
SearchGen: a Synthetic Workload Generator for Scientific
Literature Digital Libraries and Search Engines

Huajing Li1 Wang-Chien Lee1 Anand Sivasubramaniam1 C. Lee Giles1,2

1Department of Computer Science and Engineering
2College of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802, USA

{huali, wlee, anand}@cse.psu.edu, giles@ist.psu.edu

ABSTRACT
Due to the popularity of web applications and their heavy
usage, it is important to obtain a good understanding of
their workloads in order to improve performance of search
services. Existing works have typically focused on generic
web workloads without putting emphasis on specific do-
mains. In this paper, we analyze the usage logs of CiteSeer,
a scientific literature digital library and search engine, to
characterize workloads for both robots and users. Essen-
tial ingredients that contribute to workloads are proposed.
Among them we find the access intervals show high variance,
and thus cannot be predicted well with time-series mod-
els. On the other hand, client visiting path and semantics
can be well captured with probabilistic models and Zipf-law.
Based on the findings, we propose SearchGen, a synthetic
workload generator to output traces for scientific literature
digital libraries and search engines. A comparison between
synthetic workloads and actual logged traces suggests that
the synthetic workload fits well.

Categories and Subject Descriptors
H.3.6 [INFORMATION SYSTEMS]: Library Automa-
tion—Large text archives; H.3.4 [INFORMATION SYS-
TEMS]: Systems and Software—Distributed systems; C.4
[COMPUTER SYSTEM ORGANIZATION]: PER-
FORMANCE OF SYSTEMS—Modeling techniques

General Terms
Measurement, Verification, Performance

Keywords
Synthetic Workload, Modeling, Benchmark

1. INTRODUCTION
Search engines have become an integral part of daily life

for nearly all Internet users1. Many different types of search

1Pew Internet Study: http://www.pewinternet.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’07, June 18–23, 2007, Vancouver, British Columbia, Canada.
Copyright 2007 ACM 978-1-59593-644-8/07/0006 ...$5.00.

engines, being general purpose or specialized, commercial or
open source, autonomous or manually administrated, have
appeared on the Web. Moreover, many web applications,
such as digital libraries and e-commerce websites, also pro-
vide a search functionality as part of their services. Thus,
there is a need to better understand search engine usage to
improve performance.

The operating nature and functionalities of search en-
gines make them different from other websites which are
designed to host web contents specific to the site. Typi-
cally, search engines have autonomous data producers (e.g.,
crawlers, metadata harvesters, etc.) that fetch data from
Internet continuously. The amount of stored data (includ-
ing indices, cached data, extracted metadata, etc.) behind a
search service is much larger than common websites and typ-
ically has a very large user base, which makes performance
a significant concern for such systems.

Obviously, the performance of search engines is highly de-
pendent on the workload. An in-depth understanding of
workloads for search engines can facilitate system tuning,
enhance system performance and reduce maintenance cost.
Although some studies on web workloads exist in the liter-
ature, they do not focus on search engines and thereafter
cannot provide adequate insights. To our knowledge there
is no extensive workload analysis for search engines. The
goal of this research work is to characterize search engine
workloads to achieve better system design and operations.

We focus on domain search engines for scientific uses,
which have an archive of scholarly publications in electronic
form and serve the scientific community as digital libraries
with their dedicated document query and retrieval utilities.
Automatic citation indexing (ACI) [11], together with the
citation query utility, is an important feature of such sys-
tems. As a well-known example, CiteSeer2 and its succes-
sor, CiteSeerX [15], are web-based scientific literature search
engines as well as digital libraries which focus on computer
and information science. Other examples include the Google
Scholar3 and the REXA Project4. They are different from
general purpose search engines like Google in that they are
dedicated in a limited scope of online resources and serve a
specific community, with value-added services.

Due to its heavy use and popularity (over 500,000 hits a
day), CiteSeer has been considered as a representative in the
space of scientific literature search engines. Thus, we choose

2http://citeseer.ist.psu.edu
3http://scholar.google.com
4http://rexa.info/

137

to use its logs in this study. By characterizing typical work-
loads of CiteSeer, we aim at developing models to capture
the behaviors of users to such systems. Our synthetic work-
load generator, SearchGen, has the capability to generate
workloads not only desirable for testing and performance
tuning of a search engine system, but essential for advanc-
ing research in related areas. The primary contributions of
this work are:

• We define the basic characteristics of the workload for
scientific literature digital libraries and search engines,
each of which has corresponding impact on system per-
formances.

• The characteristics of a synthetic workload are used to
decompose the entire stream of events into a group of
single fine-grained streams. The model for each stream
is proposed and is used in predicting a portion of the
synthetic workload.

• We develop SearchGen, which merges all individual
streams corresponding to the proposed characteristics
into an integral trace. Our generated workload is com-
pared with actual traces from CiteSeer. The synthetic
workload, with characteristics observable in real logs,
can be used for system testing, tuning and evaluation.

• Although we focus on scientific literature search en-
gines, the analysis procedure described in this paper is
appropriate for other application domains.

The rest of the paper is organized as follows. Related re-
search is reviewed in Section 2, while additional background
is provided in Section 3. The overall modeling strategy is
presented in Section 4. The preliminary data preparation to
the system logs is described in Section 5. Modeling method-
ology and results for each single workload characteristic are
presented in Section 6, followed by a discussion in Section 7
of how we merge and validate synthetic traces. Concluding
remarks and future plans are in Section 8.

2. RELATED WORK
Workload analysis is used in many applications for system

performance tuning and benchmarking. World Wide Web
traffic has been analyzed and modeled by previous works [1],
in which it is suggested that web access can be modeled by
heavy-tailed distributions [9]. The study also suggests that
web traffic shows a self-similarity characteristic. With the
property of self-similarity in web traces, the correlational
structure in a time series of events remains unchanged re-
gardless measure scales. This feature can be explained by
facts such as self-similar property of underlying file system
statistics and user behavior. Self-similarity has been found
in I/O workloads [12] as well.

