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Abstract

Automatic metadata generation provides scalability and
usability for digital libraries and their collections. Ma-
chine learning methods offer robust and adaptable auto-
matic metadata extraction. We describe a Support Vector
Machine classification-based method for metadata extrac-
tion from header part of research papers and show that it
outperforms other machine learning methods on the same
task. The method first classifies each line of the header into
one or more of 15 classes. An iterative convergence proce-
dure is then used to improve the line classification by using
the predicted class labels of its neighbor lines in the previ-
ous round. Further metadata extraction is done by seeking
the best chunk boundaries of each line. We found that dis-
covery and use of the structural patterns of the data and
domain based word clustering can improve the metadata
extraction performance. An appropriate feature normaliza-
tion also greatly improves the classification performance.
Our metadata extraction method was originally designed
to improve the metadata extraction quality of the digital li-
braries Citeseer[17] and EbizSearch[24]. We believe it can
be generalized to other digital libraries. *

1In Proceedings of the ACM/IEEE Joint Conference on Digital Li-
braries (JCDL 2003), pp 37-48, May, 2003. Nominated for Best Paper
Award. 0-7695-1939-3/03 Copyright 2003 IEEE.

1 Introduction and related work

Interoperability is crucial to the effective use of Digital
Libraries (DL) [19, 23]. The Open Archive Initiatives Pro-
tocols for Metadata Harvesting (OAI-PMH) is critical for
the process, facilitating the discovery of content stored in
distributed archives [7, 18]. The digital library CITIDEL
(Computing and Information Technology Interactive Digi-
tal Educational Library), part of NSDL (National Science
Digital Library), uses OAI-PMH to harvest metadata from
all applicable repositories and provides integrated access
and links across related collections [14]. Support for the
Dublin Core (DC) metadata standard [31] is a requirement
for OAI-PMH compliant archives, while other metadata for-
mats optionally can be transmitted.

However, providing metadata is the responsibility of
each data provider with the quality of the metadata a signif-
icant problem. Many data providers [13, 4] have had signif-
icant harvesting problems with XML syntax and encoding
issues, even leading to unavailability of service [18]. Infact,
some digital libraries have no metadata to harvest (some
search engines have little or no metadata), or metadata that
is not OAI compliant, e.g., CiteSeer [17]. Non-compliant
metadata must be either automatically wrapped to work
with the OAI protocol, or manually encoded. Building tools
for automatic document metadata extraction and represen-
tation will therefore significantly improve the amount of
metadata available, the quality of metadata extracted, and
the efficiency and speed of the metadata extraction process.

Several methods have been used for automatic metadata



extraction; regular expressions, rule-based parsers, and ma-
chine learning are the most popular of these. In general ma-
chine learning methods are robust and adaptable and, theo-
retically, can be used on any document set. Generating the
labeled training data is the rather expensive price that has
to be paid for learning systems. Although regular expres-
sions and rule-based systems do not require any training
and are straightforward to implement, their dependence on
the application domain and the need for an expert to set the
rules or regular expressions causes these methods to have
limited use. Machine learning techniques for information
extraction include symbolic learning, inductive logic pro-
gramming, grammar induction, Support Vector Machines,
Hidden Markov models, and statistical methods. Hidden
Markov models (HMMs) are the most widely used genera-
tive learning method for representing and extracting infor-
mation from sequential data. However, HMMs are based
on the assumption that features of the model they repre-
sent are not independent from each other. Thus, HMMs
have difficulty exploiting regularities of a semi-structured
real system. Maximum entropy based Markov models [20]
and conditional random fields [16] have been introduced to
deal with the problem of independent features.

Recent work by Chieu [5] suggests that the informa-
tion extraction task also can be addressed as a classification
problem. Encouraged by their success in handling high di-
mensional feature spaces for classification problems [12, 9],
we investigate Support Vector Machines (SVMs) for meta-
data extraction. Related work includes Kudoh et al using the
SVM method for chunk identification, Mcnamee et al using
a SVM for named entity extraction [22, 15, 29], and Pasula
et al using relational probability models to solve identity
uncertainty problems [10].

This paper discusses a machine learning method for au-
tomatic metadata extraction. The reported extraction results
are based on experiments conducted on research papers.
Most of the directly indexable information (e.g., authors’
names, affiliations, addresses, and the title of the paper) are
gathered in the header of a research paper. The header [27]
consists of all the words from the beginning of the paper up
to either the first section, usually the introduction, or to the
end of the first page, whichever occurs first. In the exper-
imental results section we illustrate the dominance of the
introduced SVM-based metadata extraction algorithm over
the well-known HMM based systems [27]. We also intro-
duce a method for extracting individual names from the list
of authors within the same framework and present a new
document metadata extraction method using SVM classifi-
cation, combining chunk identification. A new feature ex-
traction method and an iterative line classification process
using contextual information also are presented.

The remainder of the paper is organized as follows: sec-
tion 2 describes the problem and dataset; section 3 presents

our metadata extraction method, together with the cross val-
idation results on 500 training headers; section 4 presents
the experiment result of our metadata extraction algorithm
on the test dataset; section 5 discusses the aspects to be im-
proved and planned future work.

