
Learning Communication

for Multi-agent Systems

C. Lee Giles1,2 and Kam-Chuen Jim2

1 School of Information Sciences & Technology and Computer Science and
Engineering

The Pennsylvania State University
University Park, PA 16801 USA

giles@ist.psu.edu
2 NEC Labs

4 Independence Way, Princeton, NJ 08540 USA
kamjim@research.nj.nec.com

Abstract. We analyze a general model of multi-agent communication in
which all agents communicate simultaneously to a message board. A ge-
netic algorithm is used to learn multi-agent languages for the predator
agents in a version of the predator-prey problem. The resulting evolved
behavior of the communicating multi-agent system is equivalent to that
of a Mealy machine whose states are determined by the evolved lan-
guage. We also constructed non-learning predators whose capture be-
havior was designed to take advantage of prey behavior known a priori.
Simulations show that introducing noise to the decision process of the
hard-coded predators allow them to significantly ourperform all previ-
ously published work on similar preys. Furthermore, the evolved com-
municating predators were able to perform significantly better than the
hard-coded predators, which indicates that the system was able to learn
superior communicating strategies not readily available to the human
designer.

1 Introduction

Allowing agents to communicate and to learn what to communicate can signif-
icantly improve the flexibility and adaptiveness of a multi-agent system. This
paper studies an ideal case where each agent has access to a small set of lo-
cal information and through experience learns to communicate only the addi-
tional information that is important. While many researchers have shown the
emergence of beneficial communication in multi-agent systems, very few have
looked into how communication affects the behavior or representational power
of the multi-agent system. This paper shows the relationship between the com-
munication behavior of a multi-agent system and the finite state machine that
completely describes this behavior. With this knowledge we demonstrate how
evolved communication increases the performance of a multi-agent system.

W. Truszkowski, C. Rouff, M. Hinchey (Eds.): WRAC 2002, LNAI 2564, pp. 377–390, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



378 C. Lee Giles and Kam-Chuen Jim

1.1 Previous Work

Previous work has shown that beneficial communication can emerge in a multi-
agent system. [1] show that agents can evolve to communicate altruistically in
a track world even when doing so provides no immediate benefit to the individ-
ual. [2] use genetic algorithms to evolve finite state machines that cooperate by
communicating in a simple abstract world. [3] study the emergence of conven-
tions in multi-agent systems as a function of various hard-coded strategy update
functions, including update functions where agents communicate to exchange
memories of observed strategies by other agents. [4] show that vocabulary can
evolve through the principle of self-organization. A set of agents create their
own vocabulary in a random manner, yet self-organization occurs because the
agents must conform to a common vocabulary in order to cooperate. [5] allow
agents to communicate real-valued signals through continuous communication
channels and evolved agents that communicate the presence of food in a food
trail-following task. [6] showed that communication significantly improves per-
formance of robot agents on tasks with little environmental communication, and
that more complex communication strategies provide little or no benefit over
low-level communication.

While many researchers have shown the emergence of beneficial communi-
cation, very few have analyzed the nature of the communication and how com-
munication affects the behavior or representational power of the multi-agent
system. [7] developed a “Recursive Modeling Method” to represent an agent’s
state of knowledge about the world and the other agents in the world. Further-
more, Gmytrasiewicz, Durfee, and Rosenchein used this framework to compute
the expected utility of various speech acts by looking at the transformation the
speech act induces on the agents’ state of knowledge. [8] show that with cer-
tain assumptions, communication can be treated as an n-person game, and the
optimal encoding of content by messages is obtained as an equilibrium maximiz-
ing the sum of the receiver’s and speaker’s expected utilities. More recently, we
have shown that communication increases the representational power of multi-
agent systems, and derived a method for estimating the language size for any
multi-agent problem ([9], [10]).

