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Abstract—Capturing a precise snapshot of the Internet’s
topology is nearly impossible. Recent efforts have pro-
duced topologies with noticeably divergent characteristics
[1], [2], [3], even calling into question the widespread be-
lief that the Internet’s degree distribution follows a power
law. In turn, this casts doubt on Internet modeling efforts,
since validating a model on one data set does little to en-
sure validity on another data set, or on the (unknown) ac-
tual Internet topology. We examine six metrics—three ex-
isting metrics and three of our own—applied to two large
publicly-available topology data sets. Certain metrics high-
light differences between the two topologies, while one of
our static metrics and several dynamic metrics display an
invariance between the data sets. Invariant metrics may
capture properties inherent to the Internet and indepen-
dent of measurement methodology, and so may serve as bet-
ter gauges for validating models. We continue by testing
nine models—seven existing models and two of our own—
according to these metrics applied to the two data sets. We
distinguish between growth models that explicitly add nodes
and links over time in a dynamic process, and static mod-
els that add all nodes and links in a batch process. All
existing growth models show poor performance according
to at least one metric, and only one existing static model,
calledInet, matches all metrics well. Our two new models—
growth models that are modest extensions of one of the
simplest existing growth models—perform better than any
other growth model across all metrics. Compared withInet,
our models are very simple. As growth models, they pro-
vide a possible explanation for the processes underlying the
Internet’s growth, explaining, for example, why the Inter-
net’s degree distribution is more skewed than baseline mod-
els would predict.

keywords: Simulations, Network measurements,
Graph theory, Statistics.

I. INTRODUCTION

Researchers have explored characteristics and models
of the Internet, mainly validating their conclusions using
Oregon RouteViews(hereafter, simplyOregon), a well-
known collection of (sampled) snapshots of the Internet’s
autonomous-systems (AS) level topology. Because of the
Internet’s distributed nature, recording an accurate pic-
ture of its topology at any given time is nearly impossi-
ble, casting some doubt on the validity of measurements
and models based on necessarily incomplete data. Re-
cently, using new methodologies for measuring the In-
ternet’s topology, researchers have created an extended
source of data [2], [3] (hereafter, simplyExtended), com-
bining several existing sources, includingOregon, Look-
ing Glass, RIPE, and other publicly available full BGP
routing tables, and capturing 20-50% more physical links
thanOregon. Since most pronouncements regarding Inter-
net characteristics and models—including the most cited
property of a power-law degree distribution—are based on
Oregondata, the new findings raise several questions.

• What are the differences in characteristics of the Ore-
gon and Extended topology data sets?Researchers
have looked at differences in the two topologies’ de-
gree distributions, though other characteristics of the
Extendedtopologies are still largely unexplored.

• What metrics, if any, are invariant between the two
topologies? EvenExtendedis a partial view of the
true Internet topology; it is not clear whetherOregon
or Extendedbetter represents the true Internet, or if
neither represent it well enough. However, identify-
ing meaningfulinvariant metrics that are the same
for both data sets may help identify properties inher-
ent to the Internet and less dependent on measure-
ment methodology, and help validate competing In-
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ternet models.
• What models match with characteristics observed in

the two data sets? To what extent do those mod-
els capture some essential aspect of the Internet’s
growth mechanism?Models must be evaluated on
two (often conflicting) dimensions: (1) their corre-
spondence with data, and (2) their ability to abstract
away inessential details while retaining some essen-
tial aspects of the system being modeled.

To begin to answer the first two questions, we com-
pare Oregonand Extendedusing three existing metrics
and three new metrics of our own: link-degree ratio, aver-
age node-degree ratio, and skewness. We find that, while
the two data sets diverge according to most metrics, they
agree nearly perfectly according to average node-degree
ratio, suggesting that this metric is a good candidate for
an invariant measure. We also find that, though most of
the metrics’ absolute values differ, their relative changes
over time are very similar between the two data sets. So
dynamic changes in metrics over time may serve as addi-
tional candidate invariant measures.