2 Problem definition and dataset

The Dublin Core has been widely used as a metadata
standard and defines 15 elements for resource description:
Title, Creator, Subject, Description, Contributor, Publisher,
Date, Type, Format, Identifier, Source, Relation, Refer-
ences, Is Referenced By, Language, Rights and Coverage.
However, this is only a basic set of metadata elements and
is used by OAI-PMH for “minimal” interoperability. Ex-
tending document metadata through information on both
authors (such as affiliation, address, and email), and docu-
ments (such as publication number and thesis type), would
provide greater representation power. It also would help in
building unified services for heterogeneous digital libraries,
while at the same time enabling sophisticated querying of
the databases and facilitating construction of the semantic
web [3]. Seymore et al defined 15 different tags for the
document header [27] to populate the Cora search engine
[21], 4 of which are the same as those in the Dublin Core.
Two of the remaining tags, introduction and end of page, are
functional rather than informative, indicating the end of the
header. Leaving out the functional tags, we adopt their for-
mat as extended metatags for research papers. We further
propose to define affiliation as part of the address, instead
of an exclusive tag. Table 1 is a short explanation of the ex-
tended metatags and the mapping to Dublin Core metadata
elements.

Figure 1 is an example of meta-tagged document header.
Document metadata extraction also can be viewed as label-
ing the text with the corresponding metatags. Each metatag
corresponds to a class. Lines 22 and 25 are multi-class lines
containing chunks of information from multiple classes. We
define a chunk of information as consecutive words that be-
long to the same class. Line 22 and 25 contain the chunks
of 5 classes: email, web, affiliation, address, and note. All
the other lines contain information belonging to one class
only and are therefore called single-class lines.

We use the labeled dataset provided by Seymore et al
[27] to test our method of metadata extraction. The dataset
contains 935 headers of computer science research papers,
with 500 of those belonging to the training set and the re-
maining 435 headers belonging to the test set. The training
set includes a total of 10025 lines and 23557 word tokens
whereas there are 8904 lines and 20308 word tokens in the
test set. These headers are text files converted from the pdf
and ps files. Each line ends with a carriage return and the
line break marks + L+ are provided by the dataset for iden-



Table 1. Extended metatags and their map-
ping to Dublin Core metadata elements

Extended DC Element | Explanation
M etatag
Title Title Title of the paper
Author Creator The name(s) of the author(s)
of the document
Affiliation Author’s affiliation
Address Author’s address
Note Phrases about acknowledgment,
copyright, notices, and citations
Email Author’s email address
Date Publication date
Abstract Description | An account of the content

Introduction Introduction part in the paper

Phone Author’s phone humber

Keyword Subject The topic of the content of
the document

Web URL of Author’s webpage
of the document

Degree Language associated with thesis
degree
Pubnum Publication number
of the document
Page The end of the page
tification.

The document headers are semi-structured. We observe
that among total 10025 lines from 500 training headers,
the majority (9775 lines, 97.51%) are single-class lines and
only 250 (2.49%) lines are multi-class lines. Even after
removing the abstract section which is mostly single-class
lines, multi-class lines still account for only 4.98% of all
lines. Classifying each line into one or more classes thus
appears to be more efficient for meta-tagging than classify-
ing each word. Table 2 lists the class distributions of the
lines from the 500 training headers.

The predicted tags for previous and next lines are also
good indicators of the class(es) to which a line belongs. For
instance, an abstract has consecutive lines uninterrupted by
lines of other classes, and title lines usually come before
author lines. Making use of such contextual information
among lines we feel will increase the line classification per-
formance.

We propose a third algorithm for processing the lines
predicted to contain chunks of information from multiple
classes. Since each chunk has consecutive words, we con-
sider extracting metadata from the multi-class lines as the
problem of seeking the optimal chunk boundaries. Recog-
nition of individual author names within multi-author lines
can also be considered as the problem of seeking the right

1:<title> Stochastic Interaction and Linear Logic +L+ </title>
2:<author> Patrick D. Lincoln John C. Mitchell Andre Scedrov
+L+ </author>

3: <abstract> Abstract +L+

4:We present stochastic interactive semantics for prepositional
linear +L+

22:<email> jem@cs.stanford.edu </email> <web>
http://theory.stanford.edu/people/jcm/home.html  </web> <affil-
iation> Department of Computer Science, Stanford University,
</affiliation> <address> Stanford, CA 94305.</address> <note>
Supported in part +L+

23:by an NSF PYI Award, matching funds from Digital Equipment
Corporation, the Pow-ell Foundation, and Xerox Corporation;
and the Wallace F. and Lucille M. Davis Faculty +L+
24:Scholarship. +L+ </note>

25:<email> andre@cis.upenn.edu </email>
<web>http://www.cis.upenn.edu/~andre </web> <affilia-
tion> Department of Mathematics, University of Pennsylvania,
</affiliation> <address> Philadelphia, PA 19104-6395. </ad-
dress> <note> Partially supported by +L+

26:NSF Grants CCR-91-02753 and CCR-94-00907 and by ONR
Grant N00014-92-J-1916. Sce-drov is an American Mathematical
Society Centennial Research Fellow. +L+ </note>

Figure 1. Example 1 labeled document header
and metadata. Each line starts with the line
number.

chunk boundary, in this case between the author names. For
example, does the line “Chungki Lee James E. Burns” re-
fer to two authors “Chungki Lee” and “James E. Burns,”
two authors “Chungki Lee James” and “E. Burns,” or one
author “Chungki Lee James E. Burns”?