The synthetic workload generator, SURGE [3], presents
representative web workloads for network and server per-
formance evaluation. User Equivalence (UE) is generated
in SURGE to represent a population of a known number
of users. In each UE, six web characteristics are statisti-
cally modeled, which include file sizes, request sizes, pop-
ularity, embedded references, temporal locality, and OFF
times. The generated trace is compared with other syn-
thetic workloads, showing that SURGE well models actual
web traffic. More importantly, a SURGE-generated trace
is found to have the self-similarity feature of actual work-
load data. However, SURGE cannot be applied to generate

user traffic for search engines because of the unique run-
ning nature of search engines versus generic websites. Query
processing inside a distributed search engine architecture is
studied in [2], which focuses on issues such as performance
bottleneck and index server load balancing. However, there
still lacks a complete model for the application genre. Other
network workload generators, such as [19], emulate protocol-
based traffic to benchmark the performance of web servers.
From an ISP’s perspective, [4] analyzes characteristics of a
server that hosts many websites.

A recent workload study [24] emphasizes generating ac-
curate I/O requests for TPC-H queries to evaluate the per-
formance of disk subsystems with 22 queries of the TPC-H
workload. The analysis is performed at the disk block-level.
The request arrival-pattern (inter-arrival times) and access-
pattern (request location and requested data size) are syn-
thesized. In database fields, [8] addresses the problem of
identifying primitives which best summarize SQL workloads
sent to databases. The interest in workload analysis con-
tinues to grow as more applications benefit from synthetic
workload generation, such as adaptive system tuning [16,
20], testing [23] and diagnosis [25]. [17] shows the extracted
user workload models can be applied in improving search
engine services.

There also exist many web-oriented benchmark projects
where typical web application scenarios are identified and
the corresponding web workload traffic is synthetically gen-
erated. Well-known examples include TPC-App5 (an ap-
plication server and web service benchmark), TPC-H6 (a
benchmark for decision-support applications), TPC-W7 (a
transactional web benchmark), and SPECweb20058 (the next-
generation SPEC benchmark for evaluating the performance
of web servers). However, none of them aims at providing
benchmark suites for search engines.

3. BACKGROUND
Two key concepts are introduced in this section for their

relevance in summarizing web workloads.

3.1 Self-Similarity
Self-similarity [9] is common in web traffic, which can be

explained by assuming the existence of a heavy-tail distribu-
tion in workload characteristics, including file sizes, transfer
times and user think times. A random variable X follows a
heavy-tailed distribution if

P [X > x] ∼ x−α

as x → ∞, 0 < α < 2.
Namely, regardless of the behavior of the distribution for

small values of the random variable, it is heavy-tailed if the
asymptotic shape of the distribution is hyperbolic.

Intuitively, self-similarity means that the features are in-
dependent of scale. For time-series, a process is called self-
similar when the statistics are independent of the time scale.
It can be expected that averaging over equal periods of
time does not influence the statistical characteristics of the
process. Formally, a time-series Xt (t = 1, 2, ...) is said to

5http://www.tpc.org/tpc app/default.asp
6http://www.tpc.org/tpch/default.asp
7http://www.tpc.org/tpcw/default.asp
8http://www.spec.org/web2005/

138

be exactly second-order self-similar if

Xt
d

== m−H

mt�

i=m(t−1)+1

Xi

for 1/2 < H < 1 and all m > 0, where
d

== means an equiv-
alent distribution. This suggests a methodology for testing
self-similarity in a time-series. The series is separated into
non-overlapping blocks with the same size m. All obser-
vations in each block are aggregated, by which a new m-
aggregated time-series is constructed. If the new series is
statistically identical with the original series, scaled by a
factor of m−H , the original time-series is self-similar. This
method is adopted by self-similarity tests in Section 6.

3.2 Short-Range and Long-Range Dependence
In a self-similar time-series where observation bursts can

be observed in a wide range of time-scales, the distribution
exhibits long-range dependence [9]. Long-range dependence
(LRD) exists when the current observation is highly cor-
related with observations far away in time. On the other
hand, short-range dependence (SRD) [9] shows that the cur-
rent observation is only correlated with recent observations.
If we analyze the correlation functions of an SRD time-series,
the correlation value decreases dramatically to a very small
value, while the LRD series retains considerably significant
correlation values for distant observations.

4. WORKLOAD CHARACTERIZATION
In order to construct a synthetic workload for scientific

literature digital libraries and search engines, we need to
determine what characteristics are essential to the perfor-
mance evaluation.

According to [3], a typical web workload consists of six
characteristics: (1) File Size, (2) Request Size, (3) Popu-
larity, (4) Embedded Reference, (5) Temporal Locality, (6)
OFF Time. This model can accurately represent the work-
load on a web server which serves incoming HTTP requests.
However, the focus of our study is not on a web server, but
a search engine. Due to different operating nature of search
engines, the above cannot be directly used. Typically, there
are not many static web pages stored in a search engine and
the contents are often dynamically provided by indices and
data providers in the system. The minimal unit of a syn-
thetic workload for a search engine is not a file with a num-
bers of file accesses and file size. On the other hand, a search
engine workload provides requests, according to which the
corresponding web objects are constructed on-the-fly and
returned to users.

To characterize CiteSeer workload, it is imperative to look
into the usage logs. A typical logging entry in CiteSeer is
listed below:

1114070813.127 event context 0 1782747 0 446930
ip: 128.255.54.*9 agent: Generic

This entry can be divided into five parts:

• Time Stamp: records the arrival time of the request.

• Request Type: decides which service is invoked to
answer the request.

9We suppressed the last section of the IP address.

• Request Parameters: the actual meaning of para-
meters is dependent on request types. For example,
they provide query terms for a document query and
identifiers for document retrieval.

• IP Address: provides address information of clients.

• Agent Type: suggests the types of clients. We can
infer from the agent type whether the request is from
a user or a robot.

Not all the above information will be generated in our
synthetic workload. Our goal is to develop a workload gen-
erator which can be used to simulate user access patterns
and test the performance of search engines. Aspects with
little influence on the system’s performance such as browser
type are not considered in our study. From a server’s per-
spective, what really matters is: the time behavior and the
semantic behavior of requests. The time behaviors decide
how many simultaneous requests are accepted by the appli-
cation at any time. The semantics of requests determine
what services of the search engine are invoked to fulfill the
requests and what data are returned. From the previous
list, the time stamp can be used to model the time behavior
of the workload. The request types and request parameters
are components of semantic behaviors. Other parts of a log
entry are removed from the synthetic workload because they
are not relevant to performance. However, we will make use
of the agent type information in our analysis to differentiate
client types, as shown in Section 5.