2 Predator Prey Problem

The predator-prey pursuit problem is used in this paper because it is a general
and well-studied multi-agent problem that still has not been solved, and it is
a simplied version of problems seen in numerous applications such as warfare
scenarios and computer games. The predator-prey pursuit problem was intro-
duced by [11] and comprised four predator agents whose goal is to capture a
prey agent by surrounding it on four sides in a grid-world. [12] used genetic
programming to evolve predator strategies and showed that a linear prey (pick
a random direction and continue in that direction for the rest of the trial) was im-
possible to capture reliably in their experiments because the linear prey avoids
locality of movement. [13] studied a version of the predator prey problem in



Learning Communication for Multi-agent Systems 379

which the predators were allowed to move diagonally as well as orthogonally
and the prey moved randomly. [14] used reinforcement learning and showed that
cooperating predators that share sensations and learned policies amongst each
other significantly outperforms non-cooperating predators. [15] study a simple
non-communicating predator strategy in which predators move to the closest
capture position, and show that this strategy is not very successful because
predators can block each other by trying to move to the same capture position.
Stephens and Merx also present another strategy in which 3 predators transmit
all their sensory information to one central predator agent who decides where
all predators should move. This central single-agent strategy succeeds for 30 test
cases, but perhaps the success rate would be much lower if the agents were to
move simultaneously instead of taking turns.

We use an implementation which is probably more difficult for the predators
than in all previous work:

1. In our configuration, all agents are allowed to move in only four orthogonal
directions. The predators cannot take shortcuts by moving diagonally to the
prey, as they do in [13].

2. All agents have the same speed. The predators do not move faster than the
prey, nor do they move more often than the prey, as they do in [12].

3. All agents move simultaneously. Because the agents do not take turns mov-
ing (e.g. [15]) there is some uncertainty in anticipating the result of each
move. In addition, moving the agents concurrently introduces many poten-
tial conflicts, e.g. two or more agents may try to move to the same square.

4. The predators cannot see each other and do not know each other’s location. If
this information is essential then the predators will have to evolve a language
that can represent such information.

The world is a two dimensional torus discretized into a 30x30 grid. If an agent
runs off the left edge of the grid it would reappear on the right edge of the grid,
and a similar behavior would be observed vertically. No two agents are allowed
to occupy the same cell at the same time, and agents cannot move through each
other. If two or more agents try to move to the same square they are blocked and
remain in their current positions. At the beginning of each scenario the agents
are randomly placed on different squares. Each scenario continues until either
the prey is captured, or until 5000 time steps have occurred without a capture.

Two prey strategies are used in the simulations. The Random Prey chooses
it’s next action at each time step from the set N, S, E, W using a uniform random
distribution. The Linear Prey picks a random direction at the beginning of a trial
and continues in that direction for the duration of the scenario. It has been shown
that the Linear Prey can be a difficult prey to capture [12, 4] because it does
not stay localized in an area. In our simulations this is an even more difficult
prey to capture because the prey and predators move at the same speed.



380 C. Lee Giles and Kam-Chuen Jim

3 Non-communicating Predators

The first set of experiments in this section is done using predators with human-
designed strategies, while the second set is done using evolved predators.

3.1 Hard-Coded Predators

The Follower agent moves in the direction that minimizes its Manhattan distance
to the prey’s current location. Ties are broken randomly. [13] used a similar
greedy heuristic for a version of the predator prey problem where the agents take
turns moving. [12] modified the algorithm to work in the predator prey problem
with simultaneous moves. Both of these previous approaches are deterministic
and thus suffer from deadlock.

The Herder agent is similar to the Follower agent but takes advantage of
coordination at the initiation of each trial. At the beginning of each trial, each
agent is assigned a role of either N, S, E, or W Herder. Their task is to move
to the respective cell adjacent to the prey in their assigned direction, in effect
herding the prey from four sides in an attempt to capture it. The Herder agent
uses the same Manhattan distance heuristic as the Follower agent.

The HerderCounter agents attempt to herd the prey like the Herder agents,
but takes advantage of state information by counting the number of times the
prey has moved in the same direction. This count is used as an offset to predict
the prey’s future position, which is computed by projecting the prey in the
direction of its previous move a number of steps equivalent to the count. The
predators attempt to herd the prey using this predicted position. The count has
a ceiling of 10, and when the prey changes direction the count is reset to zero.
Since the agents all move at the same speed, it is impossible for the predators
to catch up to a Linear prey once it is directly behind it. This modification was
designed using knowledge of the Linear prey, and allows the predators to catch
up to the prey by shortcutting to the prey’s predicted position. We expect this
modification to improve performance only against the Linear prey.

