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ABSTRACT
We de�ne a communit y on the web as a set of sites that
have more links (in either direction) to members of the com-
munity than to non-members. Members of such a commu-
nity can be eÆciently iden ti�ed in a maximum ow / mini-
m um cut framework, where the source is composed of known
members, and the sink consists of well-kno wn non-members.
A focused crawler that crawls to a �xed depth can approxi-
mate community membership by augmenting the graph in-
duced by the cra wl with links to a virtual sink node.The ef-
fectiveness of the approximation algorithm is demonstrated
with several crawl results that iden tify hubs, authorities,
w eb rings, and other link topologies that are useful but not
easily categorized. Applications of our approach include fo-
cused cra wlers and search engines, automatic population of
portal categories, and improved �ltering.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications|
data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval|clustering, information
�ltering ; G.2.2 [Discrete Mathematics]: Graph Theory|
network problems

1. INTRODUCTION
The rapid growth of the World Wide Web has made more
information freely available than ever before. While this
growth has ushered a boon to most levels of societ y, it has
also created a dilemma for search engine designers that have
to balance a number of conicting goals in order to make
search engines practical in the real-world.

One conict hinges on the shear number of indexable web
pages (now over 109 [1]). Ideally , search engine crawlers
could sample the indexable web often enough to insure that
results are v alid, and broadly enough to insure that all valu-
able documents are indexed. However, the most recent stud-
ies have shown that no search engine covers more than about

16% of the web, and the union of 11 major search engines
covers less than 50% of the web [2]. Moreover, search en-
gines are often out-of-date partially due to limited crawling
speeds and the low average life-span of web pages.

A second dilemma for search engines resides in the balance
between precision and recall of query results. Since most
search engines rank results with a topical measure, broad
queries to general search engines can easily return thousands
of results, th us yielding high recall at the expense of preci-
sion. Web portals such as Y ahoo! approach the problem
from the other extreme by organizing a very small subset of
the w eb in to a hierarc hicalstructure which can yield high
precision for a search but with low recall.

Motivated by these tw o problems, we introduce a de�nition
of a web community that may enable web crawlers to e�ec-
tively focus on narrow but topically related subsets of the
w eb and also enable search engines and portals to increase
the precision and recall of search results. We de�ne a com-
m unity to be a set of web pages that link (in either direction)
to more web pages in the communit y than to pages outside of
the community. Super�cially, this de�nition appears prob-
lematic because it depends on a community being identi�ed
before an individual web page can be tested for membership.
In fact, in the absence of any a priori information, our de�-
nition of a community is NP-complete because it maps into
a family of graph partitioning problems. Ho w ever,by ex-
ploiting various properties of the w eb (e.g., that so called
\h ubs" and \authorities" can be easily identi�ed) identify-
ing a w eb communit y becomes identical to solving the s-t
maximum ow netw ork problem, which has many eÆcient
polynomial time solutions.

The remainder of this paper is divided into four additional
sections and an appendix. In Section 2 we give an overview
of previous work on classifying hyper-linked documents by
link analysis, discuss graph cut methods, and provide an
introduction to network ow analysis. The purpose of this
bac kground section is to illustrate how our proposed meth-
ods complement previous work and exploit regularities of the
w eb to yield fast methods for identifying web communities.

Section 3 contains the bulk of our analysis, where we pro ve
that identifying a community is identical to solving the s-t
maximum ow problem. Since our formulation of web com-
m unities exploits regularities of the web, we also pro ve some
requirements and limitations of the algorithm. After han-
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dling the idealized case (where the entire web is considered
the input to the ow algorithm) we introduce an approxi-
mation to the idealized method that operates over a graph
induced by a crawl of �xed depth. The approximation algo-
rithm is combined with an expectation-maximization proce-
dure that iterates crawls by bootstrapping previous results.

In Section 4, we demonstrate the e�ectiveness of our al-
gorithms by showing the results from three focused crawls
directed by the procedures described in Section 3. The �rst
community that we identify is topically related around a re-
search area; the second community is focused around a set of
institutions; and the third community was found by starting
with a single individual's home page.

Finally, Section 5 contains our conclusions and discusses fu-
ture areas of research for the methods that we introduce.
Additionally, we present a new maximum ow algorithm in
the appendix that may o�er scalable solutions on graphs the
size of the entire web.

2. BACKGROUND
A considerable amount of research has focused on analyz-
ing collections of hyper-linked documents and structures.
These works have been very cross-disciplinary, occurring in
hyper-media, WWW, sociology, bibliometric, and software
engineering circles. We summarize a small subset of these
�elds to give our own work the proper context.

2.1 Link Analysis
One of the earliest uses of link structure is found in the anal-
ysis of social networks [3], where network properties such as
cliques, centroids, and diameters are used to analyze the
collective properties of interacting agents. The �elds of ci-
tation analysis [4] and bibliometrics [5] also use the citation
links between works of literature to identify patterns in col-
lections. Co-citation [6] and bibliographic coupling [7] are
two of the more fundamental measures used to characterize
the similarity between two documents. The �rst measures
the number of citations in common between two documents,
while the second measures the number of documents that
cite both of two documents under consideration. Methods
from bibliometrics have also been applied to the problem of
mining web documents [8].

Bibliometrics techniques can be thought of as local in nature
because they typically consider only the local link properties
between two documents. Of course, similarity metrics such
as co-citation and bibliographic coupling can be used along
with classical clustering techniques, such as k-means [9], to
reduce the dimensionality of the document space, thus iden-
tifying documents in a community that is centered about a
cluster centroid. More radical forms of dimensionality reduc-
tion have used this basic idea to cluster literature databases
with over 150 thousand documents [10]. However, applying
these methods to systems such as the web, with over 109

documents, would obviously be challenging.