It is extremely difficult to model the synthetic workload as
a whole. The time and semantic behaviors need to be mod-
eled separately as they are independent from each other.
Furthermore, the time behavior of requests can be further
decomposed. In system logs, all visits are collected and
merged into a continuous record, which is a stream of the
requests imposed on the server. However, keep in mind that
this stream is comprised of many individual sessions, which
provides a method to divide the trace into smaller units.

time

Intra-Session Interval

Inter-Session Interval

Figure 1: Request stream received by the server.

Figure 1 illustrates the composition of the request stream,
in which requests from different session are represented by
different line patterns. Following this direction, two sets of
time intervals are identified, as marked in the figure.

• Intra-Session Interval: the time interval between
two subsequent requests in one session.

• Inter-Session Interval: the time interval between
subsequent sessions.

The two streams are studied independently because the intra-
session interval is a client side behavior, decided solely by
an individual client, whereas the inter-session interval is a
server side aggregate. We do not model the session length in

139

the time behavior analysis. This problem will be addressed
in Section 6 by using Markov models. When modeling time
intervals, the logged request entries are segregated and or-
ganized into appropriate sessions. We first study each time
stream (intra-session interval and inter-session interval) to
test assumptions such as the existence of IID (Independent
Identically Distributed) and self-similarity. These assump-
tions decide what modeling strategy is appropriate. Based
on the testing results, we propose models that best fit in the
Kolmogorov-Smirnov (K-S) [14] sense.

Semantic behavior of a client can also be put into two
categories: request type and request parameter. Second-
order Markov model is used to predict the ”next-step” of re-
quests. Two types of parameters, query terms and requested
document identifiers, are studied respectively. Once the re-
quest type is decided, SearchGen acquires a parameter value
from the corresponding parameter generator, which is built
upon distributional study for request parameter frequencies
of each representative request type. After combining with
the time intervals, all workload streams are merged to out-
put the synthetic trace.

5. DATA PREPARATION
To model workload characteristics, we prepare a one-month

CiteSeer log. Three preliminary data preparation tasks are
performed before analysis.

5.1 Application Model Simplification
As a complex web application, CiteSeer provides many

services from the web interface, some of which are either
irrelevant with search engine functionalities (e.g., user feed-
back) or seldom used (e.g., online paper submission). These
requests are eliminated from the scope of the study. On the
other hand, we do not want to construct a synthetic work-
load that is specifically tailored for CiteSeer. To achieve this,
some CiteSeer-specific requests should not be considered.

Originally, CiteSeer has more than 40 request types recorded
in its logs. After comparing available services provided both
by CiteSeer and Google Scholar, some unique services of
CiteSeer are excluded. Also, some similar service types
are grouped into a more generic category. For instance, in
CiteSeer, after finding a document, a user can ask for doc-
uments from the same source, co-citation documents and
text-based similar documents. In the simplified application
model, these requests are all mapped into related request
type, suggesting this service returns users with related doc-
uments with any metric.

The final simplified application model consists of six unique
request types, which are (1)Query Document, (2)Query Ci-
tation, (3)Document Retrieval, (4)Related, (5)External URLs,
and (6)Document Specification. They are also unique states
in the Markov model proposed in Section 6.

5.2 Sessionization
As stated in Section 4, to study the time behavior, the en-

tire trace is decomposed into a series of sessions to analyze
the models of intra-session interval and inter-session interval.
This procedure can be divided into two tasks: correct map-
ping of activities to different users and correct separation
of activities belonging to different visits of the same user.
However, the original CiteSeer system does not record user
identities as well as session information in its logs. Without
the necessary information, heuristics can assist to construct
sessions. [6] suggests that page stay interval performs well

for short but temporally dense sessions, which are common
for search engines. So the following heuristics are used:

• The IP address information is used as the identity of
users. We regard every IP address as a single user,
for which requests from a same IP address are taken
as from the same user. Although it is not definitely
accurate, this is the best available approach.

• The log entries that are belonged to an IP address
are grouped and recorded sequentially by their time
stamps. If we find the successive visit interval by a user
exceeds a time threshold, the latter request is taken as
the start of a new session. In our experiment, we set
the time threshold to be 1, 800 seconds (30 minutes).

5.3 Robot Detection
It has been observed that the requests initialized by ro-

bots (crawlers, web spiders, etc.) contribute a considerable
portion of the network traffic. Unlike users, robots start
their crawling from some given seed URLs, and continue to
probe the Internet using web links. From the nature of their
behaviors it can be inferred that robot access patterns will
be dramatically different from users. As far as we know pre-
vious web workload studies do not single out robots from
the traffic and model their behavior separately. Consider-
ing the significant web traffic generated by robots, we study
the behaviors of robots and users respectively, and propose
models for both.

Web robot session studies [21] indicate that by collect-
ing web access attributes such as agent type, access average
time, and total request pages, most robot sessions can be
accurately labeled. Based on what are recorded in the logs,
some representative heuristics are adopted. First, we infer
the type of a client from the agent type section in a log en-
try. Basically, we used a robot agent string list10 to identify
obvious robots. However, some robots do not declare them-
selves when they access CiteSeer services, disguising as real
users. To locate such unfriendly robots, we gather statis-
tical information from sessions. If we find that either the
average session length is extremely long (more than 100)
or a portion (10%) of intra-session intervals are particularly
small (less than 0.5 second), the IP address is labeled with
”robots” because they show extremely odd behaviors other
than normal users.

6. CHARACTERISTIC MODELING

6.1 Time Behavior
We begin by examining the characteristics related to time

behavior of the workload (i.e., request intervals). In the
following discussion, we first perform statistical tests on the
logged streams to decide the appropriate modeling strategy
for the time series. Based on the test results, we give models
to the time characteristics.