In response to the third question, we compare the per-
formance of nine generative models of the Internet, two
of which are new. We examine bothgrowth modelsthat
posit a particular mechanism of growth over time, and
static modelsthat input a number of nodes and edges and
generate graphs all at once, without explicitly formulat-
ing a growth procedure. Among existing growth models,
a subset show relatively good performance on some static
metrics, though none follow the observed dynamic behav-
ior of the Internet. A static model calledInet does well
at matching both static and dynamic Internet characteris-
tics, but may be over-tuned to the data(Oregon); the model
says little about the underlying processes governing Inter-
net growth, only mimicking it using a quite complicated
procedure. In short, we believe that, whileInet certainly
excels according to the first criteria of a good model (item
(1) of question three above), it arguably falls short accord-
ing to the second criteria (item (2) of question three). Our
new models, on the other hand, are quite simple, and do
make statements about the potential mechanisms underly-
ing Internet growth. Our models fit the static character-
istics of the Internet more closely than any other growth
model, and as closely asInet. However our models still
fail to capture the dynamic evolution of the Internet; it
remains an open problem to discover a plausible growth
mechanism that meshes well with the dynamic character-
istics clearly visible in bothOregonandExtendeddata.

II. PREVIOUS WORK

The Internet’s topology has been studied at macro-
scopic level [4], the link architecture [5], [6], the end-to-
end path level [7], [8]. Authors have also looked at tem-
poral characteristics stemming from properties of its con-
nectivity and growth [9], [10], [11]. Scaling factors, such
as power-law relationships and Zipf distributions, arise in
all aspects of network topology [4], [12] and web-site hub
performance [13].

Recent research [14], [15], [16], [17], [18], [19] has ar-
gued that the performance of network protocols can be se-
riously effected by the network topology and that building
an effective topology generator is at least as important as
protocol simulations. Previously, the Waxman generator
[20], which is a variant of the Erdos-Renyi random graph
[21], was widely used for protocol simulation. In this gen-
erator, the probability of link creation depends on the Eu-
clidean distance between two nodes. However, since real
network topologies have a hierarchical rather than ran-
dom structure, next generation network generators such
as Transit-Stub [22] and Tiers [23], which explicitly in-
ject hierarchical structure into the network, were subse-
quently used. In 1999, Faloutsos et al. [4] discovered sev-
eral power-law distributions in Internet data, leading to the
creation of new Internet topology generators.

Tangmunarunkit et al. [24] divide network topology
generators into two categories:structural and degree-
basednetwork generators. The major difference between
these two categories is that the former explicitly injects hi-
erarchical structure into the network, while the later gen-
erates graphs with power-law degree distributions without
any consideration of network hierarchy. Tangmunarunkit
et al. argue that even though degree-based topology gen-
erators do not enforce hierarchical structure in graphs,
they present a loose hierarchical structure, which is well
matched to real Internet topology. Other recently pro-
posed generators [25], [12], [26], [27], [28], [29] can be
thought of as degree-based generators.

Characteristics of the Internet topology and its robust-
ness against failures have been widely studied [25], [30],
[4], [12], [31], with focus on extracting common regulari-
ties from several snapshots of the real Internet topology
(e.g., power-law degree distributions). Properties mea-
sured on a single snapshot of the Internet’s topology at
a given time are examples ofstaticmetrics. On the other
hand, researchers have shown that, for example, the clus-
tering coefficient of the Internet is growing while the av-
erage diameter is decreasing over the past few years [29],
[32]. A second class of reasonable metrics for character-
izing the Internet are suchdynamicmetrics.

Park et al. [31], in examining the fault tolerance prop-
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erties of Internet network models, also uncover some dy-
namic patterns of the real Internet’s growth that are not
captured by most existing models. One could of course
simulate network protocols (and failures) using the full
details of the sampled Internet topology instead of using
models, but this limits one’s ability to develop, for ex-
ample, network protocols that best fit future conditions.
Though degree-based generators seem to represent the In-
ternet’s topology better than structural ones, some degree-
based topology generators seem to try more to mimic
generic properties than to provide explanatory power re-
garding the Internet’s growth mechanism.

III. C OMPARISON OF TWOINTERNET AS
TOPOLOGIES

Recently, [2], [3] provided more extended Internet
topologies constructed using several sources– including
Oregon RouteViews, Looking Glassdata,RIPE database,
and other publicly available full BGP routing tables. Their
extended topologies contain more nodes (2%) and links
(20% ∼ 50% more). Also, degree-frequency distributions
of their extended topologies do not follow strict power-
law distribution while original topologies do. Chen et. al
reported that their extended topologies showed more ASs
with degree between 4 and 300, resulting in a curve line
in the distribution. This result is shown in Figure 1 (a).