Recently, Kleinberg [11] showed that the HITS algorithm,
which is strongly related to spectral graph partitioning and
methods used by the Google search engine [12], can identify
\hub" and \authority" web pages. A hub site links to many
authority sites and an authority site is linked to by many

hubs. Thus, the de�nition of the two page types is recursive
and mutually reinforcing. HITS is especially e�ective when
one desires results to be ranked by a measure of importance
that reects some notion of usefulness and relevance as de-
termined by link topology.

More formally, if A is the adjacency matrix of a directed
graph, HITS �nds the left and right handed eigenvectors of
ATA with the largest eigenvalue. By de�nition, all compo-
nents of the dominant eigenvector will have positive compo-
nents. The web pages that correspond to the largest com-
ponents of the right-handed (or left-handed) eigenvector are
the authorities (or hubs).

We consider HITS to be complementary to our own work,
as our algorithm requires \seed" web sites to be used as the
starting point for a focused crawl. Hubs and authorities are
very useful for identifying key sites related to some commu-
nity and, hence, should work well as seeds to our method.
HITS has also been used [13] to extract related1 documents;
however, using HITS for enumerating all members of a com-
munity may be problematic because the communities that
one is interested in may be overshadowed by a more dom-
inant community. To solve this problem with HITS, one
must extract multiple eigenvectors in order to isolate the
smaller community that one is interested in.

Another issue for HITS is that it may have limited use
in identifying communities that form web rings and small-
world networks without dominating members. In the case
of simple web rings, the adjacency matrix of the subgraph
of the community forms a permutation matrix. In this case,
the matrix ATA equals the identity matrix and will, there-
fore, have a at spectrum of eigenvalues. Our method is not
troubled by such link topologies.

2.2 Graph Cuts and Partitions
If time and space complexity issues were irrelevant, then
one could identify tightly coupled communities by solving
the problem as a balanced minimum cut problem, where
the goal is to partition a graph such that the edge weight
between the partitions is minimized while maintaining par-
titions of a minimal size. In this framework, communities
obey our de�ning characteristic of having more edges in-
side the community than outside. Unfortunately, the most
generic versions of balanced minimum-cut graph partition-
ing are NP-complete [14]. On the other hand, if the con-
straint on the partition sizes is removed, then the problem
lends itself to many polynomial time algorithms [15]; how-
ever, under this formulation, solutions will often be trivial
cuts that leave one partition very small relative to the size
of the original graph.

Intuitively, balanced minimal cuts are hard because of the
vast number of balanced partitions that one can place on
a vertex set. Unrestricted minimal cuts are easier because
there are relatively few trivial (highly unbalanced) partitions
in a graph. In any event, neither approach lends itself to
identifying communities as we have de�ned them.

1Gibson et al. [13] also use the term community to describe
their discovered collections; however, their de�nition is not
strictly consistent with our own, so we avoid using it here.
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Figure 1: Maximum ow methods will separate the
two subgraphs with any choice of s and t that has
s on the left subgraph and t on the right subgraph,
removing the three dashed links.

2.3 Maximum Flow and Minimal Cuts
The s-t maximum ow problem is de�ned as follows. Given
a directed graph G = (V;E), with edge capacities c(u; v) 2

Z
+
, and two vertices, s; t 2 V , �nd the maximum ow that

can be routed from the source, s, to the sink, t, that obeys all
capacity constraints. Intuitively, if edges are water pipes and
vertices are pipe junctions, then the maximum ow problem
tells you how much water you can move from one point to
another.

The famous \max ow-min cut" theorem of Ford and Fulk-
erson [16, 17] proves that the maximum ow of the network
is identical to the minimum cut that separates s and t. Many
polynomial time algorithms exist for solving the s-t maxi-
mum ow problem, and applications of the problem include
VLSI design, routing, scheduling, image segmentation, and
network reliability testing [18].

The maximum ow problem is well-suited to the application
of identifying web communities because, unlike the balanced
and unbalanced graph partition problems, it is computation-
ally tractable and it allows us to exploit a priori knowledge
about the underlying graph.

Most modern solutions to the maximum ow problem oper-
ate under the assumption that the entire graph under con-
sideration can be examined easily. This is obviously not
the case with the web, as the entire graph that corresponds
to the web is vastly larger than any single computer can
store in main memory. Nevertheless, one of the simplest
maximum ow algorithms|the shortest augmentation path
algorithm [19]|can solve the problem by examining only
the portions of the graph that arise when locating shortest
paths between the source and sink nodes. Thus, it should
be possible to solve a maximum ow problem on the entire
web with today's computers.

3. WEB COMMUNITIES
In this section we formalize our de�nition of a web commu-
nity and describe methods to identify them. First, we handle
the ideal case, when the entire web can be used for the cal-
culation. Afterwards, we explore approximate methods and
describe the method used in our experiments.

3.1 Ideal Communities
We �rst de�ne communities in terms of undirected graphs
where each edge has unit capacity. Thus, the graph induced
from the web would have edge directions removed.

Definition 1. A community is a vertex subset C � V;
such that for all vertices v 2 C, v has at least as many edges
connecting to vertices in C as it does to vertices in (V �C).

Note that this de�nition is slightly recursive in that it leads
to statements of the form \a Pok�emon web site is a site
that links to or is linked by more Pok�emon sites than non-
Pok�emon sites." Figure 1 shows an example of a community
(on the left) being separate from the rest of the graph (on
the right). We now de�ne two quantities that characterize
the adequacy of the source and sink.

Definition 2. Let the source link count, s#, refers
to the number of edges between s and all vertices in (C� s).
Similarly, let the sink link count, t#, refers to the number
of edges between t and vertices (V � C � t).

Theorem 1. A community, C, can be identi�ed by cal-
culating the s-t minimum cut of G with s and t being used
as the source and sink, respectively, provided that both s#

and t# exceed the cut set size. After the cut, vertices that
are reachable from s are in the community.