6.1.1 Studying Correlations
Before choosing a modeling strategy, it is necessary to

understand the underlying nature of a given time-series be-
cause different stream models (LRD, SRD or IID) have their
appropriate modeling techniques. To reveal the inherent na-
ture, correlation studies are widely used. If we find the cor-
relation in a time-series is not significant, we can assume

10http://www.pgts.com.au/pgtsj/pgtsj0208d.html

140

safely that the time-series is IID, for which we can use sta-
tistical models (such as normal distribution, pareto distri-
bution, etc.) to fit the stream. On the other hand, if the
correlation result suggests that an LRD or SRD exists, a
simple statistical modeling will not be sufficient to capture
the dependency between observations. In such a situation,
we will opt to use time-series models to generate the output
stream.

Generally, given a time-series as the input, the autocorre-
lation function (ACF) is used to study the correlation within
the stream. ACF measures the similarity between the series
Xt and its shifted version Xt+k, where k is the lag. The for-
mal definition of a sample autocorrelation function is given
as:

ρ(k) =
E[(Xt − μ)(Xt+k − μ)]

σ2

where μ, σ are the sample mean and standard deviation re-
spectively. ACF values can be plotted with different lags.
If the ACF decays hyperbolically to zero, then the process
shows LRD, where distant observations have significant in-
fluences. On the contrary, if the ACF is large for small lags
and decreases dramatically when the lag increases, SRD ex-
ists. Intuitively, if none of the ACF values for shifted series
is significant, we can assume the time-series to be IID.

In our analysis, we treat robots and users separately. Fig-
ure 2 gives the ACF plots for inter-session streams. It is
evident that the ACF values drop dramatically as the lag
increases and remain close to 0 for large lags, which shows
that the session intervals are independent.

To study the nature of intra-session streams, we randomly
select representative sessions from robot and user categories.
Here we deliberately select those sessions that do not show
abnormal behaviors. The corresponding ACFs are plotted
in Figure 3.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 14 27 40 53 66 79 92

LAG

A
C

F

Robot inter-session

(a) Robot.

-0.1

0.2

0.5

0.8

1.1

1 13 25 37 49 61 73 85 97

LAG

A
C

F

User inter-session

(b) User.

Figure 2: ACF for inter-session intervals.

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 21 41 61 81

LAG

A
C

F

Robot#1
Robot#2
Robot#3

(a) Robot.

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 21 41 61 81

LAG

A
C

F

User#1
User#2
User#3

(b) User.

Figure 3: ACF for intra-session intervals.

It can be seen from the ACF plots that most of the ab-
solute correlation values are extremely low. Figure 3(a)
shows periodical spikes, which can reach a maximum value
of 0.2, implying that some periodical pattern may exist for

this robot. However, the spikes never reach a value of 0.25,
indicating the correlation is still weak. Hence, all the results
give us strong indications that no significant LRD or SRD
exists and IID seems a better choice.

It is useful as well to study the correlation among multiple
streams. Here we need to know if the correlation exists for
the intra-session intervals of different sessions. The cross-
correlation function (CCF) computes the similarity between
two streams given a lag k. Our analysis results are shown
in Figure 4, in which multiple pairs of intra-session intervals
are compared.

-0.04

0

0.04

0.08

0.12

-100 -80 -60 -40 -20 0 20 40 60 80 100

LAG

C
C

F

Robot Pair #1
Robot Pair #2
Robot Pair #3

(a) Robot.

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-100 -80 -60 -40 -20 0 20 40 60 80 100
LAG

C
C

F

User Pair #1

User Pair #2
User Pair #3

(b) User.

Figure 4: CCF for intra-session interval pairs.

Again we study the behavior of robots and users indepen-
dently. In each category, we randomly select three pairs of
intra-session intervals as input streams. The results in Fig-
ure 4 indicate no strong correlation between different ses-
sions exists. Most of the CCF values are smaller than 0.1,
with only a few spikes reaching 0.12. Although only a small
portion of sessions are compared in this experiment, consid-
ering the diverse use nature of clients and the fairness of our
session selection policy, we can safely conclude that for most
cases the sessions are not heavily correlated. This finding
suggests that when we model the workload, we do not need
to take the correlation between sessions into consideration.

Although the ACF results strongly suggest the existence
of IID, we can use self-similarity tests to reinforce our beliefs
in the conclusion that IID exists in the analyzed streams.
Four methods [9] are recommended to test self-similarity:
variance-time plot, R/S plot, periodogram method and Whit-
tle estimator [5]. In all of the above tests, the degree of self-
similarity is expressed with a single parameter H , the Hurst
parameter. For self-similar series with LRD, 1/2 < H < 1.
As the H value goes up, the degree of both self-similarity
and LRD increases.

We apply all the four tests on the streams which are ex-
tracted and studied in the previous ACF tests, with H values
listed in Table 1.

In Table 1, the first column marks the streams under
study, in which character ”R” represents robot streams and
”H” stands for user streams. Inter-session intervals are ab-

141

Stream Varience R/S Periodogram Whittle
-Time

Inter(R) 0.689 0.636 0.547 0.521
Inter(H) 0.721 0.559 0.257 0.539
Intra(R1) 0.553 0.507 0.482 0.500
Intra(R2) 0.768 0.520 0.499 0.553
Intra(R3) 0.706 0.591 0.555 0.532
Intra(R4) 0.403 0.571 0.575 0.522
Intra(R5) 0.410 0.534 0.812 0.599
Intra(H1) 0.499 0.653 0.736 0.592
Intra(H2) 0.499 0.556 0.563 0.500
Intra(H3) 0.520 0.585 0.706 0.500
Intra(H4) 0.633 0.507 0.431 0.504
Intra(H5) 0.455 0.554 0.443 0.500

Table 1: Self-similarity test results.

breviated as ”Inter” and intra-session intervals are written
as ”Intra”. This naming schema is followed by all the fol-
lowing tables.

In addition to the H values listed in Table 1, the variance-
time plot, R/S plot and periodogram method all return a
correlation coefficient to estimate the reliability of the test.
The Whittle estimator can produce confidence intervals, but
its values are not shown here due to space limit. As we look
to the values in Table 1, we can find that most are around
0.5, suggesting that the degree of self-similarity is not sig-
nificant. Although some tests return a higher H value, its
corresponding correlation coefficient indicates that the mea-
sure is not very reliable. For example, the value periodogram
method only has a 39.05% correlation coefficient for intra-
session intervals of robot5.