Based on the structural patterns of the document headers,
we decompose the metadata extraction problem into two
sub-problems — (1) line classification and (2) chunk identi-
fication of multi-class and multi-author lines. Accurate line
classification is a critical step, since it directly affects the
performance of the chunk identification module.

3 Metadata Extraction Algorithm

This section describes two important aspects of our
work, SVM classification and feature extraction. The meta-
data extraction algorithm is discussed in detail, together
with the corresponding ten-fold cross-validation result on
the 500 training headers. Performance is evaluated using
accuracy, precision, recall, and F measure.



Table 2. Class distribution among 10025 total
lines from 500 training header

ClassNo. | ClassName | Number of Lines | Percentage
1 Title 832 8.3%
2 Author 724 7.2%
3 Affiliation 1065 10.6%
4 Address 629 6.3%
5 Note 526 5.2%
6 Email 336 3.4%
7 Date 182 1.8%
8 Abstract 5007 50.0%
9 Introduction 326 3.3%
10 Phone 61 0.6%
11 Keyword 142 1.4%
12 Web 38 0.4%
13 Degree 169 1.7%
14 Pubnum 116 1.1%
15 Page 166 1.7%

3.1 Support Vector Machine Classification

Support Vector Machine is well known for its general-
ization performance and ability in handling high dimension
data. Consider a two class classification problem. Let {(z1,
Y1), - (xn, yn)} be a two-class training dataset, with z;
a training feature vector and their labels y; C (-1, +1). The
SVM attempts to find an optimal separating hyperplane to
maximally separate two classes of training samples. The
corresponding decision function is called a classifier. The
kernel function of an SVM is written as K (z,, ) and it
can be an inner product, Gaussian, polynomial, or any other
function that obeys Mercer’s condition [30, 6].

We choose the Gaussian kernel for the SVM and base
our experiment on the software SVM_light [11]. We set the
parameter gamma (-g), the spread of the Gaussian kernel as
0.1, and all other parameters set by SVM_light. We extend
the SVM to multi-class classifiers in the “One class versus
all others” approach, i.e., one class is positive and the re-
maining classes are negative.

3.2 Feature Extraction

Most of the previous work on information extraction
uses word-specific feature representations [27, 15, 29]. Re-
cent research on the topic suggests that line-specific features
also could be useful [20].

We make use of both word and line-specific features to
represent our data. Each line is represented by a set of word
and line-specific features.

We design a rule-based, context-dependent word clus-
tering method explained below for word-specific feature

generation, with the rules extracted from various domain
databases and text orthographic properties of words (e.g.
capitalization) [26]. Word clustering methods group sim-
ilar words and use the cluster as a feature. Distributional
clustering methods have shown significant dimensionality
reduction and accuracy improvement in text classification
[2, 28, 8]. While distributional clustering needs to use la-
beled training data, our rule-based method relies on the
prior knowledge embedded in domain databases.

We collect the following databases to gather apriori
knowledge of the domain:

e Standard on-line dictionary of Linux system

e Bob Baldwin’s collection of 8441 first names and
19613 last names

e Chinese last names

e USA state names and Canada province names

e USA city names

e Country names from the World Fact Book [1], and
e Month names and their abbreviations

We also construct domain databases, i.e., word lists from
training data for classes: affiliation, address, degree, pub-
num, note, abstract, keyword, introduction, and phone.
Words and bigrams that appear frequently in the lines of
each class mentioned are selected to enter these word lists.
Frequency thresholding is used to define the list size [32].
The abstract class word list contains one word “abstract”
and the affiliation class list contains words shown in Table 3.

We then cluster words and bigrams based on their mem-
bership in the domain databases and their text orthographic
properties. The words and bigrams in the same cluster
are represented by a common feature, which we call word-
specific feature. For example, an author line “Chungki Lee
James E. Burns™ is represented as “CaplNonDictWord: :May-
Name: :MayName: :SingleCap: :MayName:”, after word clus-
tering.

Such word clustering shows significant improvement in
our experiment of classifying lines (details will be given in
another paper). A reason is that the word cluster statistics
give a more robust estimate than the original sparse word
statistics [2, 28].

We define the weight of a word-specific feature as the
number of times this feature appears in the sample (line).

The following is the list of line-specific features we be-
lieve to be useful for line classification. In particular, feature
ClinePos is found to be very important in correct classifica-
tion of title lines.

CsenLen Number of the words the line contains.
ClinePos The position of the line, i.e., line number.

CDictWordNumPer The percentage of the dictionary words in
the line.



CNonDictWordNumPer The percentage of the non-dictionary
words in the line.

CCapl1DictWordNumPer The percentage of the dictionary
words with first letter capitalized in the line.

CCaplNonDictWordNumPer The percentage of the non-dict
words with first letter capitalized in the line.

CdigitNumPer The percentage of the numbers in the line.

We also have a feature for representing the percentage
of the class-specific words in a line. CaffiNumPer is the
percentage of the affiliation words in the line and Caddr-
NumPer, CdateNumPer, CdegreeNumPer, CphoneNumPer,
CpubNumPer, CnoteNumPer, and CpageNumPer are the
percentage of the address words, date words, degree words,
phone words, publication number words, note words, and
page number words, respectively. We assign weight to the
line-specific features according to their definition.