Proof. Assume by way of contradiction that the s-t min-
imum cut solution resulted in a cut that had some vertex,
v =2 C, being reachable from s. Since v =2 C, we know that v
connects to more vertices in (V � C) then C. However, in
this case moving v to the other side of the cut would result
in a more eÆcient cut, which violates the initial assumption
that this is a minimum cut and that a vertex such as v could
exist. A similar argument can be made for the case of v 2 C
being reachable from t.

The conditions placed on s# and t# in Theorem 1 are to
disallow the trivial solution of excising the source or sink set
from the rest of the graph. Since it is possible to generalize
the de�nition of a community so that weighted edges are
permitted, using higher weights near the source vertex is
another way to discourage trivial cuts. We discuss this idea
in more detail in the next subsection.

A community that consists of hundreds or thousands of web
pages will obviously have many links outside of the commu-
nity, especially when one considers the impact of bookmark
web pages which often have many links to unrelated sites.
As a result, the condition on s# is problematic if only a sin-
gle source vertex is used. We can address this problem by
using multiple seeds connected from a single virtual source
node. The trick works by assigning in�nite capacities to the
edges that connect the virtual source to the seeds.

The choice for a sink vertex should be easy to automate
because of some well-known properties of the web. Since the
web is approximately a small-world network, with a power
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(a) (b) (c) (d) (e)

Figure 2: Focused community crawling and the
graph induced: (a) The virtual source vertex; (b)
vertices of seed web sites; (c) vertices of web sites
one link away from any seed site; (d) references to
sites not in (b) or (c); and (e) the virtual sink vertex.

law distribution on the inbound and outbound links [20],
web portal sites such as Yahoo! should be very close to
the center of the web graph. Thus, by using the top-levels
of a small collection of web portals as a virtual sink, the
maximum ow formulation of communities should be able
to extract a closely knit community from the rest of the web,
because the center of the graph is very general in the sense
that there is a short path to any other site on the web.

3.2 Approximate Communities
One problem with calculating ideal communities is that it
requires rapid access to the inbound and outbound links
for many web sites. In principle, one could use a resource
such as the Internet Archive to maintain a snapshot of the
web graph on a single computer. We intend to do this in
future research; however, we have developed an approxi-
mate method for identifying web communities that appears
to work well in practice.

Figure 2 illustrates how our focused crawler retrieves pages
and the graph that is induced by the crawl. (For another
example of focused crawling, see [21].) The crawl begins
with the seed web pages, shown as set (b) in the �gure, and
�nds all pages that link to or from the seed set. Outbound
links are trivially found by examining the HTML of the page.
Inbound links are found by querying a search engine that
supports the link: modi�er (such as Google or AltaVista).

Once the URLs from set (c) are identi�ed, their HTML is
downloaded and all outbound links are recorded. Some of
these outbound links may refer to pages already crawled
(e.g., links from (c) to (c) and (c) to (b)); however, many
of the outbound links from (c) will refer to pages not down-
loaded (from set (d)). The pages corresponding to set (d)
are e�ectively treated as a composite sink vertex, as each is
linked to a virtual sink vertex.

In Figure 2, all edges between sets that start and end in
either of sets (b) or (c) are made bidirectional. Thus, we
treat inbound and outbound links identically when they are
close to the seed set. All other edge directions (from (a) to
(b), (c) to (d), and (d) to (e)) are preserved.

virtual sink

source

community

outside of the
community

center of graph

setcut

Figure 3: Locating a cut even when a good sink is
not available: All edge capacities in the graph are
multiplied by a constant factor, k. Unit capacity
edges are added from every vertex to a new virtual
sink.

Notice that in our approximation we are not using any true
web page as a sink, but are instead using an arti�cial vertex
that is connected to by the vertices in our graph that are
most distant from the source. We justify this procedure with
the following observations.

Suppose we knew of a source vertex with suÆcient link de-
gree to separate a community, and that, when using the
true center of the graph, ow techniques produce the cut as
shown in Figure 3. We would like to be able to approxi-
mate this cut even when we do not know the true identity
of the graph center. If we multiply all edge capacities in the
graph by a constant factor k, and add a virtual sink to the
graph such that all vertices are connected with a unit ca-
pacity edge to the virtual sink, then under what conditions
will ow methods with the original source and the virtual
sink yield the same partitioning?

Theorem 2. Let c denote the total capacity of the origi-
nal cut set and let Ns and Nt denote the number of vertices
in the community, C, and not in the community, (V �C). If
the condition 1 < k < Nt=c holds, then the augmented graph
as shown in Figure 3 will produce the same partitioning as
the un-augmented graph, except that all edges from C to the
virtual sink, t̂, will be cut as well.

Proof. We prove this constructively in four steps. First,
multiplying all edge capacities by k will obviously not change
the solution because the ow relationship between all vertices
remains unchanged except for constant scalings. Second, if
we connect all vertices in (V �C) to the virtual sink, t̂, then
the bottleneck will remain at the original cut set provided
that Nt > ck, which is one of our assumptions. Third, for
all vertices in v 2 C, connect v to t̂ with a unit capacity edge.
Since k > 1, cutting this newly added edge is more eÆcient
than removing v from the community. Fourth, we require
that the trivial cut of removing all edges to t̂ be more expen-
sive than performing the original cut along with removing
all edges from C to t̂. This �nal condition is true if

Ns + ck < Ns +Nt;

which is implied by our assumption k < Nt=c.
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1 procedure Focused-Crawl(graph: G = (V; E);
2 vertex: s; t 2 V )
3 while number of iterations is less than desired do
4 Set k equal to the number of vertices in seed set.
5 Perform maximum ow analysis of G,
6 yielding community, C.
7 Identify non-seed vertex, v� 2 C,
8 with the highest in-degree relative to G.
9 for all v 2 C such that in-degree of v equals v�

10 Add v to seed set.
11 Add edge (s; v) to E with in�nite capacity.
12 end for
13 Identify non-seed vertex, u�,
14 with the highest out-degree relative to G.
15 for all u 2 C such that out-degree of u equals u�

16 Add u to seed set.
17 Add edge (s; u) to E with in�nite capacity.
18 end for
19 Re-crawl so that G uses all seeds.
20 Let G reect new information from the crawl.
21 end while
22 end procedure

Table 1: The complete focused crawl procedure.