In summary, the results of ACF and self-similarity tests
reveal that both LRD (self-similarity) and SRD do not exist
in our target time streams. Thus, we assume them to be
IID and use statistical models.

6.1.2 Prediction Using Time-Series Models
To validate our assumptions made in Section 6.1.1, we use

RPS toolkit [10] to fit various time-series models to each
time interval stream in our study. Nine models are imple-
mented in the RPS prediction library, which includes three
categories. MEAN (long-range mean), LAST (last-value),
and BM(p) (mean over ”best” window) are widely applied
simple models. AR(p) (auto regressive), MA(p) (moving av-
erage), ARMA(p, q), and ARIMA(p, d, q) are examples of
the Box-Jenkins linear time-series models. The final model,
ARFIMA(p, d, q) is a good choice to capture LRD feature
and thus can be used to predict self-similarity streams. De-
tailed introduction about these models can be found in [7,
22].

In this experiment, our time-series intervals are segmented
into identical-length blocks, which are used as the training
sets for RPS toolkit. Based on the training sets, parameters
of each model can be determined. The produced models are
used to predict a number of future observations. The pre-
dicted values are afterward compared with real observations
recorded in the stream to find the absolute errors. We take
different sections from a stream and perform each test for
multiple times to reduce bias in the results. For inter-session
intervals, each time a size of 2, 000 continuous observations
are selected to predict the next 100 values. Because the
size of intra-session interval stream is generally small, each
time we use 1, 000 observations in one intra-session stream

to predict the next 10. Our experimental results are given
in Table 2, in which the values written in the parentheses of
the heading line are the parameters used in models.

In Table 2, the second column records the mean values for
all observations in the stream, which are used for comparison
with absolute errors to reveal their degrees of significance.
Obviously, ARMA, ARIMA and ARFIMA models are very
inaccurate in data prediction, which again strongly rules
out the existence of self-similarity and LRD. Other models
generally produce less errors, which are still comparable with
the mean value of the observations. Hence, we conclude from
our study that time-series models are not suitable for search
engine workloads generation.

6.1.3 Statistical Modeling of Single Streams
It is proved in previous sections that the time-series streams

are IID. We take the following steps in our modeling process:
Identify Distribution Family: As the first step, we

need to decide what distributions are considered as possi-
ble candidates for our modeling process. After studying
previous suggestive studies and plotting the CDF (cumu-
lative distribution function) of our target streams, four dis-
tributions are selected in the subsequent analysis: 1) hyper-
exponential (which is good at modeling high-variance behav-
ior), 2) normal (which can model low variance), 3) pareto
(suggested to model bursty / heavy-tailed behaviors), and
4) two-parameter weibull (flexible to model wide diversity of
streams). Although this list is far from complete, the listed
distributions are representative in modeling different cases.

Estimate Distribution Parameters: For each type
of distribution, a predefined set of parameters needs to be
determined. We use the Maximum Likelihood Estimation
(MLE) method to calculate the parameters for a specific
distribution, based on a collection of sampled observations.
MLE is robust because every sample observation is used
in estimating parameters, which is insensitive to the out-
liers. To achieve our goal, an open source software, mle11,
is used, which supports a rich variety of statistical distribu-
tion models. In our experiments, we deliberately sample out
inter-session intervals within the standard hour (described
in Section 6.1.4) for each client category (robot and user).
Meanwhile, we carefully select several typical sessions cor-
responding to each category and mingle them together, in
which the request sequence is preserved according to the
time stamps. The purpose is to eliminate the possible bias
caused by a specific client. We select 1,000 sessions, which
look normal in their statistical behaviors. From each ses-
sion, 50 successive intra-session intervals are selected and
combined, creating a mingled stream of 50,000 observations.
We use this stream to model intra-session intervals.

Goodness-of-Fit Test: After obtaining the candidate
distributional models, we need to assess which one is the
most fit with the original dataset. Kolmogorov-Smirnov (K-
S) test, which uses the empirical cumulative distribution
function as a tool for testing, is adopted to test the goodness-
of-fit. To be more specific, K-S test returns the maximum
distance between the cumulative distribution function of
a model and the empirical data. The smaller is the dis-
tance, the better is the goodness-of-fit. Limited by the paper
length, CDF plots are not included in the paper. Rather,
we give the K-S comparison results in Table 3.

The K-S test results again confirm our expectation that
Pareto model does not fit well because there is no LRD or

11http://faculty.washington.edu/∼djholman/mle/

142

Stream Sample AR(16) AR(4) BM(16) MA(16) MEAN LAST ARMA ARIMA ARFIMA
Mean (16,16) (16,2,16) (8,.5,8)

Inter (R) 25 35 33 33 35 33 63 4925 3614 3.5e + 07

Inter (H) 1.8 1.9 2.0 1.6 1.8 1.9 2.5 1.9 1.8 4.9e + 06

Intra (R1) 5.3 5.4 3.8 6.7 5.4 3.7 5.4 62 5.5 6342

Intra (R2) 6.3 7.6 6.9 5.3 7.5 6.9 7.5 603 6.2 8.8e + 06

Intra (R3) 1.6 1.0 1.1 3.1 1.0 1.4 5.5 1340 4.5 825840

Intra (R4) 27 17 16 18 17 16 21 233892 4075 1.7e + 08

Intra (R5) 24 18 18 14 18 18 16 199126 19000 2.3e + 08

Intra (H1) 41 95 93 122 116 80 128 193 6598 1.1e + 10

Intra (H2) 42 23 20 22 39 21 13 507672 3437 8.3e + 08

Intra (H3) 8.4 78 78 79 77 79 91 7181 87 2.3e + 09

Intra (H4) 5.7 10 9.9 11 10 10 21 112888 6059 2.5e + 09

Intra (H5) 12 13 13 11 13 13 13 1274 12 1.2e + 12

Table 2: Prediction errors using RPS toolkit’s time-series models.

Stream Normal Pareto Weibull Hyper-
Exponential

Inter (R) 0.248 0.613 0.140 0.049
Inter (H) 0.334 0.607 0.137 0.099
Intra (R) 0.280 0.662 0.164 0.134
Intra (H) 0.268 0.653 0.143 0.108

Table 3: Goodness-of-fit test results by K-S.

heavy-tail behavior in our streams. It is found that with
no exception the hyper-exponential distribution is best in
all cases, which in return suggests that a high variance is
present in all streams. The final parameters returned by
mle software are listed in Table 4.