Table 3. Affiliation Class Word List

DF Value Word DF Value Word
325 University 37 Laboratory
221 Department 34 Technology
111 Univ 33 Dept

77 Institute 27 Systems
47 Research 26 School
39 Sciences 26 Center

However, our experiments show that SVM doesn’t han-
dle well the case when different features have very differ-
ent ranges of values. For example, the feature “CsenLen”
could have a weight of 40, while the line-specific feature
CdictWordNumPer weight is over the range [0, 1]. Fea-
tures with large scale may dominate the features with small
weight. Therefore, we use the [|X || to normalize the fea-
ture weight and increase the classification performance as
shown in the next section.

3.3 Line Classification Algorithms

The following is a two-step algorithm for classifying text
lines into a single class or multiple classes. The two com-
ponents are independent line classification followed by con-
textual line classification.

3.3.1 Independent line classification

In the first step, feature vectors are generated based on the
feature extraction methodology described in the previous
section. After removing the features with data frequency
values < 3, we get feature vectors with 1100 dimensions
on average for ten-fold cross validation. A feature vector is
labeled as class C' if the corresponding line contains words
belonging to class C. Training feature vector set for class C

Table 4. Word-specific feature set

Feature Explanation

:email: using regular expression match

wurl: using regular expression match

:singleCap: a capital letter like M or M.

:postcode: such as PA, MlI

:abstract: abstract

:keyword: key word, key words, keyword, keywords

intro: introduction

:phone: tel, fax, telephone

:month: aword in the month list

prep: at, in, of

:degree: aword or bigram in the degree domain
word list

pubnum: a word or bigram in the publication
number domain word list

:notenum: a word or bigram in the note domain
word list

‘affi: a word or bigram in the affiliation
domain word list

:addr: a word or bigram in the address domain
word list

‘city: aword or bigram in the city name list

‘state: a word or bigram in the state name list

country: a word or bigram in the country name
list

:mayName: aword in one of the 3 name lists

:CaplDictWord: | a dictionary word with first
letter capitalized

:DictWord: small case dictionary word

:NonDictWord: | small case non dictionary word

:Dig[3]: a number of three digits

The word-specific feature considers text orthographic properties,
e.g., BU-cs-93 is converted to :CapWord2-LowerWord2-Digs2:

is generated by collecting all the feature vectors with label
C as positive samples and all the rest as negative; the same
procedure applies to all classes. Note that a feature vector
could have multiple labels and thus can belong to multiple
training feature vector sets. 15 classifiers are then trained
on the 15 labeled feature vector sets. Test lines are clas-
sified into one or more classes if their feature vectors are
scored positive by the corresponding classifier. This pro-
cess is called independent line classification (also shown in
Figure 2), since each line is classified independently.
Table 5 lists the ten-fold cross-validation results on the
training dataset for the independent line classification algo-
rithm. Figure 3 shows the F measure of independent line
classification before and after normalization using ten-fold
cross-validation on 500 training headers. Due to space lim-
itations, we are not able to report our results for precision,
recall, and accuracy. The effect of normalization is a sig-
nificant improvement in performance. Normalization is es-
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Figure 2. Overview of Line Classification
Training Module.

pecially important in identifying the rare classes, such as
class 5 (note), 11 (keywords), and 12 (web). Consider class
5 “note” as an example, the positive note samples occupy
5.3% (53 out of 1001.5 averaged for each fold of ten-fold
cross validation) of all test samples. Without normalization,
the note classifier classifies all testing samples into non-
“note” classes. Thus, the recall for class 5 “note” is zero
and the precision is infinite. Normalization appears to in-
crease the importance of features in the class “note”, which
then enhances “note” samples for the “note” classifier.

3.3.2 lterative contextual line classification

The second step makes use of the sequential information
among lines discussed in section 2 to improve the classifi-
cation of each line. We encode the class labels of N lines
before and after the current line L as binary features and
concatenate them to the feature vector of line L formed in
step one, independent line classification. A contextual line
classifier for each metatag is then trained based on these
labeled feature vectors with additional contextual informa-
tion. Line feature vectors for testing are extended the same
way. Their neighbor lines’ class labels are those predicted

T T T T T T T T T T T
0.8
0.6
0.4
-2r| ll Unnormalized
[] Normalized
o

Figure 3. F measure of the independent line
classification before and after normalization.
X axis - class number; Y axis - F measure.

by the independent line classifier. Test lines are then reclas-
sified into one or more classes by the contextual line classi-
fiers. This contextual line classification is repeated such that
in each iteration, the feature vector of each line is extended
by incorporating the neighbor lines’ class label informa-
tion predicted in the previous iteration. The procedure con-
verges when the percentage of lines with new class labels is
lower than a threshold. The threshold value is set to 0.7%
in our experiments, and NV is chosen to be 5. Ramshaw et al
show the positive effect of a similar iterative algorithm on
transformation-based learning for rule-selection [25].

The contextual information we use for line classification
is encoded by the binary features P;; if the previous ith clos-
est line belongs to class j and IV;; if the next ith closest line
belongs to class j, with i € (1..5) and j € (1..15). We
found that choosing P;; and IV;; to be 0.5/0, instead of 1/0
achieves better line classification performance, based on the
experiment on the training dataset. This is because the line
feature values are already normalized into the range [0, 1].
Choosing the midpoint of this range as the weight for up to
150 (15%10) contextual features is a type of normalization
and is found to be more effective.