Of course, our method of wiring every vertex in set (d) of
Figure 2 is actually more extreme than wiring every vertex
to the virtual sink. We heuristically make this choice be-
cause we have anecdotally observed that many members of
a web community are often one link away from our seed sets
and that most web pages two links away do not belong in
the community due to the rapid branching factor of the web.

Intuitively, our method of using a virtual sink is very sim-
ilar to methods used in image segmentation [22]. In the
maximum ow formulation of image segmentation, adjacent
pixels are connected with edge capacities as a function of
gray level similarity. All pixels on the perimeter of an image
are connected to a virtual sink. Thus, segmenting an image
in this manner is similar to �nding a \community" of pixels
that are more similar to each other than pixels outside of
the segment.

One other deviation that we make in our implementation
is that we only use the constant scaling factor k on edges
that extend from set (b) to set (c) of Figure 2. We do
this because of the same anecdotal observations that larger
capacities should be used closer to the seed vertices.

3.3 Expectation Maximization
As describe in the previous subsection, our method for iden-
tifying web communities has only limited success when a
small number of seed web pages are provided (say, less than
four). The problem is that with a small number of seeds,
only a relatively small subset of a community can be iden-
ti�ed because the combined out degree of the seeds has to
be larger than the cut size (the number of edges removed).
Thus, we need to augment our procedure with a method for
identifying new seeds.

We solve this problem with a method inspired by the Ex-
pectation Maximization (EM) algorithm [23]. The EM al-
gorithm is a two-step process that iteratively applies esti-
mation (the \E" step) and maximization (the \M" step).
In our case, the \E" step corresponds to using the maxi-

mum ow algorithm to identify a subset of the community.
The strongest newly discovered web site (in terms of link
degree), are relabelled as seeds. We then partially re-crawl
from the new seeds to induce a new graph. The maximum
ow procedure is rerun, and the process iterates.

Our online procedure for identifying web communities is de-
scribed in pseudo-code in Table 1. The procedure loops
for a �xed number of iterations, sets k from the previous
section equal to the cardinality of the seed set, performs
maximum ow analysis, and uses an EM-inspired method
for relabelling newly discovered web pages as seeds.

We typically run the procedure for four iterations. We have
noticed that with a larger number of iterations the algorithm
reaches a �xed-point; however, we can not analytically sup-
port that the procedure will always terminate with a �xed-
point, nor can we prove the deviation of the approximate
method from the ideal at this time. Nevertheless, in the
next section we summarize our experimental results, which
o�er support to our claim that the maximum-ow based fo-
cused crawler can identify interesting web communities.

4. EXPERIMENTAL RESULTS
To test our maximum ow method of identifying communi-
ties, we used the focused crawler described in the previous
section to extract web pages related to three di�erent seed
sets. The �rst community is topically centered around the
research area of support vector machines (SVM); the second
community is centered around the Internet Archive; and the
third community is centered around Ronald Rivest.

4.1 Support Vector Machine Community
We selected the support vector machine community as an
interesting test case because this research area began around
�ve years ago. As a result, the community is relatively small
compared to other research communities, has a fair number
of prominent researchers, and is not listed in any portal that
we know of.

For this crawl, we completely ignored links where the source
and destination resided in the same domain. Filtering links
in this manner makes the procedure more robust against
\inbreeding," i.e., web sites with an excessive amount of
internal linking. However, the internal pages of a web site
can still be pulled into a community by our crawler provided
that some other site links to the �rst site's internal page.

Our seed set consisted of four URLs:

http://svm.first.gmd.de/
http://svm.research.bell-labs.com/
http://www.clrc.rhbnc.ac.uk/research/SVM/
http://www.support-vector.net/

All of the above are the front pages of groups that have a fair
number of people working on SVM research. We iterated our
EM procedure four times. In the �nal iteration, over 11,000
URLs had vertices in the graph induced from the crawl. The
discovered community contained 252 member web pages in
it. We assigned a score to each page equal to the sum of the
number of inbound and outbound links from a page that
connects to other community members.

154



U
R
L

D
e
s
c
r
ip
t
io
n

h
t
t
p
:
/
/
w
w
w
.
r
e
s
e
a
r
c
h
.
a
t
t
.
c
o
m
/
i
n
f
o
/
v
l
a
d

V
la
d
im
ir
V
a
p
n
ik
's
h
o
m
e
p
a
g
e
(in
v
en
to
r
o
f
S
V
M
s)

h
t
t
p
:
/
/
s
v
m
.
r
e
s
e
a
r
c
h
.
b
e
l
l
-
l
a
b
s
.
c
o
m
/

L
u
cen
t
T
ech
n
o
lo
g
ies
S
V
M

p
a
g
e
(seed
)

h
t
t
p
:
/
/
w
w
w
-
a
i
.
c
s
.
u
n
i
-
d
o
r
t
m
u
n
d
.
d
e
/
F
O
R
S
C
H
U
N
G
/
V
E
R
F
A
H
R
E
N
/
S
V
M
_
L
I
G
H
T
/
s
v
m
_
l
i
g
h
t
.
e
n
g
.
h
t
m
l