Then, our first question is that how different two topolo-
gies are. Since two topologies are still partial of the whole
Internet topology and we do not really know which one is
more similar to the real Internet topology, we compare
two topologies with several metrics. Our second question
is that which metrics will be more consistent over two In-
ternet topologies. If we can find them, these metric will
be quite useful to determine validation of existing Internet
models.

Characteristics of the Internet topology can be divided
into two categories:static and dynamiccharacteristics
[31]. For example, several common regularities, e.g.,
power-law degree distributions, can be extracted from a
snapshot of the Internet topology and those regularities
can be defined asstatic characteristicsbecause of their
consistency over time. On the other hand, several growth
patterns of the Internet can be derived by tracing the be-
haviors of the Internet topologies over time. For example,
clustering coefficient of the Internet has been growing and
average diameter of the Internet has been decreasing over
the past few years. We define these asdynamic charac-
teristics of the Internet. Based on these definitions, we
choose six basic metrics, three static (including two new
metrics of our own) and three dynamic metrics (including

one of our own), for our analysis. In the following section,
we will briefly explain these metrics.

A. Metrics

1) Static metrics:Our first static metric is the cumula-
tive degree-frequencydistribution. It is well known that
the degree distribution of the Internet follows a power
law. Let V be the set of all nodes in the graph andVk

the set of nodes of degree equal or less thank. Then,
F (k) = |Vk|/|V |. On plots of the degree distribution, the
horizontal axis is the degree of nodes and the vertical axis
plots1 − F (k).

We define a second metric called the cumulativelink-
degree ratiodistribution. Letlowi (lower degree node)
andhighi (higher degree node) be the the two nodes con-
nected by linki. ki

low denotes the degree of the lower
degree node andki

high denotes the degree of the higher
degree node. Then the degree ratioσi of the link i can be
calculated aski

low/ki
high. The cumulative distribution of

σ can be drawn similarly to the previous metric.
Finally, we define a third metric called the cumulative

average-node-degree ratiodistribution. LetV ′

i be the set
of neighbor nodes of the nodei, and letki

avg be the aver-
age degree ofV ′

i . Then the average-node-degree ratioδi

of nodei is defined aski/k
i
avg . The cumulative distribu-

tion of δ can be drawn as above.
2) Dynamic metrics: We use three metrics for tracing

the behavior of the Internet topology over time.
We defineskewnessto measure how preferential the

network is. Consider the degree-rank distribution of a net-
work. Let n denote the number of nodes in the network
andri be the rank of nodei according to its degree. The
highest degree node has rank one and any two nodes can-
not have the same rank. SkewnessSk is defined as that the
sum over all nodes of the product of rank times degree:

Sk =

∑

r(ri ∗ ki)

Sku

(1)

whereSku is the skewness of an idealized uniform net-
work,

Sku =
∑

i

(ri ∗ ki) = k ∗
n
∑

r=1

r = k ∗
n ∗ (n + 1)

2
, (2)

wherek denotes the average (uniform) degree of the net-
work.

Note thatSku is upper bound of
∑

r(ri ∗ ki), so1 ≥
Sk > 0. Sk values close to 0 mean that the network is
extremely preferential;Sk values close to 1 means that
the network is extremely random or uniform.
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Average diameterandclustering coefficient[33], [30],
[34] are widely used metrics for the analysis of networks.
Average diameter or average shortest path length,d, is de-
fined as follows. Letd(v,w) be the length of the shortest
path between nodesv andw, whered(v,w) = ∞ if there
is no path betweenv andw. Let Π denote the number of
distinct node pairs(v,w) such thatd(v,w) 6= ∞.

d =

∑

(v,w)∈Π d(v,w)

|Π|
, (3)

wherev 6= w.
The clustering coefficient gives a measure of the prob-

ability of connection between nodei’s neighbors. LetVi

be the set of neighbor nodes of nodei, andµ a number of
links between neighbors. Then, the clustering coefficient
Ci for nodei is defined as follows:

Ci =
µ

|Vi| ∗ (|Vi| − 1)/2
. (4)

Then the clustering coefficient of the network is:

C =

∑

i∈V Ci

|V |
, (5)

whereV denotes a set of all nodes in the network.