Deadlock occurs frequently when the predators and prey have deterministic
strategies. For all three predator strategies in this section we vary the amount of
noise that is introduced into the strategies in order to help prevent deadlock. In
this paper, these agents will be named by appending the amount of noise to the
name of it’s strategy. For example, ”Follower-10%” is a Follower agent which,
for each move, has a 10% chance of choosing a random action.

Performance of Hard-Coded Predators Each predator strategy was tested
on the Random and Linear preys. 10, 000 runs were performed on each predator-
prey pairing. Each run terminates when either the prey is captured, or after
50, 000 cycles have elapsed, whichever occurs first. The results can be summa-
rized by the following observations:

– The Linear prey is more difficult to capture than the Random prey. See Fig-
ure 1.



Learning Communication for Multi-agent Systems 381

Fig. 1. Performance of Fixed-Strategy Predators on the Random and Linear
Preys

– Noise Significantly Improves Performance. See Figures 2 and 3. In many
cases, the predators cannot capture without noise. Using more noise can
actually reduce the capture time, and unlike previous work which report
results as percentage of captures this paper reports the average capture time
because we observe 100 percent capture rate.

– Coordination Can Improve Performance. Herder and HerderCounter make
use of implicit communication by coordinating their roles at the initiation
of each run, and they both outperform the Follower strategy.

– State Information Can Improve Performance. HerderCounter agents use the
count state information to offset the desired capture position. Figure 3 shows
that of the three predator strategies in this section, the HerderCounter per-
forms the best on the Linear prey. As expected, the HerderCounter strategy
shows no significant improvement over the Herder strategy when attempting
to capture the Random prey (see Figure 2). This shows that proper state
information can be very important, but determining what state information
is useful can be very problem specific.

– Our noisy predators perform better than all previously published work to our
knowledge. A previous work whose experimental setup is most similar to our
work is perhaps [12], although their setup makes the predators’ job easier
because they are allowed to move more frequently than the prey. Haynes
and Sen and other previous work [13] on similar preys report results as a
percentage of trials that lead to capture, whereas the results reported here
show 100% capture rate.

3.2 Evolved Predators

This section describes how a genetic algorithm is used to evolve predator strate-
gies, and compares the performance of these strategies with the fixed-strategy



382 C. Lee Giles and Kam-Chuen Jim

Fig. 2. Performance of Fixed-Strategy Noisy Predators on Random Prey. Error
bars show 95% confidence intervals obtained by running 10000 simulations on
each point

predators of the previous section. Each individual in the GA population repre-
sents a predator strategy that is used by all 4 homogenous predators in each
scenario.

Encoding Predator Strategies The sensory information available to the
predators comprise only the range and bearing of the prey. The range is measured
in terms of the Manhattan distance. Both the range and bearing are discretized
into Nrange = 8 and Nbearing = 8 sectors. The predators can detect when the
prey is 0, 1, 2, and 3+ cells away, measured in terms of the Manhattan distance.
Ranges of 3 or more cells away are lumped under the same sector. The bearing
of the prey from the predator is discretized into 8 equal sectors similar to the
slices of a pizza pie. The 4 available actions are the moves {N, S, E, W}.

The behavior of each evolved predator is represented by a binary chromo-
some string. The number of binary bits required to represent the 4 actions are
bactions = 2. The total length c of the GA chromosome is given by the following
equation:

c = NrangeNbearingbactions

= 128

Evaluating Fitness The fitness of each evolved strategy is determined by
testing it on 100 randomly generated scenarios. Each scenario specifies unique
starting locations for the predator and prey agents. The maximum number of
cycles per scenario is 5000, after which the scenario times out and the predators
are considered to have failed. Since the initial population is randomly generated,
it is very unlikely that the first few generations will be able to capture the