Figure 4 shows the performance evaluated by the F
measure in each round of the iterative contextual line
classification. As expected, the performance is stabilized
within the first 10 iterations. It also shows that the first
two rounds are responsible for most of the performance
improvement. This behavior suggests two iteration steps
can be used instead of waiting for absolute convergence.
Table 6 lists the results achieved for each of the 15 classes
when the iterative procedure converges. The small sample
sizes of the class — degree, note, phone, keyword, and
publication number — as shown in Table 6 may account
for their poor classification performance. Seymore et al
report the same phenomenon on the class — degree, note
and publication number — using HMM model [27].
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Table 5. Independent line classification per-
formance.

—O- Date
—\— Abstract
- Eﬁy:ed‘ ClassName | Precison | Recall | F measure | Accuracy
Wb Title 89.6% | 88.9% | 89.3% 98.2%
pe §;g§° Author 94.2% 89.6% 91.8% 98.8%
Affiliation 93.8% 84.2% 88.7% 97.7%
Address 93.9% 85.1% 89.3% 98.8%
Note 82.3% 45.4% 58.5% 96.6%
Email 97.6% 97.4% 97.5% 99.8%
Date 97.2% 89.4% 93.1% 99.8%
s Abstract 96.1% 97.7% 96.9% 96.9%
Introduction 98.8% 96.0% 97.4% 99.8%
! s a4 s 6 7 8 9 1 n Phone 93.8% 69.1% 79.5% 99.8%
Keyword 95.2% 55.2% 69.9% 99.3%
Figure 4. F measure in each round of the it- Web 100% 92.8% 96.3% 99.9%
erative contextual line classification. X axis - Degree 86.0% 52.8% 65.4% 98.9%
iteration round; Y axis - F measure. Pubnum 91.7% 71.8% 80.5% 99.6%
Page 100.0% 100.0% 100.0% 100.0%

3.4 Extract metadata from multi-class lines

After classifying each line into one or more classes, we
now extract metadata from each multi-class line based on
the predicted class labels for this line. As discussed the
metadata extraction task from multi-class lines is turned
into the chunk identification task. Chunk identification of
an N-class line is analogous to finding NV — 1 chunk bound-
aries in the line. Punctuation marks and spaces between
words are candidate chunk boundaries.

Table 7 shows that 86% of the multi-class lines in train-
ing data are two-class lines. We search for the optimal
chunk boundary which yields the maximum difference be-
tween the two chunks. Independent line classifiers are ap-
plied to calculate the difference between chunks.

Every punctuation mark and space can be a candidate
chunk boundary for two-class lines. We consider only punc-
tuation marks as candidates if two or more punctuation
marks are used in the line; otherwise we try each punctu-
ation mark and space. Assuming that each class has only
one chunk in the line, two-class chunk identification is to
find the optimal chunk boundary.

““The Ohio State University, Columbus, OH 43210-1277"" is an
example of two-class line of affiliation and address. Each
comma is a candidate chunk boundary.

We call the affiliation classifier as classifier 1 and the
address classifier as classifier 2. The classifiers we use here
are the SVM line classifiers trained by single-class lines of
the training dataset. We consider each chunk as a short line.

Definitions:
P, the classification score of chunk P by classifier 1;

P, the classification score of chunk P by classifier 2;
N the classification score of chunk N by classifier 1;
N> the classification score of chunk N by classifier 2;
Py =P - Py; Nap = Ny - Ny,

PNy =P, -Nyi; PNy =P, - No;

We choose the optimal chunk boundary as the punc-
tuation mark or space yielding the maximal Pj5 * No;.
Chunk P is classified into class 1 if PN; > 0, and (1)
PNy * PNy < 0or (2) PNy x PNy > 0and ||[PMV,|| =
max (|| PN1||, ||PNzl|), class 2 otherwise.

This two-class chunk identification algorithm results in
an accuracy of 75.5% (160 out of 212 two-class lines from
training samples). Accuracy here is defined as the percent-
age of the lines whose chunk boundaries are correctly pre-
dicted versus the total number of two-class lines. (This is
the lower boundary of the accuracy.)

Many N-class ( N > 2 ) chunk identification tasks
may be simplified to two-class chunk identification tasks.
For instance, using the positions of email and URL in the
line, we may simplify the three-class chunk identification
tasks as two-class chunk identification tasks. The posi-
tion of the email address in the following three-class line
“International Computer Science Institute, Berkeley, CA 94704.
email: aberer@icsi.berkeley.edu. Supported by Schweizerische
Gesellschaft zur Forderung der Informatik und ihrer Anwendun-
gen” is a natural chunk boundary between the other two
classes.

We are exploring more general multi-class chunk identi-
fication techniques.