B. Comparing theOregonandExtendedInternet topolo-
gies

1) Static measurements:Among other findings, the
creators of theExtendeddata set noticed that their mea-
surements do not corroborate the strict power-law degree-
frequency distribution that theOregondata display. This
is recreated in Figure 1(a). We find that the separation be-
tween the two data sets is even larger when examined ac-
cording to link-degree ratio, as seen in Figure 1(b). How-
ever, according to average-node-degree ratio, plotted in
Figure 1(c), the two Internet topologies have nearly iden-
tical distributions. Average node-degree-ratio, then, might
be considered one of the key measures along which val-
idate Internet topology generative models, since there is
a clear standard—constant across two distinct samples of
the Internet—against which to compare. The above analy-
ses were conducted usingOregonandExtendedsnapshots
of the Internet, both from April 21, 2001.

2) Dynamic measurements:To trace the behaviors of
two Internet topologies, we downloaded nine snapshots of
each AS topologies from [35]. These data are collected in
each week starting from March 31 to May 26 2001. Ac-
cording to metricSk, Extendedtopologies are more pref-
erential thanOregon. Skewness ofOregontopologies are
between 0.37 and 0.38 while that ofExtendedare between

0.30 and 0.32. Also, the extended topologies show smaller
average diameters, but larger clustering coefficients than
the original topologies. Figure 2 shows these results.

One of interesting observations is that the behaviors of
two Internet topologies over nine weeks are quite sim-
ilar even though their absolute metric magnitudes are
different. To confirm this observation, we trace sev-
eral other properties of two topologies, i.e. number of
nodes and links, average degree, node birth/death, and
link birth/death and observe that all these results strongly
support our argument1. So, we conclude that dynamic
characteristics drawn fromOregonare very valuable met-
rics to validate network generative models.

IV. EXISTING INTERNET TOPOLOGY GENERATORS

AND OUR MODELS

In this section we describe seven existing generative In-
ternet topology models, and two new model of our own.
We categorize the models according to whether they are
staticmodels, meaning that they build the full networken
massewithout an explicit model of growth over time, or
dynamicgrowthmodels, meaning that they incorporate an
explicit procedure for the network’s growth over time. In
growth models, node connectivities are in general time-
dependent—older nodes tend to have higher probabilities
of gaining edges—whereas there is no explicit notion of
time in static models.

For growth models, there is a further distinction regard-
ing the way in which links are added to (or removed from)
the graph. Links can be added from a newly created node
to the existing network; we call theseexternal link ad-
ditions. Or links can be added between already existing
nodes in the network; we call theseinternal link additions.

Table I summarizes the characteristics of all nine mod-
els employed in our experiments. For all network models,
we prohibit self links. Also, we prohibit network models
from generating duplicate links rather than merging du-
plicate links at the end; we choose to prohibit duplicates
because merging would reduce the number of links sig-
nificantly. When a network model does not generate a
fully connected graph, we only consider the largest con-
nected component. (This process also potentially reduces
the number of nodes and links significantly; however this
method of canonicalization seems as appropriate as any).
In this section we briefly explain each network model.

A. Static exponential (random) model

This model generates a random graph in the classic
Erdos-Renyi sense. All nodes are added initially, then

1We do not show these results due to space limitation.
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Fig. 1. Static metrics forOregonandExtendedtopologies on April 21, 2001.(a) Degree-frequency distribution:Extendedshows a looser fit to
a power law, whileOregonfollows a nearly strict power law. (b) Link degree ratio: this metric clearly differentiates the two Internet topologies.
(c) Average node degree ratio: this measure appears invariant under both theOregonandExtendedtopologies.
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Fig. 2. Skewness, average diameter, and clustering coefficient; Our result clearly shows that the behaviors of two topologies are quite similar
according to three different metrics.

TABLE I
COMPARING NINE GENERATIVEINTERNET TOPOLOGY MODELS.

Static/Growth Network Partition Operations

Random Static Y all nodes are added initially. internal link addition
GE Growth N node birth withm links
BA Growth N node birth withm links
AB Growth Y node birth withm links, internal link addition, rewiring
GLP Growth N node birth withm links, internal link addition
PG Growth Y node birth without links, internal link addition

Inet-3.0 Static N all nodes are added initially, heuristics link addition
First model Growth N node birth withm links, internal link addition

Second model Growth N node birth withm links, internal link addition, dynamic generation ofp
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links are added one by one between pairs of (uniformly)
randomly selected nodes. For every edge endpoint added,
the probability that the edge endpoint attaches to a given
node is

Πrand(i) =
1

|V |
, (6)

whereV is the set of all nodes. Random graphs often par-
titions into several subgraphs; as mentioned we keep only
the largest connected component. The model generates
most nodes with roughly the same degree.