Learning Communication for Multi-agent Systems 383

Fig. 3. Performance of Fixed-Strategy Noisy Predators on the Linear Prey.
Error bars show 95% confidence intervals obtained by running 10000 simulations
on each point

prey. We attempt to speed up the evolution of fit strategies by rewarding those
strategies that at least stay near the prey and are able to block the prey’s path.
The fitness fi of individual i is computed at the end of each generation as follows,
where Nmax = 5000 is the maximum number of cycles per scenario, T = 100
is the total number of scenarios for each individual, and nc is the number of
captures:

– If nc = 0, fi = 0.4
davg+0.6

nb
NmaxT

where davg is the average distance of the all 4

predators from the prey during the scenarios, and nb is the cummulative #
of cycles where the prey’s movement was blocked by an adjacent predator
during T scenarios. The fitness of non-capture strategies can never be greater
than 1.

– If 0 < nc < T , fi = nc.
– If nc = T , fi = T + 10000T

T∑

j=0

tj

, where tj is the number of cycles required to

capture the prey at scenario j.

GA Setup The following parameters of the GA algorithm were found experi-
mentally to be most effective. The population size of each generation is fixed at
100 individuals. The mutation rate is set at 0.01. We use 2-point crossover with a
crossover probability of 0.4. The idea behind multi-point crossover is that parts
of the chromosome that contribute to the fit behavior of an individual may not
be in adjacent substrings. Also, the disruptive nature of multi-point crossover
may result in a more robust search by encouraging exploration of the search
space rather than early convergence to highly fit individuals. For a discussion of
2-point crossover and generalized multi-point crossover schemes see [16]. A Tour-
nament selection scheme [17] with a tournament size Tour of 5 is used to select



384 C. Lee Giles and Kam-Chuen Jim

the parents at each generation. In Tournament selection, Tour individuals are
chosen randomly from the population and the best individual from this group
is selected as a parent. This is repeated until enough parents have been chosen
to produce the required number of offsprings for the next generation. The larger
the tournament size, the greater the selection pressure, which is the probabil-
ity of the best individual being selected compared to the average probability of
selection of all individuals.

The following pseudocode describes the methodology:

1. Repeat the following for 10 trials on selected prey:
(a) Randomly generate a population of 100 individuals.
(b) Repeat the following until the predators show no improvement after 200

generations:
i. Simulate each predator strategy on 100 scenarios and evaluate its
fitness based on the performance on those scenarios.

ii. Select 100 individuals from the current population using Tournament
selection, pair them up, and create a new population by using 2-point
crossover with mutation.

(c) The best strategy found over all generations is used as the solution of
this trial. The fitness of this strategy is then recomputed by testing on
1000 new randomly generated scenarios.

2. The strategy that performed best over all 10 trials is used as the solution to
this prey.

Performance of GA Predators The results of the best GA predators evolved
for each prey are shown in Figure 4. Also shown in the figure are results of the
fixed predator strategies at their optimal noise levels, which were obtained by
taking the best average capture times found for each predator in Figures 2 and
3. The GA predator strategy is denoted as GaPredator(0), where (0) indicates
that there is no communication.

The performance of GaPredator(0) against the Random prey is comparable
to the performance of the Herder and HerderCounter predators (though tak-
ing on average 30 cycles longer to capture), and significantly better than the
performance of the Follower predators. However, none of the evolved predators
were able to reliably capture the Linear prey. In the next Section we explore
whether or not allowing the predators to evolve communication would improve
their performance against the Linear prey.

4 Communication

All predator agents communicate simultaneously to a message board (Figure 5).
At every iteration, each predator speaks a string of symbols which is stored on
the message board. Each agent then reads all the strings communicated by all
the predators and determines the next move and what to say next. Strings are
restricted to have equal length l. We vary the length l of the strings and study
the effect on performance.



Learning Communication for Multi-agent Systems 385

Fig. 4. Performance of best non-communicating predator strategies. Error bars
show 95% confidence intervals

4.1 Communicating Agents as One FSM

This type of communication may be represented as shown in Figure 5, where
{Am} is the set of homogenous predator agents, {Om} are the actions of the
predators, and {Imn} is the set of environmental inputs, where n is the number
of inputs and m is the number of communicating agents. The message board can
be interpreted as a set of state nodes.