Stream p λ1 λ2

Inter (R) 0.501 0.410 0.029
Inter (H) 0.876 1.128 0.104
Intra (R) 0.087 0.005 0.028
Intra (H) 0.671 0.013 0.149

Table 4: Hyper-exponential distribution parameters
for each stream.

6.1.4 Effects of Time and Date
Although the test results in Section 6.1.1 show no strong

correlation in the streams we analyzed, the exact date and
time do have an effect on the request intervals. It is de-
tected that the traffic of Mondays is much heavier than
Sundays; the traffic in mornings is much heavier than mid-
nights. These impressions indicate that a time-dependent
pattern exists which remains unseen in previous tests. The
pattern will be revealed when requests are aggregated with
larger scales (daily, hourly).

We summarize request access frequencies in day-scale buck-
ets and plot them in Figure 5. It is obvious from Figure
5(a) that periodic patterns exist for user inter-session in-
tervals. Meanwhile, from Figure 5(b), the average number
of requests within a session does not change too much over
time, especially for users. It is suggested that a client’s be-
havior is basically not influenced by time factor. Thus, it
is inferred that what is affected by the time factor is the
inter-session interval stream, in other words, the number of
sessions at a time.

Figure 6 plots the ACF values for hour-scale session fre-
quency distributions. Unlike the ACF plots shown previ-

ously, from the plotted curve we can find obvious correlation
in the frequencies, which statistically confirms the existence
of periodical frequency patterns.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 21 41 61 81 101

Lag

A
C

F

Robot Sessions

User Sessions

Figure 6: ACF plot for hour-scale frequency distri-
bution.

The design goal of SearchGen is to synthesize highly rep-
resentative search engine access traces. To generate a long-
running trace representing a workload for a given time pe-
riod, SearchGen needs to accommodate date and time ef-
fects in the synthetic trace. Observing that date and time
mainly affects inter-session intervals, we introduce a time
impact function into the inter-session interval model. To be
specific, our generated inter-session interval is expressed as
Tinter = ft · tinter, where tinter is generated by the statis-
tical model obtained in Section 6.1.3 and ft is the impact
function, which takes the hour within a week as the input
and returns the scaling adjustment. Considering the peri-
odical and discrete nature of the distribution (the pattern
proximately repeats weekly), for each hour t of a week we
record the overall number of sessions (Nt) and compare it
with a standard hour (Nstandard), which is specified as the
hour from Monday 8 am to 9 am in our implementation.
This standard hour is also the hour we choose as the sam-
pling period in modeling inter-session interval tinter. So the
impact function can be determined by ft = Nstandard

Nt
. For

studies in which the effects of time are not important, the
value of ft can be simply set to be 1 to simplify the model.

6.2 Request Types
Here we analyze request type patterns for users and ro-

bots. For a system like CiteSeer, typically, a user would
first visit the homepage, type in some query keywords, and
browse the result list. If he finds interesting hits, he may
click on the link to view the details of a document, and hence
decide if he wants to go further to download it. If he realizes

143

0

10000

20000

30000

40000

50000

60000

1 3 5 7 9 11 13 15 17 19 21 23 25
Day

F
re

q
ue

n
cy

Robot Sessions

User Sessions

(a) Day-scale session frequency distribution.

0

2

4

6

8

1 3 5 7 9 11 13 15 17 19 21 23 25
Day

N
um

b
er

 o
f R

eq
u

es
t Robot requests per session

Human requests per session

(b) Day-scale request per session distribution.

Figure 5: Effects of time study.

that the returned list does not contain relevant documents,
he may refine his query and try again or simply turn off the
browser to end this session. The aim of our study on client
visiting path patterns is to reveal the inherent relationship
between requests. This information is not only essential for
a synthetic workload, it can also be used to by personalized
recommender services and prefetch techniques.

Search Engine

0. Start

7. End

2. Query

Citation

1. Query

Document
3. Doc Retrieval

4. Related 5. External 6. Doc Spec.

Figure 7: Request types in CiteSeer.

In our study, we statistically summarize log records and
use probabilistic models to predict the next-step of clients.
In [18], the performance of first and second-order Markov
models, mixture of first-order Markov models with prede-
fined number of clusters, and a Bayesian first order model
with a prior distribution are studied. Considering the facts
that most search engine sessions have short session lengths
and we have a limited number of service types (Figure 7), a
second order Markov model can work well to produce highly
accurate request types within a session.

In Section 5, the application model is simplified into six
services, which in return contribute the six unique states in
the Markov model. In addition, in order to better summa-
rize a client visiting path, two special states are introduced:
(1) Start state, which represents the initialization of a new
session; and (2) End state, which means the termination of a
session. With the assistance of these two new states, we can
use the probabilistic model to predict the possibility of the
first request type and control the length of a session. Hence,
the complete model includes eight distinct states, which are
illustrated in Figure 7. In the Markov model, almost all state
transitions are bidirectional, which is suggested by the log
entries. This is partly because in CiteSeer we can generally
find links to all possible services in a page. Two exceptions
are the Start and End states, whose related edges are unidi-
rectional. We collect data for robots and users respectively
and calculate the probabilities of transitions between differ-
ent states. Due to the limitation of pages, the detail of the
transition probability matrices are not included in the pa-
per. In the model, except for the first request in a session,

which is decided solely based on the probability from the
Start state, all other request types are determined by the
trace of the previous two requests.

6.3 Request Parameters
The actual meanings of parameters for various request

types are different. Based on the simplified application model
presented in Section 5, there are six services under study.
Among the six services, query document and query cita-
tion take the queried terms as the parameter; document
retrieval, related, and document specification specify target
document identifier in their parameters; external URLs ser-
vice contains the target URL as the parameter which does
not need to be forwarded to the search engine and thus is
neglected. So the services are grouped into two categories:

Query-Centric Service, which specifies query terms in the
requests.

Document-Centric Service, which specifies document iden-
tifiers in the requests.