Table 6. Performance (%) of contextual line
classification iteration algorithm when con-
verges and the F measure increase than that
of the independent line classification

ClassName | Precision | Recall | F measure | Accuracy
(Increase)

Title 93.9 95.0 94.5(5.2) 99.1
Author 97.3 91.4 94.2(2.4) 99.2
Affiliation 96.4 90.3 93.3(4.5) 98.6
Address 93.6 86.7 90.0(0.71) 98.8
Note 86.4 65.6 74.6(16.0) 97.6
Email 98.9 94.0 96.4(-1.1) 99.8
Date 97.2 89.5 93.2(0.1) 99.8
Abstract 98.5 99.2 98.8(1.9) 98.8
Introduction 100.0 96.4 98.2(0.8) 99.9
Phone 98.3 62.3 76.2(-3.3) 99.7
Keyword 96.7 79.5 87.2(17.3) 99.7
Web 100.0 92.8 96.3(0.0) 99.9
Degree 91.4 80.5 85.6(20.1) 99.3
Pubnum 97.3 65.5 78.3(-2.2) 99.6
Page 100.0 100.0 | 100.0(0.0) 100.0

Table 7. The distribution of the multi-class
lines in 500 training headers

N-Class | Number of Lines | Percentage
2 212 84.8%
3 33 13.2%
4 4 1.6%
5 1 0.4%

3.5 Recognize authors in the multi-author lines

We consider the author lines with less than 4 words as
single-author lines and the author lines with 4 or more
words as multi-author lines. We further define a multi-
author line where the authors are separated by spaces only
as space-separated multi-author line. Similarly, a multi-
author line where the authors are separated by punctua-
tion marks is defined as punctuation-separated multi-author
line.

We extract a total of 326 multi-author lines from the
training dataset as the dataset for our experiment on rec-
ognizing authors from the multi-author lines. Among the
326 multi-author lines, 227(69.6%) lines are punctuation-
separated and 99(30.4%) are space-separated. Based on the
different characteristics punctuation-separated multi-author
lines and space-separated multi-author lines possess, we
choose the following different strategies for either case.

3.5.1 Chunk identification in punctuation-separated
multi-author lines

As we discussed before, to recognize each name from the
multi-author lines is to identify chunk boundaries between
author names. It is obvious that the spaces and punctua-
tion marks between words are the candidate chunk bound-
aries. The problem now becomes classifying each space
or punctuation mark as chunk boundary or not. We con-
sider only the punctuation mark in the line as the candidate
chunk boundary if there are two or more punctuation marks
in the line; otherwise, we examine each space and punctu-
ation mark. The dictionary word “and” is considered as a
punctuation mark. The spaces next to a punctuation mark
are ignored.

We design the feature vector for each space and punctu-
ation mark using both the raw features of the punctuation
mark itself such as “,” or “&”, and the contextual features
listed in Table 8. We also convert each word of the line into
a 5-tuple < FN,LN,L,FC,D >. Each element of the
5-tuple is defined as follows.

FN: 1ifthe word is in the first name list, O otherwise.
LN: 1 ifthe word is in the last name list, 0 otherwise.

L: 1,2 or0, indicates the word is of one letter, two letters,
or more than two letters, respectively.

FC: 1if the word is capitalized, 0 otherwise.

D: 1if the word is a dictionary word, 0 otherwise.

We use the attributes defined in the above tuple to repre-
sent the contextual feature (8) in Table 8 in the converted
format. The motivation is that if the closest word to a
punctuation mark appears only on the first name list, or
only on the last name list, it helps to classify if this punc-
tuation mark is the right chunk boundary. For example,
if “Leonidas Fegaras, David Maier” satisfies this pattern
“[10010(First name)] [01011(Last name)], [10011(First
name)] [00010(Last name)]”, it will be reasonable to clas-
sify the comma as the right chunk boundary. However, the
big overlap between the first name list and the last name list
makes such feature representation of each word ineffective.

We find from the stepwise feature selection that the dom-
inating features in classifying chunk boundary are the punc-
tuation marks themselves. Therefore in implementation, we
design simple heuristic rules to make use of the punctuation
marks to extract each name from the punctuation-separated
multi-author line.

Table 9 lists the chunk identification performance on
punctuation-separated multi-author lines. The evaluation is
based on the percentage of punctuation marks classified cor-
rectly.



Table 8. Contextual features for each can-
didate chunk boundary in punctuation-
separated multi-author line

No. | Feature

1 The number of total punctuation marks of the
same kind in the line

The position of this punctuation mark

The number of words before this punctuation mark
The number of words after this punctuation mark
The number of words between the previous

and the current punctuation mark

6 The number of words between the current

and the next punctuation mark

7 The ratio of the number of words before and after
this punctuation mark

8 The previous and next 5 words in converted
feature representation

gl BlwnN

Table 9. Chunk boundary identification per-
formance of punctuation-separated multi-
author lines

Accuracy | Precision | Recall | F measure
93.31 82.38 96.65 88.95

3.5.2 Chunk identification in space-separated multi-
author lines

Space-separated multi-author lines do not have any ex-
plicit information for chunk boundary recognition, unlike
punctuation-separated lines. The valid patterns for author
names are the source of information in this case. [Mary(Full
Name)] [Y.(Name Initial)], for instance, cannot be a valid
name.

The algorithm for extracting names from space-
separated multi-author lines has four steps. Step 1, gen-
erate all potential name sequences for the space-separated
multi-author lines based on the valid patterns of names that
we define in Table 10. Step 2, design the feature vector for
each potential name sequence. We manually label each po-
tential name sequence as 1 or —1 by checking each hame in
this sequence from the web. Step 3, train a SVM name se-
quence classifier by the labeled training samples. Step 4, if
the test space-separated multi-author line has only one po-
tential name sequence, it is the predicted name sequence.
Otherwise, classify each of its potential name sequences.
The name sequence with the highest score is predicted as
the correct name sequence.