The entire set of agents can be viewed as one finite state machine (FSM) with
the set of possible states specified by the state nodes {Sml}. The whole multi-
agent system is equivalent to a finite state automaton with output, otherwise
known as a finite state transducer. One type of finite state transducer is the
Mealy finite state machine, in which the output depends on both the state of
the machine and its inputs. A Mealy machine can be characterized by a quintuple
M = (Σ, Q, Z, δ, λ), where Σ is a finite non-empty set of input symbols, Q is a
finite non-empty set of states, Z is a finite non-empty set of output symbols, δ
is a “next-state” function which maps Q ×Σ → Q, and λ is an output function
which maps Q × Σ → Z.

It is easy to show that the multi-agent system is a Mealy machine by de-
scribing the multi-agent system in terms of the quintuple M . The input set
Σ is obtained from the set {I00I01...I0nI10I11...Imn} of all possible concate-
nated sensor readings for the predator agents (for all possible values of I).
The states Q are represented by concatenation of all symbols in the message
board. Since the communication strings comprise binary symbols {0, 1}, the
maximum number of states Nstates in the Mealy machine is therefore deter-
mined by the number of communicating agents m and by the length l of the
communication strings: Nstates = 2lm. The output set Z is obtained from the



386 C. Lee Giles and Kam-Chuen Jim

Fig. 5. Multi-agent Communication as a single Finite State Machine

set {O00O01..O0pO10O11...Omp} of all possible concatenated actions for all the
communicating agents, where p is the number of bits required to encode the
possible actions for each agent (for all possible values of O). In the general
case where the actions do not have to be encoded as binary bits, the output
set is simply the set {O0O1...Om} of all possible concatenated actions for the
m communicating agents. The next state function δ and output function λ are
determined by the agents’ action and communication strategies. The strategies
themselves may be FSMs or something with even more representational power,
in such a case the multi-agent FSM is a hierarchical FSM.

4.2 States and Partially Observable Environments

From Figure 5 it is clear that communication allows the agents to use state
information. This state information is contributed by all communicating agents
and represents the state of the multi-agent system. Although each individual
agent may maintain its own state information, such information will be limited
by the available sensors of the agent. Communication allows agents to ”tell” each
other environmental information that may have been observable only to a subset
of the agents. Obviously, communication will be of little use in this respect in
the limit when the same set of environmental information is observable to all
agents. It is rare for all agents to have access to the same amount of information.
This is due to the fact that an individual agent will usually have its own internal
state that is not observable by other agents. If an agent’s internal state helps
determine its behavior, communication may be instrumental in allowing the
agents to converge on an optimal plan of action.



Learning Communication for Multi-agent Systems 387

4.3 Experimental Setup

A genetic algorithm is used to evolve predators that communicate. This section
describes sets of experiments with strings of varying length l. As the length
l increases, the number of strings that are available for communicative acts
increases exponentially.

Encoding Predator Strategies The sensory information available to the
predators include the range and bearing of the prey as discussed in Section
3.2. In addition, the predator agents have access to the contents of the message
board. Since each agent speaks a string of length l at each time step, the num-
ber of symbols on the message board is ml, where m is the number of predator
agents.

The behavior of each predator is represented by a binary string. The number
of binary bits required to represent the 4 movements are bmoves = 2. In addition,
each agent speaks a string of length l at each iteration. Thus, the total number
of action bits is

bactions = bmoves + l (1)

The range and bearing are discretized to Nrange = 8 and Nbearing = 8 sectors. In
addition, since there are ml binary symbols on the message board, the message
board can have Nmessages = 2ml possible messages. The total number of states
that can be sensed by a predator is Nstates = NrangeNbearingNmessages This
provides the following equation for the chromosome length cml of a GA predator:

cml = bactionsNstates

cml = NrangeNbearing(2 + l)2ml (2)

so the chromosome length increases exponentially with communication string
length and number of agents.