If the actual requested items do not make a difference to
the underlying system, there is no need to include the para-
meters into the workload because they do not influence the
performance. However, further analysis into the workflow
of search engines drives us to believe it is also required to
generate meaningful request parameters. For example, the
sizes of inverted lists for different query terms differ dramati-
cally, which influence the response time of the search engine.
On the other hand, each stored document has its own data
volume and physical location, which can also change the re-
quest latency significantly. Request parameter is the factor
that cannot be omitted by the workload generator. Basi-
cally, we look into the above mentioned two categories and
study the popularity distribution for query terms and re-
quested documents respectively. The observed distributions
are adopted in SerachGen to provide parameters.

Previous studies [13] suggest that Zipf distributions are
common for web accessed items. A specific Zipf distribu-
tion follows the form of fi = K/iα, in which fi stands for
the frequency of the ith popular observation. As we look
through the logs, we find that there exist a set of hot query
terms and documents in the system. The requests to these
terms and documents are very frequent. Correspondingly,
the large portion of the term corpus and document corpus
only contributes a small portion of the entire traffic. we rank
terms and documents according to their request frequencies
and plot the distributions in Figure 8, where Y-axis shows
the log-scaled request frequency, while X-axis shows the log-
scaled ranking of the request, sorted by their frequencies.
The distributions shown in Figure 8 are close to straight
lines, suggesting the existence of the Zipf distribution.

The parameters of the observed Zipf distributions are given

144

1

10

100

1000

1 10 100 1000
Ranking

F
re

qu
en

cy

(a) Robot query term distri-
bution.

1

10

100

1000

1 10 100 1000 10000
Ranking

F
re

qu
en

ci
es

(b) Robot retrieved docu-
ment distribution.

1

10

100

1000

1 10 100 1000 10000
Ranking

F
re

qu
en

ci
es

(c) User query term distribu-
tion.

1

10

100

1000

10000

1 10 100 1000 10000 1E+05
Ranking

F
re

qu
en

ci
es

(d) User retrieved document
distribution.

Figure 8: Log-log scale request frequency distribu-
tion.

in Table 5, from which it is suggested that users tend to pro-
vide more focused requests while robots issue diverse ones.

Stream α K
Robot queried terms 0.473 157.40

Robot document identifiers 0.658 941.89
User queried terms 0.603 1288.25

User document identifiers 0.538 3451.44

Table 5: Zipf distribution parameters for requested
item frequencies.

7. OUTPUT STREAM SYNTHESIZATION

7.1 Implementation
We implemented SearchGen based on our analysis and

models obtained earlier. Basically, SearchGen takes a start
time (in terms of the day of a week and the hour of a day)
to create two processes corresponding to users and robots,
respectively, using appropriate models and settings. Once
the generating processes are initialized, each of them will use
the inter-session interval model as well as the time impact
function to determine how long it takes to initialize a new
thread, which represents a new session. The new thread,
once created, chooses from the Markov model its start re-
quest. After that, each thread uses the intra-session inter-
val model to predict the thinking time of the client. The
Markov model will supply the thread with the selected next
step. Based on the supplied request type, corresponding
request parameter is extracted from the system dictionary
(i.e., query terms and document identifiers collected in Cite-
Seer), following Zipf distributions. The process repeats until
the end state is reached. The thread is terminated, meaning
the end of an active session. SearchGen is implemented in
Java.

7.2 Synthetic Fit Test
We picked logs of one month to train model parameters

which are presented in Section 6. To evaluate the close-
ness of our prediction, log pieces of the following month are
used in the evaluation process. Generally, the actual data is
compared with our synthetic trace. As discussed in previ-
ous sections, the characteristics we choose in the synthetic

workload are those with impact on server performance. If
the traces in comparison turn out to be similar, it is shown
the trace generator works well in modeling real life search
engine traffics. We choose the adjacent month because we
are sure there is no obvious system modification in CiteSeer
during that period. Therefore, the traffic pattern will not
be affected by changes in system settings.

7.2.1 Time Intervals
In this experiment, SearchGen is asked to produce 100, 000

intervals for each studied time interval stream. The CDF of
the logged and synthetic traces are plotted in Figure 9, in
which the closeness between two curves indicates the accu-
racy of the synthetic trace. It can be found that the two
curves in each plot are very close to each other, with the
largest distance no more than 0.15 for all plots, indicating
the synthetic stream simulates well in the time interval dis-
tributions. It is noted that the most obvious difference in
Figure 9 happens in generating user intra-session intervals,
which is caused by the high variance in user think times. To
improve accuracy, good sampling and clustering strategies
can be applied.

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800

Interval

C
D

F
Logged inter-
session
Synthetic inter-
session

(a) Robot inter-session.

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

Interval

C
D

F Logged intra-
session
Synthetic intra-
session

(b) Robot intra-session.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150

Interval

C
D

F Logged inter-
session

Synthetic inter-
session

(c) User inter-session.

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

Interval

C
D

F

Logged intra-
session
Synthetic intra-
session

(d) User intra-session.

Figure 9: CDF Plots of time interval distributions.
X-axis is the time interval, and Y-axis is the CDF.

7.2.2 Request Types
Another important factor, the request type, is evaluated

by looking into the distribution of session lengths [18], which
is a good indicator of the goodness in predicting web visit-
ing paths. In this experiment, we collect 500, 000 sessions
from each generated trace as the experiment target. The
results are shown in Figure 10. It is shown that generally
the synthetic session lengths are close to logged ones.

0

5000

10000

15000

20000

1 11 21 31 41

Session Length

F
re

qu
en

cy

Logged Robot Session

Synthetic Robot Session

(a) Robots.

0

50000

100000

150000

200000

1 11 21 31 41

Session Length

F
re

qu
en

cy

Logged User Session

Synthetic User Session

(b) Users.

Figure 10: Session length frequency comparison.

145

7.2.3 Request Parameters
To validate whether the synthetic workload actually pro-

duces Zipf-like request distribution, 50, 000 requests are col-
lected from each synthetic trace and plotted in Figure 11, in
a log-log scale. To facilitate comparison, we also plot logged
parameter frequency distributions. Although the test collec-
tion size varies, we can find the corresponding plotted points
form two lines that are roughly parallel to each other, sug-
gesting the synthetic trace follows summarized distributions.