For example, the line “Alan Fekete David Gupta Victor

Table 10. The valid patterns of a name. “F”-
Full Name; “F~” - Full Name with hyphen,
e.g., Jon-hey; “I” - Name Initial; “s” - lower
case word

Pattern Class | Patterns

1 (FI|FT)F,(F|F™)(F|F™)F
(F|IF~)(FIF~)(F|F™)F
e.g., Yu-Chee Tseng

2 (F|F)IF,(F|F)IIF, (F|F)IIIF
e.g., Dhabaleswar K. Panda

3 IF,IIF
e.g., C. L. Giles

4 I(FI[F)F

5 (F|F~)ssF

e.g., Th.P. van der Weide

Luchangco Nancy Lynch Alex Shvartsman” has three po-
tential name sequences (Figure 5). We generate three rea-
sonable sequences, with each name separated by . The
“1” and ”-1" in front of each name sequence identifies the
sequence as a positive sample or a negative sample. The
number at the beginning of each sequence is the classifica-
tion score. The first sequence achieves the highest score and
is predicted correctly.

The feature vector designed for each name sequence is
based on the following features. Let us assume L is a line
that contains M names, ny, no through npy,. For name n;
(1 < i < M) that has Ny, words, we define the following
five features.

Form,; the form of the j** word of n;, Form;; €
{F,F~,I,s,0}. “0” - others.

Pos; ; the position of the 7" word of n; in the line.

FN;; isequal to 1 if the 5 word of n; is only in the first name
list, 0 otherwise.

LN; ; isequal to 1 if the 4" word of n; is only in the last name
list, 0 otherwise.

NonDic;,; isequal to 1 if the 4" word of n; is a non-dictionary
word, 0 otherwise.

The feature Form; ; has non-numerical values such as
“F”, “I” or “s”. We enumerate each of these name patterns
and assign these values as the weights of the corresponding
features.

We generated all the potential name sequences expanded
from the 99 space-separated name sequences as the name
sequence dataset. We achieve a classification accuracy of
90.9% for ten-fold cross validation. Since we pick the po-
tential sequence with the highest score for each unknown
name sequence, the accuracy is the ratio of the correct pre-
dictions to the total number of name sequences, which is 99



Classification Score | Class label Potential name sequences
1.6398636 1 Alan Fekete o David Gupta ¢ Victor Luchangco ¢ Nancy Lynch ¢ Alex Shvartsman
0.8996393 -1 Alan Fekete ¢ David Gupta ¢ Victor Luchangco Nancy ¢ Lynch Alex Shvartsman
0.0061073704 -1 Alan Fekete o David Gupta Victor ¢ Luchangco Nancy ¢ Lynch Alex Shvartsman

Figure 5. Example of potential name sequences

in this case.

Using SVM supervised learning to classify name se-
quences helps find the implicit regularities that could have
been missed by the manual inspection. A regularity discov-
ered from the training data is: hyphenated names such as
Jon-hey are not likely to be the last name.

4 Experimental results

Performance is evaluated by precision, recall, F measure,
and accuracy as described below.

Overall evaluation: The overall word classification ac-
curacy for the header is the percentage of the header words
that are tagged with the words’ true labels.

Class-specific evaluation: We define A as the number of
true positive samples predicted as positive, B as the number
of true positive samples predicted as negative, C as the num-
ber of true negative samples predicted as positive and D as
the number of true negative samples predicted as negative.
The sample may refer to the line in the line classification
task and refer to the word when evaluating the final meta-
data extraction performance.

Recall = -4~

.. _ A
Precision = 4= ATE

A+C

A+D

Accuracy = 4355670

2Precision* Recall
Precision+ Recall

Fmeasure =

We apply the metadata extraction method discussed
earlier, with the parameters chosen from ten-fold cross-
validation on 500 training headers and 435 test headers. Our
method achieves an overall accuracy of 92.9%, better than
90.1% reported by Seymore et al. Table 11 compares our
method with the HMM method of multi-state L+D model
from Seymore et al on the classification performance for
each class, except two functional classes “introduction” and
“end of page”. However, we are unable to obtain the class-
specific accuracy method used by Seymore et al at the time
we submit this paper. Therefore, we also list class-specific
precision and recall for more effective evaluation.

We present below the Example 2 document header with
its true labels (Figure 6) and predicted labels (Figure 7) by
our metadata extraction algorithm. We also present the la-
bels (Figure 8) our algorithm predicted for the Example 1

Table 11. Comparison on the performance(%)
of metadata extraction using HMM and SVM
evaluated based on words. A - Accuracy; P -
Precision and R - Recall

Class HMM(A) | SYM(A) | SYM(P) | SYM(R)
Title 98.3 98.9 94.1 99.1
Author 93.2 99.3 96.1 98.4
Affiliation 89.4 98.1 92.2 95.4
Address 84.1 99.1 94.9 94.5
Note 84.6 95.5 88.9 75.5
Email 86.9 99.6 90.8 92.7
Date 93.0 99.7 84.0 97.5
Abstract 98.4 97.5 91.1 96.6
Phone 94.9 99.9 93.8 91.0
Keyword 98.5 99.2 96.9 81.5
Web 41.7 99.9 79.5 96.9
Degree 81.2 99.5 80.5 62.2
Pubnum 64.2 99.9 92.2 86.3