Growing GA Predators - Coarse to Fine Search To improve efficiency, it
would be useful to grow the predators. Growing means taking a population of
predators that have already evolved a language from a set of possible strings,
and evolving them further after increasing the set of possible strings they are
allowed to communicate. This re-uses the knowledge acquired by predators that
were limited to a smaller language. This is effectively a coarse-to-fine search. By
starting with a smaller set of possible strings (and therefore smaller search space)
the agents are forced to evolve a minimalistic language to communicate the most
important state information. As we increase the search space by increasing the
number of possible strings, the agents can refine the language and communicate
other useful, but possibly less critical, information.

When a population of GA predators with chromosome length cml is grown
to a length of cm(l+1), each new chromosome is encoded such that the behavior
of the new predator is initially identical to that of the chromosome it was grown
from. The portions of the larger chromosome that are new are not visited initially



388 C. Lee Giles and Kam-Chuen Jim

Fig. 6. Best capture times and the corresponding number of evolutionary gen-
erations required to evolve the communicating predators against the Random
and Linear preys, at communication string lengths 0, 1, and 2. Error bars on the
capture times show 95% confidence intervals using the Student’s t distribution,
obtained by running 1000 simulations at each point

because the predator is making exactly the same decisions as before and will
therefore see the same set of sensory states. As the evolutionary process begins,
new sensory states will be visited and the agent will evolve accordingly.

The population size of the grown cm(l+1) predators is always twice the popu-
lation size of the cml predators they were grown from. Half of the population of
cm(l+1) predators are grown from the cml predators, the other half are generated
randomly. In this manner the population of grown predators do not have to rely
solely on mutation for introducing new genetic material to the genes that were
copied from the cml predators. They can obtain new genetic material through
crossover with the randomly generated individuals.

Setup In the sections that follow, the GA predators are labelled as GaPred-
ator(l), where l is the length of the communication strings. l = 0 means the
predators are not communicating, and is identical to the GaPredator discussed
in Section 3.2. Grown predators are labelled as GaPredator(l0 → l1), where
l0 is the communication string length before the agent is grown, and l1is the
length it was grown to. Five predator populations GaPredator(0), GaPreda-
tor(1), GaPredator(2),GaPredator(0→ 1), and GaPredator(1→ 2) are matched
against the Random and Linear preys. Each matchup is performed similarly to
the set-up described in Section 3.2, except that each predator population is
evolved until there is no further improvement in 200 generations. The initial
GaPredator(0 → 1) population that is matched up against the Linear prey is
grown from the GaPredator(0) population with the best average fitness against
the Linear prey.



Learning Communication for Multi-agent Systems 389

4.4 Results

Figure 6 shows the best average capture times, and the number of evolutionary
generations that were required to achieve those capture times. The number of
generations reported for the grown predators are recursively cumulative with the
number of generations needed to evolve them before they were grown. Below is
a summary of the results:

– Communication improves capture performance.
– As the length of the communication string increases, the capture time de-
creases. However, the best performance of GaPredator(1) against the Ran-
dom prey is comparable to the best performance of GaPredator(2) and
GaPredator(1→ 2), which indicates that a communication string of length
1 is sufficient against the Random prey.

– The evolutionary generations required increases with the length of the com-
munication string.

– The performance of grown predators is comparable to that of the equivalent
non-grown predators but requires significantly less evolution time.

– The evolved communicating predators perform better than all previously
published work to our knowledge, and better than the noisy, hard-coded
predators presented in the previous Section.

5 Conclusions

Introducing noise to the decision process of our human-designed predator strate-
gies allows the predators to overcome deadlock and thus outperform predator
strategies both programmed and learned in all previously published work. Fur-
thermore, a genetic algorithm can evolve communicating predators that outper-
form all (noisy) human-designed predator strategies reported in this paper.

A multi-agent system in which all the agents communicate simultaneously is
equivalent to a Mealy machine whose states are determined by the concatenation
of the strings in the agents’ communication language. The simulations show that
increasing the language size, and thus increasing the number of possible states
in the equivalent Mealy machine, can significantly improve the performance of
the predators.