p
a
g
e
fo
r
S
V
M

lig
h
t,
a
p
o
p
u
la
r
so
ftw
a
re
p
a
cka
g
e

h
t
t
p
:
/
/
v
i
s
i
o
n
.
a
i
.
u
i
u
c
.
e
d
u
/
m
h
y
a
n
g
/
s
v
m
.
h
t
m
l

a
h
u
b
site
o
f
S
V
M

lin
k
s

h
t
t
p
:
/
/
s
v
m
.
f
i
r
s
t
.
g
m
d
.
d
e
/

G
M
D
F
irst
S
V
M

p
a
g
e
(seed
)

h
t
t
p
:
/
/
w
w
w
-
a
i
.
i
n
f
o
r
m
a
t
i
k
.
u
n
i
-
d
o
r
t
m
u
n
d
.
d
e
/
F
O
R
S
C
H
U
N
G
/
V
E
R
F
A
H
R
E
N
/
S
V
M
_
L
I
G
H
T
/
s
v
m
_
l
i
g
h
t
.
e
n
g
.
h
t
m
l

co
p
y
o
f
S
V
M

lig
h
t
p
a
g
e

h
t
t
p
:
/
/
w
w
w
.
r
e
s
e
a
r
c
h
.
a
t
t
.
c
o
m
/
~
l
e
w
i
s
/
r
e
u
t
e
r
s
2
1
5
7
8
.
h
t
m
l

tex
t
ca
teg
o
riza
tio
n
co
rp
u
s

h
t
t
p
:
/
/
w
w
w
.
c
l
o
p
i
n
e
t
.
c
o
m
/
i
s
a
b
e
l
l
e
/
P
r
o
j
e
c
t
s
/
S
V
M
/
a
p
p
l
i
s
t
.
h
t
m
l

S
V
M

a
p
p
lica
tio
n
list

h
t
t
p
:
/
/
w
w
w
.
r
e
s
e
a
r
c
h
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
~
j
p
l
a
t
t
/
s
v
m
.
h
t
m
l

J
o
h
n
P
la
tt's
S
V
M

p
a
g
e

h
t
t
p
:
/
/
w
w
w
.
c
s
i
.
u
o
t
t
a
w
a
.
c
a
/
~
m
a
r
c
h
a
n
d
/
p
u
b
l
i
c
a
t
i
o
n
s
/
R
e
s
e
a
r
c
h
.
h
t
m
l

R
esea
rch
in
terests
o
f
M
a
rio
M
a
rch
a
n
d

h
t
t
p
:
/
/
w
w
w
.
a
i
.
m
i
t
.
e
d
u
/
p
r
o
j
e
c
t
s
/
c
b
c
l
/
a
c
a
i
9
9
/
a
c
a
i
9
9
.
h
t
m
l

S
V
M

w
o
rk
sh
o
p
p
a
g
e

h
t
t
p
:
/
/
s
v
m
.
f
i
r
s
t
.
g
m
d
.
d
e
/
p
u
b
l
i
c
a
t
i
o
n
s
.
h
t
m
l

G
M
D
F
irst
S
V
M

p
u
b
lica
tio
n
list

h
t
t
p
:
/
/
s
v
m
.
f
i
r
s
t
.
g
m
d
.
d
e
/
n
i
p
s
9
7
/
b
o
o
k
.
h
t
m
l

B
o
o
k
:
A
d
va
n
ces
in
K
ern
el
M
eth
o
d
s
-
S
V
M

L
ea
rn
in
g

h
t
t
p
:
/
/
w
w
w
.
m
p
i
k
-
t
u
e
b
.
m
p
g
.
d
e
/
p
e
o
p
l
e
/
p
e
r
s
o
n
a
l
/
b
s
/
s
v
m
.
h
t
m
l

B
ern
h
a
rd
S
ch
�o
lk
o
p
f's
S
V
M

p
a
g
e

h
t
t
p
:
/
/
s
v
m
.
f
i
r
s
t
.
g
m
d
.
d
e
/
p
e
o
p
l
e
.
h
t
m
l

G
M
D
F
irst
h
u
b
p
a
g
e
o
f
S
V
M

resea
rch
ers

h
t
t
p
:
/
/
w
w
w
.
d
c
s
.
q
m
w
.
a
c
.
u
k
/
~
y
o
n
g
m
i
n
/
l
i
n
k
s
.
h
t
m
l

Y
o
n
g
m
in
L
i's
lin
k
s
to
S
V
M

p
a
g
es

h
t
t
p
:
/
/
w
w
w
-
a
i
.
c
s
.
u
n
i
-
d
o
r
t
m
u
n
d
.
d
e
/
F
O
R
S
C
H
U
N
G
/
V
E
R
F
A
H
R
E
N
/
S
V
M
_
L
I
G
H
T
/
s
v
m
_
l
i
g
h
t
_
v
1
.
0
0
.
e
n
g
.
h
t
m
l

a
n
d
y
et
a
n
o
th
er
S
V
M

lig
h
t
p
a
g
e

h
t
t
p
:
/
/
w
w
w
-
a
i
.
c
s
.
u
n
i
-
d
o
r
t
m
u
n
d
.
d
e
/
F
O
R
S
C
H
U
N
G
/
V
E
R
F
A
H
R
E
N
/
S
V
M
_
L
I
G
H
T
/
s
v
m
_
l
i
g
h
t
_
v
2
.
0
1
.
e
n
g
.
h
t
m
l

a
m
a
zin
g
ly,
a
n
o
th
er
S
V
M

lig
h
t
p
a
g
e

h
t
t
p
:
/
/
s
v
m
.
f
i
r
s
t
.
g
m
d
.
d
e
/
n
i
p
s
9
7
/
a
b
s
t
r
a
c
t
s
.
h
t
m
l

