]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1054-1500^28^297L.777[aid=216120]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1054-1500^28^296L.440[aid=216121]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0920-5632^28^292L.379[aid=216122]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1541^28^2939L.89[aid=216123,csa=0001-1541^26vol=39^26iss=1^26firstpage=89]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1054-1500^28^297L.777[aid=216120]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0920-5632^28^292L.379[aid=216122]

Learning Chaotic Attractors 2383

Lin, T., Horne, B. G., Tino, P., & Giles, C. L. (1996). Learning long-term depen-
dencies in NARX recurrent neural networks. IEEE Trans. on Neural Networks,
7, 1329.

Ott, E. (1993).Chaos indynamical systems. New York: Cambridge University Press.
Principe, J. C., Rathie, A., & Kuo, J. M. (1992). Prediction of chaotic time series

with neural networks and the issue of dynamic modeling. Int. J. Bifurcation
and Chaos, 2, 989–996.

Principe, J. C., Wang, L., & Motter, M. A. (1998). Local dynamic modeling with
self-organizing maps and applications to nonlinear system identi�cation and
control. Proc. of the IEEE, 6, 2240–2257.

Rico-Martṍ nez, R., Krischer, K., Kevrekidis, I. G., Kube, M. C., & Hudson, J.
L. (1992). Discrete- vs. continuous-time nonlinear signal processing of Cu
Electrodissolution Data. Chem. Eng. Comm., 118, 25–48.

Schouten, J. C., & van den Bleek, C. M. (1993).RRCHAOS: A menu-drivensoftware
package for chaotic time seriesanalysis. Delft, The Netherlands: Reactor Research
Foundation.

Schouten, J. C., Takens, F., & van den Bleek, C. M. (1994a). Maximum-likelihood
estimation of the entropy of an attractor. Physical Review E, 49, 126–129.

Schouten, J. C., Takens, F., & van den Bleek, C. M. (1994b). Estimation of the
dimension of a noisy attractor. Physical Review E, 50, 1851–1861.

Siegelmann, H. T., Horne, B. C., & Giles, C. L. (1997). Computational capabil-
ities of recurrent NARX neural networks. IEEE Trans. on Systems, Man and
Cybernetics—Part B: Cybernetics, 27, 208.

Su, H-T., McAvoy, T., & Werbos, P. (1992). Long-term predictions of chemical
processes using recurrent neural networks: A parallel training approach. Ind.
Eng. Chem. Res., 31, 1338–1352.

Takens, F. (1981). Detecting strange attractors in turbulence. Lecture Notes in
Mathematics, 898, 365–381.

von Bremen, H. F., Udwadia, F E., & Proskurowski, W. (1997). An ef�cient QR
based method for the computation of Lyapunov exponents. Physica D, 101,
1–16.

Wan, E. A. (1994). Time series prediction by using a connectionist network with
internal delay lines. In A. S. Weigend & N. A. Gershenfeld (Eds.), Time se-
ries prediction: Forecasting the future and understanding the past. Reading, MA:
Addison-Wesley.

Weigend, A. S., & Gershenfeld, N. A. (1994). Time series prediction:Forecasting the
future and understanding the past. Reading, MA: Addison-Wesley.

Werbos, P. J.,McAvoy, T., & Su,T. (1992).Neural networks, system identi�cation,
and control in the chemical process industries. In D. A. White & D. A. Sofge
(Eds.), Handbook of intelligent control. New York: Van Nostrand Reinhold.

Received December 7, 1998; accepted October 13, 1999.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-9227^28^297L.1329[aid=216124]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0098-6445^28^29118L.25[aid=216127]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1063-651X^28^2949L.126[aid=216128]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1063-651X^28^2950L.1851[aid=216129]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0888-5885^28^2931L.1338[aid=216131,csa=0888-5885^26vol=31^26iss=5^26firstpage=1338]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0167-2789^28^29101L.1[aid=216133]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-9227^28^297L.1329[aid=216124]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0888-5885^28^2931L.1338[aid=216131,csa=0888-5885^26vol=31^26iss=5^26firstpage=1338]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0167-2789^28^29101L.1[aid=216133]