B. Growing exponential (GE) model

GE is a dynamic or growth-model version of the ran-
dom graph model. At each time step, one node andm
links are added. Links are connectedexternally, mean-
ing that they all connect from the new node to one of the
existing nodes. The identity of the existing node is cho-
sen uniformly at random from among all nodes added to
the graph in the past. The probability that a given edge
endpoint attaches to a particular existing node is

Πge(i, t + ∆t) =
1

|V (t)|
, (7)

whereV (t) is the number of nodes in the graph at time
t. Note that, although nodes are chosen uniformly at any
given time step, as the network grows, older nodes tend to
gain more links simply because they have more chances
to.

C. Barab́asi-Albert (BA) model

The BA model [25] resembles GE except that desti-
nation nodes are chosen according to a linearpreferen-
tial attachmentfunction, rather than uniformly at random.
Again, at each time step, one new node andm new links
are added. Links are added externally from the new node
to an existing node. The probability that existing nodei is
chosen is proportional to its degree:

Πba(ki, t + ∆t) =
ki(t)

∑

j kj(t)
, (8)

whereki(t) denotes the degree of nodei at timet. The BA
model is remarkable in its simplicity, and it seems to cap-
ture the minimal assumptions required to generate graphs
with power-law degree distributions. However, in its ba-
sic form, it is not flexible enough to fit different power law
exponents. The BA model, often cited as a more generic
model (e.g., for the World Wide Web, the power grid, the
co-star graph of Hollywood actors, etc.), touched off a
wave of extensions and analysis among computer scien-
tists and physicists.

D. Generalized linear performance (GLP) model

GLP [29] is one of the proposed extensions of BA. In
this model, the probability of attachment is modified to
better fit Internet-like graphs:

Πglp(ki, t + ∆t) =
ki(t) − β

∑

j (kj(t) − β)
, (9)

where−∞ < β < 1. This model has two link addition
operations:

1) with probabilityp, m links are addedinternally—
links are added between two existing nodes. For
each endpoint, a node is chosen with probability (9).

2) With probability1 − p, one new node andm new
links are added externally from the new node to an
existing node chosen according to (9).

In the simulation, we set parameters asβ = 0.7124, m =
1.13, andp = 0.4294, which are the same as those in the
[29]. The fractionalm value of 1.13 means that 13% of
new nodes are added with two links while 87% are added
with one link, yielding an expected number of links/edge
of 1.13.

E. Albert-Barab́asi (AB) model

The AB model [28] is the authors’ own extension of
their BA model. In this model, three operations are used
as the network grows:

1) With probability p, m links are added internally.
One edge endpoint is selected uniformly at random
while the other endpoint is selected according to

Πab(ki, t + ∆t) =
ki(t) + 1

∑

j (kj(t) + 1)
, (10)

which is like (8) but with a “Laplacian smoothing”-
like term.

2) With probability ofq, m links are rewired. Nodei
is randomly selected and one of the linksli,j con-
nectingi with j is randomly selected. Linkli,j is
replaced with a new linkli,k, wherek is chosen ac-
cording to (10).

3) With the probability1−p− q, one new node andm
links are added externally from the new node to an
existing node chosen according to (10).

The rewiring operation often causes the graph to be-
come partitioned; we keep only the main connected com-
ponent. In the experiments, we use parametersm = 1,
p = 0.45, andq = 0.1.

F. “Pretty good” (PG) model

The PG model [36] is another extension of the BA
model. This model adds a parameterized component of
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uniform attachment to the BA model’s strictly preferential
attachment policy. Specifically edge endpoints are chosen
according to a mixtureα of preferential attachment and
1 − α of uniform attachment:

Π(ki, t + ∆t) = α
ki(t)

∑

j kj(t)
+ (1 − α)

1

|V (t)|
(11)

This additional degree of freedom is enough to allow flex-
ibility in fitting differing power-law exponents, and to fit
typical divergences from the strict power law often ob-
served in the low-degree region of a variety of naturally-
occurring graphs, including communities on the World
Wide Web. The PG model employs onlyinternal link ad-
ditions. That is, all edge endpoints are chosen according
to (11), and new nodes are not explicitly differentiated.

Note that in the limit asα → 0, PG corresponds to
GE, while asα → 1, PG corresponds to BA (modulo the
internal/external distinction).

The main problem in adapting this model to our prob-
lem is that, because it employs only internal link addi-
tions, it generates too many disconnected nodes. For ex-
ample, whenα = 0.7 andm = 2, around50% of nodes
are disconnected. Because we choose to keep only the
largest connected component, the average degree within
this component is artificially high. Alternative canonical-
ization policies might have yielded more comparable re-
sults for this model.