N
IP
S
S
V
M

w
o
rk
sh
o
p
a
b
stra
ct
p
a
g
e

h
t
t
p
:
/
/
s
v
m
.
f
i
r
s
t
.
g
m
d
.
d
e
/
l
i
n
k
s
.
h
t
m
l

G
M
D
F
irst
S
V
M

lin
k
s

h
t
t
p
:
/
/
w
w
w
s
y
s
e
n
g
.
a
n
u
.
e
d
u
.
a
u
/
l
s
g
/

L
ea
rn
in
g
S
y
stem

G
ro
u
p
o
f
A
N
U

h
t
t
p
:
/
/
s
v
m
.
f
i
r
s
t
.
g
m
d
.
d
e
/
n
i
p
s
9
8
/
w
o
r
k
s
h
o
p
.
h
t
m
l

N
IP
S
*
9
8
w
o
rk
sh
o
p
o
n
la
rg
e
m
a
rg
in
cla
ssi�
ers

h
t
t
p
:
/
/
m
a
t
h
.
l
a
.
a
s
u
.
e
d
u
/
~
k
a
w
s
k
i
/
s
e
m
i
n
a
r
s
/
f
a
l
l
9
7
.
h
t
m
l

co
n
tro
l
th
eo
ry
sem
in
a
r
(w
ith
lin
k
s
to
S
V
M

m
a
teria
l)

h
t
t
p
:
/
/
w
w
w
.
i
s
i
s
.
e
c
s
.
s
o
t
o
n
.
a
c
.
u
k
/
r
e
s
o
u
r
c
e
s
/
s
v
m
i
n
f
o
/

IS
IS
S
V
M

p
a
g
e

h
t
t
p
:
/
/
w
w
w
.
c
o
g
s
.
s
u
s
x
.
a
c
.
u
k
/
u
s
e
r
s
/
j
o
n
h
/
r
_
i
n
d
e
x
2
.
h
t
m
l

J
o
n
a
th
a
n
H
ow
ell's
h
o
m
e
p
a
g
e

h
t
t
p
:
/
/
w
w
w
-
a
i
.
c
s
.
u
n
i
-
d
o
r
t
m
u
n
d
.
d
e
/
t
h
o
r
s
t
e
n
/
s
v
m
_
l
i
g
h
t
.
h
t
m
l

a
n
o
th
er
S
V
M

lig
h
t
p
a
g
e

h
t
t
p
:
/
/
s
v
m
.
f
i
r
s
t
.
g
m
d
.
d
e
/
n
i
p
s
9
7
/
w
o
r
k
s
h
o
p
.
h
t
m
l

N
IP
S
*
9
7
W
o
rk
sh
o
p
o
n
S
u
p
p
o
rt
V
ecto
r
M
a
ch
in
es

h
t
t
p
:
/
/
r
e
s
e
a
r
c
h
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
~
j
p
l
a
t
t
/
s
v
m
.
h
t
m
l

a
ltern
a
te
U
R
L
fo
r
P
la
tt's
h
o
m
e
p
a
g
e

h
t
t
p
:
/
/
w
w
w
.
r
p
i
.
e
d
u
/
~
d
e
m
i
r
a
/

A
y
h
a
n
D
em
iriz,
S
V
M

resea
rch
er

h
t
t
p
:
/
/
w
w
w
.
l
a
n
s
.
e
c
e
.
u
t
e
x
a
s
.
e
d
u
/
c
o
u
r
s
e
/
e
e
3
8
0
l
/
1
9
9
9
f
a
l
l
/
i
n
d
e
x
.
s
h
t
m
l

d
a
ta
m
in
in
g
p
a
g
e

h
t
t
p
:
/
/
a
k
p
u
b
l
i
c
.
r
e
s
e
a
r
c
h
.
a
t
t
.
c
o
m
/
i
n
f
o
/
v
l
a
d

m
irro
r
o
f
V
la
d
im
ir
V
a
p
n
ik
's
p
a
g
e

h
t
t
p
:
/
/
w
w
w
.
i
s
i
s
.
e
c
s
.
s
o
t
o
n
.
a
c
.
u
k
/
r
e
s
e
a
r
c
h
/
s
v
m
/

a
n
o
th
er
IS
IS
S
V
M

p
a
g
e

h
t
t
p
:
/
/
w
w
w
.
c
s
e
.
u
c
s
c
.
e
d
u
/
r
e
s
e
a
r
c
h
/
c
o
m
p
b
i
o
/
g
e
n
e
x
/
s
v
m
.
h
t
m
l

g
en
e
ex
p
ressio
n
a
n
a
ly
sis
w
ith
S
V
M
s

h
t
t
p
:
/
/
w
w
w
.
c
c
.
g
a
t
e
c
h
.
e
d
u
/
c
l
a
s
s
e
s
/
c
s
4
8
0
3
c
_
9
8
_
f
a
l
l
/
s
v
.
h
t
m
l

S
V
M

lin
k
s
p
a
g
e
fo
r
co
u
rse

h
t
t
p
:
/
/
w
w
w
.
f
i
r
s
t
.
g
m
d
.
d
e
/
~
s
m
o
l
a
/

A
lex
S
m
o
la
's
o
ld
h
o
m
e
p
a
g
e,
S
V
M

resea
rch
er

h
t
t
p
:
/
/
l
a
r
a
.
e
n
m
.
b
r
i
s
.
a
c
.
u
k
/
~
c
i
g
/
l
i
n
k
s
.
h
t
m