header shown in Figure 1 of section 2. The bold fonts indi-
cate the predicted labels different from the true labels. Both
examples show the good performance of our algorithm on
labeling the single-class lines, and recognizing the individ-
ual authors from the multi-author lines. Line 6 in Figure 7
and line 22 in Figure 8 also show the good performance of
our two-class chunk identification algorithm. The only dif-
ference between our algorithm’s predictions and the origi-
nal labels is line 7. Although we count this as a false predic-
tion (in our evaluation), the original label for this line “note”
can be argued itself. The line contains two email addresses.
Therefore it could be labeled as email just as well. This kind
of uncertainty of labels is rare, though. Figure 8 shows the
direct impact the line classification has on the chunk iden-
tification performance. Wrongly classifying the five-class
line 22 in Figure 8 as the four-class line, causes the fur-
ther incorrect chunk identification. Wrongly classifying the
five-class line 25 as a single class line “note”, also disables
the further chunk identification algorithm. A reason that
line 25 is wrongly classified as single-class line, is because
our contextual line classification algorithm in Section 3.3.2
over weighs the contextual information of the “note” text
from line 22 to line 26.



1:<title> THE CORAL USER MANUAL +L+

2:A Tutorial Introduction to CORAL +L+ </title>

3:<author> Raghu Ramakrishnan Praveen Seshadri Divesh
Srivastava +L+ </author>

4:<author> S. Sudarshan +L+ </author>

5:<affiliation> Computer Sciences Department, +L+
6:University of Wisconsin-Madison,</affiliation><address> WI
53706, U.S.A. +L+ </address>

7:<note>The authors’ e-mail addresses are fraghu,divesh,
praveeng@cs.wisc.edu; sudarsha@research.att.com.+L+</note>

Figure 6. Example 2 document header with
the true labels.

1: chunk(l) - <title> - THE CORAL USER MANUAL

2: chunk(1) - <title> - A Tutorial Introduction to CORAL

3: chunk(1) - <author> - Raghu Ramakrishnan

chunk(2) - <author> - Praveen Seshadri

chunk(3) - <author> - Divesh Srivastava

4: chunk(l) - <author> - S. Sudarshan

5: chunk(1) - <affiliation> - Computer Sciences Department,

6: chunk(1) - <affiliation> - University of Wisconsin-Madison
chunk(2) - <address> - W1 53706, U.S.A.

7: chunk(l) - <email> - The authors’ e-mail ad-
dresses are fraghu,divesh,praveeng@cs.wisc.edu; sudar-
sha@research.att.com.

Figure 7. Example 2 document header labeled
by SVM metadata extraction algorithm.

5 Discussion and future work

This paper describes a classification-based method us-
ing Support Vector Machines (SVM) for metadata extrac-
tion. These initial results achieve nominally better results
than Hidden Markov Model based methods. This occurs
because we use apriori information of the structural pat-
tern of the data, feature extraction based on domain specific
databases, an appropriate normalization technique, and an
iterative correction procedure. In addition, the method we
propose for extracting individual names from a list of au-
thor names has good performance. We believe that our re-
sults indicate a promising classification-based method for
information extraction.

There are some aspects of our method that could still
be improved. The line classification performance limits the
further multi-class line chunk identification performance as
shown in Figure 8. We will add the functionality to correct
the errors caused by the line classification algorithm. Some
chunks such as an integrated name may be broken into two

1:chunk(1) - <title> - Stochastic Interaction and Linear Logic
2:chunk(1) - <author> - Patrick D. Lincoln

chunk(2) - <author> - John C. Mitchell

chunk(3) - <author> - Andre Scedrov

3:chunk(1) - <abstract> - Abstract

4:chunk(l) - <abstract> - We present stochastic interactive
semantics for propositional linear

22:chunk(1) - <note> - jem@cs.stanford.edu

chunk(2) - <web> - http://theory.stanford.edu/people/jcm/home.html)

chunk(3) - <affiliation> - Department of Computer Science, Stan-
ford University

chunk(4) - <address> - Stanford, CA 94305. Supported in part
23:chunk(1) - <note> - by an NSF PYI Award , matching funds
from Digital Equipment Corporation, the Pow-ell Foundation,
and Xerox Corporation; and the Wallace F. and Lucille M. Dav is
Faculty

24:chunk(1) - <note> - Scholarship.

25:chunk(1) - <note> - andre@cis.upenn.edu
http://www.cis.upenn.edu/~andre Department of Mathematics,
University of Pennsylvania, Philadelphia, PA 19104-6395.
Partially supported by

26:chunk(1l) - <note> - NSF Grants CCR-91-02 753 and
CCR-94-00907 and by ONR Grant N0001 4-92-J-1916. Scedrov
is an American Mathematical Society Centennial Research Fellow.

Figure 8. Example 1 document header labeled
by SVM metadata extraction algorithm.

lines occasionally. In this case, the multi-class chunk algo-
rithm may make the incorrect decision. We will combine
some of the consecutive lines of the same class to minimize
the corresponding errors. Currently we assume each line
has only one chunk for each class. This is not appropriate
even though it is rare for a class to have multiple chunks of
the same class in one line. It is worthwhile to explore more
general multi-class chunk identification techniques.

In addition to extracting the taggable metadata from the
header part of the research papers, we will apply text sum-
marization techniques, such as Zha’s [33], to extract the im-
plicit metadata subject and description. This will have the
potential for generating a hierarchical metadata representa-
tion of the document. We also will intend to develop a ro-
bust and accurate wrapper for bibliographies and to define
and extract metatags for metadata as well as for equations
and figures.
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