G. Inet 3.0

Inet-3.0is the latest version of a complex yet very accu-
rate model [37], [26]. The user provides the desired num-
ber of nodesN and the fractionk of nodes with degree
one. The model proceeds in five steps. First, the model
calculates the number of months (t) it would take the In-
ternet to grow from its initial size in Nov. 1997 to sizeN
according to:

N = exp(0.0298 ∗ t + 7.9842). (12)

Second, the model definesV1, Vtop3, andV ′, respec-
tively, as the set of all degree-one nodes, the set of the
three highest-degree nodes, and the set of all nodes except
nodes inV1 andVtop3. The model calculates the cumula-
tive degree distribution (defined above in Section III-A.1)
for all nodes inV ′ in order to match a power law:

1 − F (d) = ec ∗ dat+b. (13)

The degrees of particular nodes inV ′ are then assigned in
order to agree with (13). The degrees of nodes inVtop3 are
assigned according to:

d = ept+q ∗ rR. (14)

The parametersa, b, c, p, q, andR are known constants es-
timated fromOregondata, andt is the number of months
since Nov. 1997.

Third, the model builds a spanning tree among all nodes
in Vtop3 andV ′. The spanning tree construction proceeds
one node at a time, although any interpretation in terms of
the network’s natural evolution seems unwarranted, since
the final degree values have already been pre-assigned in
step two. In each step a node is selected randomly. One
of the node’s pre-assigned edges connects to the existing
graph according to:

P (i, j) =
wj

i
∑

k∈G wk
i

(15)

where

wj
i = max






1,

√

√

√

√

(

log
di

dj

)2

+

(

log
f (di)

f (dj)

)2





∗ dj

(16)
This procedure continues until all nodes inVtop3 andV ′

are added to the graph. Note that P(i,j) depends not only
the degree of destination nodej but also the degree of
departure nodei. If the degrees of two nodes are very
different, the probability for two nodes to be connected is
higher than the linear preference assumption. Otherwise,
it roughly follows the linear preference assumption.

Fourth, the model connects all degree-one nodes (V1)
to the graph according to (15). Fifth, the model connects
the remaining free edge endpoints (edges that have been
assigned one endpoint in step two, but have not yet been
assigned a particular second endpoint), starting from the
highest degree nodes, according to (15).

We considerInet to be a static model, since the proba-
bilities of connections are time-independent; each node’s
degree is assigned in a batch process in step two. One
interesting characteristic of this model is that number of
links is not an input parameter; this value is computed to
match the proper degree distribution using (in part) pa-
rametert. This model is extremely accurate in generating
random topologies similar in many respects to theOre-
gon data; in fact it fits this data much better than every
other model we tested. However, the model seems partic-
ularly well-tuned toOregon, and its flexibility in adapt-
ing to other data sets appears limited; for example, the
model does not fitExtendeddata as well. Since the model
is effectively static—it generates graphs with the explicit
intention of matching particular aggregate characteristics
like the degree distribution (13)—it is limited in its ability
to provide any bottom-up explanation of why those partic-
ular aggregate characteristics arise. For our experiments,
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we did not re-implementInet; we used the code made pub-
licly available by the model’s authors [35].

H. Our models

In this section, we describe our own generative network
models. Our models are very simple and provide one pos-
sible explanation for the degree distribution displayed in
the Oregondata set, and why other growth models dis-
agree. Two assumptions help motivate our models: (1)
For each link, we consider that the higher-degree node is a
service provider and the lower-degree node is a customer;
and (2) customers decide which providers they would like
to connect to. Our models posit reasonable policies for
customers to choose providers.

1) First model: Our first model can be thought of as
yet another extended BA model, with a new attachment
probability equation. Let nodei be the customer node,
which tries to generate a new link andki the degree of
nodei. Also, letV (ki +γ) be the set of nodes with degree
higher thanki + γ. Then, consumeri chooses providerj
according to:

Π(kj , t + ∆t) =







kj(t)
∑

l∈V (ki+γ)
kl(t)

ifkj > (ki + γ)

0 otherwise
(17)

In other words, a customer node always selects a provider
node that has degree higher thanki + γ; among this
group the customer still prefers higher-degree nodes ac-
cording to the linear preference function. This assump-
tion seems reasonable: customers prefer to link up to
providers whose connectivity is strictly greater than their
own. The assumption is supported by our observations
that most links on the Internet are hierarchical (endpoints
have greatly varying degrees) rather than peer-to-peer
(endpoints have similar degrees).