U
.
o
f
B
risto
l
m
a
ch
in
e
lea
rn
in
g
lin
k
s

h
t
t
p
:
/
/
w
w
w
.
a
i
.
e
e
c
s
.
u
i
c
.
e
d
u
/
~
b
k
a
o
/
m
l
.
h
t
m
l

M
a
ch
in
e
L
ea
rn
in
g
&
D
a
ta
M
in
in
g
H
o
tlist

h
t
t
p
:
/
/
w
w
w
.
s
u
p
p
o
r
t
-
v
e
c
t
o
r
.
n
e
t
/

su
p
p
o
rt
v
ecto
r
m
a
ch
in
es,
th
e
b
o
o
k
(seed
)

h
t
t
p
:
/
/
w
w
w
.
r
e
s
e
a
r
c
h
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
~
j
p
l
a
t
t
/
s
m
o
.
h
t
m
l

J
o
h
n
P
la
tt's
S
V
M

S
M
O
p
a
g
e

h
t
t
p
:
/
/
w
w
w
.
a
i
.
m
i
t
.
e
d
u
/
c
o
u
r
s
e
s
/
6
.
8
9
3
/
r
e
l
a
t
e
d
-
i
n
f
o
.
h
t
m
l

m
a
ch
in
e
lea
rn
in
g
a
n
d
n
eu
ra
l
n
etw
o
rk
lin
k
s

T
a
b
le
2
:
M
e
m
b
e
rs
o
f
th
e
S
V
M

c
o
m
m
u
n
ity
w
ith
th
e
h
ig
h
e
st
sc
o
re
s,
so
rte
d
in
d
e
sc
e
n
d
in
g
o
rd
e
r.

155



Table 2 contains the �rst forty web pages as ranked by
our naive scoring method. Interestingly, Vladimir Vapnik's
home page (whom may be considered the founder of the
SVM community) is at the top of the list. As can be seen,
almost all of the returned results are strongly related to
SVM research. Arguably, four of the �rst forty can be con-
sidered false positives because they are more strongly re-
lated to data mining, neural networks, or object recognition
methods. However, all of these pages have at least some
relationship to the SVM community.

The community members with the lowest score are arguably
more interesting. All ten lowest scoring web pages are home
pages of researchers with publications in SVMs.2 The rest of
the web community contains a large number of researchers
and their students, SVM software, commercial links to SVM
books, and SVM conference and workshop announcements.

To be sure, the approximated community also contains a
few false positives, which are usually neural network or data
mining pages. However, the most agrant false positive was
a link to a script archive.

4.2 The Internet Archive Community
We chose the Internet Archive3 (IA) to serve as the second
example because it is an institute that straddles many dif-
ferent real-world communities: information retrieval, library
science, archiving, visualization, etc. Because the IA is so
broad, we seeded this crawl with eleven URLs found on the
IA's resources page and the IA's home page as well:

http://www.archive.org/
http://www.clir.org/diglib/dlfhomepage.htm
http://www.dlib.org/
http://webreference.com/internet/statistics.html
http://trec.nist.gov/
http://www.intermemory.org/
http://www.informedia.cs.cmu.edu/
http://www.digitalmuseums.org/index.html
http://www.cybergeography.com/atlas/surf.html
http://www.peacockmaps.com/
http://www.cs.bell-labs.com/~ches/map/gallery/
http://www.archivists.org/

As with the previous crawl, we excluded all links internal to
a domain from consideration. We iterated the EM algorithm
twice, which produced over 7000 URLs. The �nal iteration
of the maximum ow algorithm trimmed the resulting graph
down to a community of 289 web pages.

The top forty results are shown in Table 3. As can be seen,
there is a broad mix of media surveying companies, archival
organizations, library science, Internet statistics, digital li-
brary institutions, and other web sites closely related to the
mission of the IA.

The remainder of the community contains news stories about
the IA, information retrieval conference announcements, re-
searchers' home pages, plus others. The three sites tied for
the lowest score were:
2We choose not to list these URLs as we wish no inference
on the ranking to be made with respect to a researcher's
standing in the community.
3http://www.archive.org/

http://www.informedia.cs.cmu.edu/
http://www.imls.fed.us/librlinks.htm
http://www.digitalmuseums.org/index.html

All three of the lowest scoring URLs are still related to
the IA. The most obvious false positive that we found was
http://mail.yahoo.ca/ which slipped into the community
because six Yahoo! pages related to archiving and digital li-
braries made it into the community as well. Since the crawl
only extends to a depth of two from the seeds, and since
only two applications of the EM algorithm were used, we
suspect that had the inbound links to the o�ending URL
been loaded, it would have been possible for the ow algo-
rithm to remove the false positive.

4.3 The “Ronald Rivest” Community
For our �nal example, we decided to identify a community
around a speci�c individual. We chose Ronald Rivest as a
candidate because he is well-known and because there are a
large number of web pages that reference his work on encryp-
tion and his book \Introduction to Algorithms" [17]. Our
single seed URL was http://theory.lcs.mit.edu/~rivest.

Because we used a single seed, we found it necessary to make
the �rst iteration of the crawl use internal links as well as
external links. A total of four EM iterations were used, and
the �nal three used only external links.

After the �nal iteration, over thirty-eighth thousand URLs
had vertices in the induced graph. The maximum ow al-
gorithm trimmed this down to 150 pages.

Once again, the top forty results are shown in Table 4. The
most striking result is that Rivest's co-authors on \Intro-
duction to Algorithms" (Thomas H. Cormen and Charles E.
Leiserson) appear as the �rst and third results. The book's
web page was ranked in the 92nd position.

As can be seen, the other web pages in the top forty are
all related to cryptography, security, and MIT. Twenty-
three URLs tied for the lowest score. Of these, all were
personally relevant to Rivest or his research, and 11 of these
were bibliographies of his publications.

5. SUMMARY AND FUTURE WORK
We have de�ned a new type of web community that can
be eÆciently calculated in a maximum ow framework. We
have also introduced a maximum ow-based web crawler
that can approximate a community by directing a focused
web crawler along link paths that are highly relevant. Our
discovered communities are very cohesive in the sense that
members of the community are more tightly coupled to each
other than to non-members. The EM approach that we use
incrementally improves the crawl results by re-seeding our
crawler with highly relevant sites.