1

10

100

1000

10000

1 10 100 1000

Ranking

F
re

qu
en

cy

Logged Term
Synthetic Term
Logged Doc ID
Synthetic Doc ID

(a) Robots.

1

10

100

1000

10000

1 10 100 1000

Ranking

F
re

qu
en

cy
Logged Term
Synthetic Term
Logged Doc ID
Synthetic Doc ID

(b) Users.

Figure 11: Log-log scale request parameter fre-
quency distribution comparison.

8. CONCLUSION
Synthesizing representative workloads for particular ap-

plication domains can be challenging. In this paper, we
analyze log traces of a popular scientific literature digital
library and search engine - CiteSeer. After investigating the
web logs, we realize previous web server traffic models are
not suitable for search engines. We define the unique char-
acteristics of search engine traffic based on a decomposition
of the entire trace. For each aspect of the characteristics,
appropriate methodologies are employed to generate indi-
vidual streams. The proposed models are synthesized into
an output workload.

Synthetic workloads are extremely useful for system per-
formance analysis. Our generated workload can be used by a
relevant benchmark to model server-side traffic as well. Ad-
ditionally, we hypothesize that the methodologies described
in this paper can be applied in modeling workloads for other
similar speciality systems. SearchGen will be published as a
system service of the next generation CiteSeer - CiteSeerX .

Future work will investigate fine-grained semantics of re-
quests. We are interested in how we can use our workload
analysis to improve CiteSeer service qualities by implement-
ing workload-based traffic predication and server tuning.

9. ACKNOWLEDGEMENTS
We gratefully acknowledge partial support from Microsoft

Research and NSF.

10. REFERENCES
[1] G. Abdulla. Analysis and modeling of world wide web

traffic. PhD thesis, 1998. Chair-Edward A. Fox.
[2] C. S. Badue, R. Barbosa, P. Golgher, B. Ribeiro-Neto, and

N. Ziviani. Distributed processing of conjunctive queries. In
HDIR ’05, SIGIR 2005, 2005.

[3] P. Barford and M. E. Crovella. Generating representative
Web workloads for network and server performance
evaluation. In SIGMETRICS ’98, pages 151–160, July
1998.

[4] L. Bent, M. Rabinovich, G. M. Voelker, and Z. Xiao.
Characterization of a large web site population with
implications for content delivery. In WWW ’04, pages
522–533, 2004.

[5] J. Beran. Statistics for Long-Memory Processes. Chapman
& Hall, New York, NY, 1994.

[6] B. Berendt, B. Mobasher, M. Spiliopoulou, and
J. Wiltshire. Measuring the accuracy of sessionizers for web
usage analysis. In Proceedings of the Web Mining
Workshop at the 1st SIAM International Conference on
Data Mining, Chicago, Illinois, April 2001.

[7] G. Box and G. Jenkins. Time Series Analysis, Forecasting
and Control. Holden-Day, Incorporated, 1990.

[8] S. Chaudhuri, P. Ganesan, and V. R. Narasayya. Primitives
for workload summarization and implications for SQL. In
VLDB, pages 730–741, 2003.

[9] M. E. Crovella and A. Bestavros. Self-similarity in World
Wide Web traffic: Evidence and possible causes.
IEEE/ACM Transactions on Networking, 5(6):835–846,
Dec. 1997.

[10] P. Dinda and D. O’Hallaron. An extensible toolkit for
resource prediction in distributed systems, 1999.

[11] C. L. Giles, K. Bollacker, and S. Lawrence. CiteSeer: An
automatic citation indexing system. In The Third ACM
Conference on Digital Libraries, pages 89–98, Pittsburgh,
PA, 1998.

[12] M. E. Gómez and V. Santonja. Analysis of self-similarity in
I/O workload using structural modeling. In MASCOTS,
page 234, 1999.

[13] T. Kelly and J. Mogul. Aliasing on the World Wide Web:
Prevalence and Performance Implications. In WWW’02,
Honolulu, Hawaii, May 2002.

[14] D. E. Knuth. The Art of Computer Programming. Four
volumes. Addison-Wesley, 1969.

[15] H. Li, I. G. Councill, W.-C. Lee, and C. L. Giles. CiteSeerX:
an architecture and web service design for an academic
document search engine. In WWW, pages 883–884, 2006.

[16] Y. Lu, T. Abdelzaher, C. Lu, and G. Tao. An adaptive
control framework for QoS guarantees and its application
to differentiated caching services, 2002.

[17] E. Manavoglu, D. Pavlov, and C. L. Giles. Probabilistic
user behavior models. In ICDM ’03, page 203, Washington,
DC, USA, 2003.

[18] R. Sen and M. Hansen. Predicting a web user’s next access
based on log data. Journal of Computational and Graphical
Statistics, 12:143–155(13), 2003.

[19] R. Simmonds, C. L. Williamson, R. Bradford, M. F. Arlitt,
and B. Unger. Web server benchmarking using parallel
WAN emulation. In SIGMETRICS’02, pages 286–287,
2002.

[20] A. Streit. Self-Tuning Job Scheduling Strategies for the
Resource Management of HPC Systems and Computational
Grids. PhD thesis, Faculty of Computer Science, Electrical
Engineering and Mathematics, University Paderborn, 2003.

[21] P. Tan and V. Kumar. Discovery of web robot sessions
based on their navigational patterns. Data Mining and
Knowledge Discovery, 6:9–35, 2002.

[22] N. Tran and D. A. Reed. ARIMA time series modeling and
forecasting for adaptive I/O prefetching. In Proceedings of
the 15th international conference on Supercomputing, pages
473–485, June 2001.

[23] Y. Wang, M. J. Rutherford, A. Carzaniga, and A. L. Wolf.
Weevil: a tool to automate experimentation with
distributed systems. Technical Report CU-CS-980-04,
Department of Computer Science, University of Colorado,
Oct. 2004.

[24] J. Zhang, A. Sivasubramaniam, H. Franke, N. Gautam,
Y. Zhang, and S. Nagar. Synthesizing representative I/O
workloads for TPC-H. In HPCA, pages 142–151, 2004.

[25] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.
Ensembles of models for automated diagnosis of system
performance problems. In DSN ’05: Proceedings of the
2005 International Conference on Dependable Systems and
Networks (DSN’05), pages 644–653, 2005.

146

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