Our model has two operations: node birth and link
birth. With probabilityp, a new internal link is added be-
tween existing nodes. The customer node is randomly se-
lected and connected to a provider according to (17). With
probability1 − p, one new node andm external links are
added. The new node is considered a customer and them
links are connected to providers using (17). For the exper-
iments, we setm = 1.25, meaning that25% of new nodes
are added with two links and75% are added with one link
[31].

2) Second model:Since the average degree of the In-
ternet changes continuously over time, Our second model
adapts the probabilityp (the internal link addition proba-
bility) dynamically. We computeP (N), the average ratio
of internal link additions compared to all link addition,

from theOregondata using

In = L − N ∗ m

P (N) = In/(N + In), (18)

whereN is the number of nodes,L is the number of links,
andIn is the number of internal links added after Novem-
ber 1997. Then the probabilityp can be computed as fol-
lows:

p(N + ∆N) = p(N) +
dP (N)

dN

= p(N) − (3 ∗ 10−9 ∗ N) +

3.6 ∗ 10−5, (19)

wherep(0) = 0.3, determined empirically. So, the num-
ber of internal link additions versus external addition more
closely reflects the trends seen on the Internet. This
change to the model causes the average degree of nodes
to increase over time, as the number of internal link ad-
ditions grows. Figure 3 shows that the resulting trend in
average degree growth for our model matches the trend
found in theOregondata quite closely.

Note thatγ determines how preferential a generated
network is. InBA and its other extensions,γ = −∞,
meaning that all existing nodes have a certain probabil-
ity to be chosen as a provider. However, in our models,
customers choose providers only among candidate nodes
which have higher degree than their own. We find that
our models generate very similar Internet-topology-like
graphs whenγ = 1. All experiments show results for
γ = 1.

V. M ODEL COMPARISON

In this section, we compare nine Internet models ac-
cording to the three static and three dynamic metrics de-
fined in Section III-A.

A. Static metric performance

We first compare the cumulative degree-frequency dis-
tribution for the nine models. Figure 4(a) shows a few of
the models that do not perform particularly well accord-
ing to this metric. Figure 4(b) shows thatAB, GLP, Inet,
and our two model do match the Internet (Oregon) data
relatively well; with our models and Inet performing best.
Note, however, that all models fitExtendedconsiderable
less well. Link-degree ratio clearly differentiates the mod-
els. Figures 4(c) and 4(d) split the models according to the
same partition used in separating Figures 4(a) and 4(b).
Inet matchesOregonthe best, and our two model match
Oregonvery closely as well;GLPmatchesExtendedbest.
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Fig. 3. Average degree growth of our second model compared tothe Internet (Oregon).

According to average node-degree-ratio, we find that our
models, along withAB, Inet and GLP, show relatively
good performance. Again, Figures 4(e) and 4(f) catego-
rize models by their ability to fit theOregondegree distri-
bution.

Our models seem to exhibit excellent performance ac-
cording to the static metrics. Our models show better
agreement to the Internet than any other growth models
across all three metrics. OnlyInet show slightly better
performance than our models. In general, we do not find
any noticeable differences between the first and second
model and conclude that the average degree increment
over time does not affect the static metric performance of
our model.

B. Dynamic metric performances

Next, we trace the behaviors of the models while the
number of nodes in the networks increases. For the ex-
periments, the Internet AS topologies fromOregonover a
four year period from November 1997 to February 2002
were used. In each month, random graphs generated by
network models include the same number of nodes with
the Internet AS topologies. In Figure 5(a), only three net-
work models (GLP, PG, andInet) show continuous skew-
ness decrement. With average diameter, onlyAB, GLP,
and Inet shows decrement of the average diameter. With
clustering coefficient, onlyInet shows the continuous in-
crement. ExceptInet, all network models fail to follow the
dynamic characteristics of the Internet: significant decre-
ment of skewness and average diameter and significant in-
crement of clustering coefficient.