In all experiments, the runtime of the algorithms was vastly
dominated by the network demands of retrieving web pages.
The runtime for the actual ow algorithm never required
more than one second of CPU time on a 500 Mhz Intel ma-
chine. Thus, if a portion of the web graph is locally stored,
it is possible that our methods can yield results fast enough
for online use.
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We believe that there are many applications for the meth-
ods that we have produced. Three of the more interesting
applications are focused crawlers, automatic population of
portal categories, and improved �ltering.

Because the coverage of search engines is so poor, specialized
search engines could use a focused crawler to exhaustively
track a web community, thus increasing coverage of the com-
munity as well as increasing precision of search results.

For the second application, one could use existing portal
categories as seeds to re-populate categories with newer and
more relevant sites, thus addressing the lack of recall that
portals are known to have and easing the burden on humans
that manually construct such portals [24].

In terms of �ltering, controversial web sites such as pornog-
raphy and hate sites could also be identi�ed; since pornog-
raphy accounts for approximately 2% of the web [2], this
is not out of the question. Moreover, link based commu-
nity identi�cation would not be fooled by language issues or
keyword spamming.

Future work will generalize our notion of a community by
parameterizing it with a coupling factor; low parameter set-
tings will yield large but weakly connected communities,
while high parameter values will �nd small, tightly con-
nected communities.

We also believe that our maximum ow methods can be
combined with other text-based methods in the form of co-
learning and co-boosting. Text-based classi�ers can be used
to supply seeds and validate community membership; our
ow method can generate new labels for training data; and
the combined procedure can iterate, thus improving both
methods.
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APPENDIX
A. ISA ALGORITHM
Most modern implementations of maximum ow algorithms
rely on having access to the entire graph under consideration
in order to make the ow analysis eÆcient. For example,
the pre-ow push algorithm [25] (considered the fastest in
practice) often uses a topological sort of all edges in order to
improve eÆciency. Clearly, global access to the web graph is
not practical if one wishes to calculate an exact community.

On the other extreme, the shortest augmentation algorithm
works by simply �nding shortest paths between the source
and the sink, augmenting ow along the discovered path,
and repeats until the source and sink are disconnected. The
problem with this approach is that it requires a breadth-
�rst search (BFS) to be restarted from scratch after every
augmentation.

Over the course of this research, we discovered a modi�ca-
tion to the shortest augmentation algorithm that enables

1 procedure ISA(graph: G = (V; E); vertex: s; t 2 V )
2 Let Q be a BFS search queue
3 while Q is not empty do
4 if BFS search of G returns a shortest path then
5 while label of t is valid do
6 Augment ow along discovered path.
7 Identify all vertices in BFS tree
8 with invalid distance labels.
9 Save invalid vertices in list, l.
10 for v in l do
11 Find best edge from v to a valid vertex.
12 Update distance label of v .
13 end for
14 Sort vertices in l with a bin sort
15 according to distance.
16 for i equals 1 to maximum bin do
17 for each v in bin i do
18 for all (v; u) 2 E

19 with c(v; u) > 0 and u in l do
20 if dist. of u > dist. of v + 1 then
21 Relabel u with distance of v + 1.
22 end if
23 end for
24 end for
25 end for
26 Reorder Q to reect corrected distance labels.
27 end while
28 end if
29 end procedure

Table 5: The Incremental Shortest Augmentation
(ISA) algorithm for solving the maximum ow prob-
lem.

the algorithm to retain as much as possible of the previ-
ous BFS search tree. The worst case runtime is identical
to the standard shortest augmentation algorithm; however,
the correction phase runs in time that is linear in the sum
of the number of vertices with newly invalid distance labels
and the outbound edges that those vertices have.

We refer to this ow algorithm as the incremental shortest
augmentation (ISA) algorithm. ISA is described in pseudo-
code in Table 5. An intuitive description of the ISA follows.

Imagine that we build a physical model of a unit capacity
undirected graph with strings and washers.4 The vertices
of the graph are represented by washers and the edges are
represented by strings. Thus, for any two connected vertices,
we tie the two corresponding washers together with a string.
Since this is a unit capacity graph, all of the strings that
connect washers will be the same distance, say six inches.

Place the \sink" washer on a table top and lock it in place
with some tape. The ISA algorithm consists of alternating
between the following two steps:

1. Grab the \source" washer and slowly raise it above the
table until it can be raised no more. The taut string
path from the source to the sink is a shortest path from
the source to the sink.

2. Starting from the top and working down, snip each
string (edge) that is part of the shortest path.

4ISA has been generalized to graphs with non-unit capacity
directed edges; this is just the simplest example.
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These two steps are repeated until the source washer is free
of the table. When the source washer is completely free, the
cut is complete. All washers that are still connected either
directly or indirectly to the source washer are part of the
community.

Since ISA \holds" the source washer at the level found in
step 1 while the cuts are made in step 2, much of the dis-
tance information found at earlier steps is retained. While
the cuts are being made, some washers may fall to the ta-
ble, come free, stay in place, or fall only a short distance.
When the �nal string is cut in step 2, the washers and strings
are in a state identical to where they would have been had
the path that was just removed never been in place. This
result is identical to what is achieved by ISA's correction
phase, which essentially imitates the e�ect of gravity on the
washers. By way of comparison, other shortest augmen-
tation path algorithms essentially restart step 1 with the
source washer back on the table top, that is, the breadth
�rst search restarts at the beginning.

ISA's correction phase operates in time O(n0+m0) where n0

is the number of invalid vertices identi�ed in lines 7 and 8
of Table 5, and m0 is the number of edges connected to the
n0 invalid vertices.
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