References

[1] Ackley, D.H., Littman, M.L.: Altruism in the evolution of communication. In
Brooks, R.A., Maes, P., eds.: Artificial Life IV: Proceedings of the International
Workshop on the Synthesis and Simulation of Living Systems, MIT Press (1994)
40–49 378

[2] MacLennan, B.J., Burghardt, G.M.: Synthetic ethology and the evolution of
cooperative communication. Adaptive Behavior 2 (1993) 161–188 378



390 C. Lee Giles and Kam-Chuen Jim

[3] Walker, A., Wooldridge, M.: Understanding the emergence of conventions in
multi-agent systems. In Lesser, V., Gasser, L., eds.: Proceedings of the First
International Conference on Multi-Agent Systems, Menlo Park, CA, AAAI Press
(1995) 384–389 378

[4] Steels, L.: Self-organizing vocabularies. In Langton, C., ed.: Proceedings of Alife
V, Nara, Japan (1996) 378, 379

[5] Saunders, G.M., Pollack, J.B.: The evolution of communication schemes over
continuous channels. In Maes, P., Mataric, M., Meyer, J., Pollack, J., eds.: From
Animals to Animats 4: Proceedings of the 4th International Conference on Sim-
ulation of Adaptive Behavior, MIT Press (1996) 580–589 378

[6] Balch, T., Arkin, R.C.: Communication in reactive multiagent robotic systems.
Autonomous Robots 1 (1994) 27–52 378

[7] Gmytrasiewicz, P.J., Durfee, E.H., Rosenschein, J.: Toward rational communica-
tive behavior. In: AAAI Fall Symposium on Embodied Language, AAAI Press
(1995) 378

[8] Hasida, K., Nagao, K., Miyata, T.: A game-theoretic account of collaboration in
communication. In Lesser, V., ed.: Proceedings of the First International Con-
ference on Multi–Agent Systems (ICMAS), San Francisco, CA, MIT Press (1995)
140–147 378

[9] Jim, K., Giles, C.L.: Talking helps: Evolving communicating agents for the
predator-prey pursuit problem. Artificial Life 6(3) (2000) 237–254 378

[10] Jim, K., Giles, C.L.: How communication can improve the performance of multi-
agent systems. In: 5th International Conference on Autonomous Agents. (2001)
378

[11] Benda, M., Jagannathan, V., Dodhiawalla, R.: On optimal cooperation of knowl-
edge sources. Technical Report BCS-G2010-28, Boeing AI Center, Boeing Com-
puter Services, Bellevue, WA (1985) 378

[12] Haynes, T., Sen, S.: Evolving behavioral strategies in predators and prey. In
Wei, G., Sen, S., eds.: Adaptation and Learning in Multiagent Systems. Springer
Verlag, Berlin (1996) 113–126 378, 379, 380, 381

[13] Korf, R.E.: A simple solution to pursuit games. In: Working Papers of the
11th International Workshop on Distributed Artificial Intelligence, Glen Arbor,
Michigan (1992) 183–194 378, 379, 380, 381

[14] Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents.
In: Proc. of 10th ICML. (1993) 330–337 379

[15] Stephens, L.M., Merx, M.B.: The effect of agent control strategy on the per-
formance of a dai pursuit problem. In: Proceedings of the 10th International
Workshop on DAI, Bandera, Texas (1990) 379

[16] Jong, K.A.D., Spears, W.M.: A formal analysis of the role of multi-point crossover
in genetic algorithms. Annals of Mathematics and Artificial Intelligence Journal
5 (1992) 1–26 383

[17] Goldberg, D., Deb, K.: A comparative analysis of selection schemes used in genetic
algorithms. In Rawlins, G., ed.: Foundations of Genetic Algorithms. Morgan
Kaufmann Publishers, San Mateo, CA (1991) 69–93 383


	Learning Communication for Multi-agent Systems
	Introduction
	Previous Work

	Predator Prey Problem
	Non-communicating Predators
	Hard-Coded Predators
	Evolved Predators

	Communication
	Communicating Agents as One FSM
	States and Partially Observable Environments
	Experimental Setup
	Results

	Conclusions