With dynamic metrics, our models show small-world
effects [33]; that is, their average diameters are very small
but their clustering coefficients are much larger than those

of classical random graphs. Note that absolute metric val-
ues of our model are very similar to those of the Internet.
However, our models still do not match the clear relative
trends in the data, and this cannot explain our observed
dynamic characteristics of the Internet. Whenp is gener-
ated dynamically in our second model, the resulting net-
works display higher clustering coefficients but lower av-
erage diameters. However, its dynamic behavior is quite
similar to our first model and dynamicp does not affect
these trends. We can only conclude that the Internet’s av-
erage degree change over time is not the main factor for
determining network structure according to the metrics we
examined.

According to our analysis,Inet is the best Internet
topology generator in terms of matching the data, espe-
cially the Oregondata. However,Inet has several weak-
nesses. First, as it is effectively a static model rather than a
growth model, it is limited in its ability to explain how the
Internet grows. The model’s complex heuristics designed
to mimicOregondata may in effect be overfitting or over-
tuning to that particular data source, making the model
considerably less flexible in matching other data sources
or in generalizing toward the future evolution of the In-
ternet, even if that future topology is a relatively slight
variant of what is seen today. Among growth models, our
two new models appear to perform best, withGLPthe best
among the seven existing models tested.

VI. L IMITATION AND FUTURE WORK

One major limitation of our models is that, like other
growth models, they do not consider node/link deaths, for
reasons of simplicity. However, Figure 6 shows that death
events are another important factor that can greatly affect
Internet topologies.
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Fig. 4. Static metric performance of nine Internet generating models. (a,b) Degree-frequency distribution:AB,GLP, andInet seem to be better
model the Internet according to this metric; our models alsoshow excellent performance with this metric. (c,d) Link degree ratio:Inet generates
distributions similar toOregon, but GLP generates distributions similar toExtended. This distribution clearly differentiates the models. Our
models show better performance than other models exceptInet. (e,f) Average node degree ratio:AB, Inet andGLPstill show good performance
with this metric. Our second model show slightly worse performance than the first model. In general, our two models generate good matching
distributions over all three metrics.

One may argue that it is somewhat strange that our sec-
ond model shows poor metric performance with average
node-degree ratio even though it resembles real Internet
topologies more. However, the current slow expansion of
the Internet is due to the rapid increment of death events
coupled with a slower increment of birth events. So, the
actual internal-link probabilityp should be larger than our
model [31]. These differences may affect the Internet’s
topology and be a source for the poor performance of our
second model according to dynamic metrics.

We also built a third model to explain Internet’s dy-
namic characteristics. This model increasesγ continu-
ously according to the number of nodes to make a network
more preferential while it grows. This model shows good
dynamic metric performance, but does not work well with
static metrics. We believe that death events in the Internet
affect the growth pattern of the Internet significantly, and
we need a closer analysis of death events to explain the
dynamic characteristics of the Internet.

VII. C ONCLUSION

Recent studies have reported differing aggregate char-
acteristics of the Internet’s topology depending on the
methodology used for sampling the Internet’s true under-
lying structure. We examine two different data sets us-
ing six metrics (three of our own), showing that one static
metric does a particularly good job at differentiating the
data sets, one static metric appears invariant across the
data sets, and all dynamic metrics exhibit a degree of in-
variance. We then compare nine generative models (two
of our own). Among growth models, ours perform best,
but all growth models (including our own) fail to capture
the observed dynamic behavior of the Internet. A par-
ticular static model (Inet) does match the data well, but
also is lacking in terms of an explanation for the Internet’s
growth pattern. We eagerly await any breakthroughs—
perhaps incorporating a model of node/link deaths—that
might yield plausible explanations for this striking behav-
ior.
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Fig. 5. Dynamic characteristics of models. (a,b) Skewness:only the random model shows a slight increment of skewness.BA, AB, andGE
model do not show noticeable changes over time.Inet shows relatively similar behavior with that of the Internet, but its decrement rate is faster.
Our models show good absolute values for this metric but showa slightdecrementof skewness as they grow. (c,d) Diameter: onlyInet and
AB show a decrement in average diameter over time. Our first model shows similar average diameters to the those ofGLP. (e,f) Clustering
coefficient: onlyInet shows an increment in the clustering coefficient over time. However, differences of clustering coefficient between the
Internet andInet are still high.
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Fig. 6. Birth/death events. To avoid mis-categorizing temporary node/link failures as node/link deaths, we only consider a node/link dead if
it does not appear at any time in the future. Also, we considera node/link new only if it does not appear in any previous months. To keep the
number of false dead nodes low, we do not calculate death events for the final five months. Similarly, birth events are not calculated for first five
months. Our results suggest that the effect of link death cannot be ignored.
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