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Abstract—Capturing a precise snapshot of the Internet’s I. INTRODUCTION

topology is nearly impossible. Recent efforts have pro-
duced topologies with noticeably divergent characteristis
[1], [2], [3], even calling into question the widespread be- )
lief that the Internet’s degree distribution follows a power Oregon RouteViewghereafter, simplyOregon), a well-

law. In turn, this casts doubt on Internet modeling efforts, known collection of (sampled) snapshots of the Internet's
since validating a model on one data set does little to en- autonomous-systems (AS) level topology. Because of the
sure validity on another data set, or on the (unknown) ac- Internet’s distributed nature, recording an accurate pic-
tual Internet tOpOlOgy. We examine six metrics—three ex- ture of its topology at any given time is near'y impossi_
isting metrics and three of our own—applied to two large  pe casting some doubt on the validity of measurements
publicly-available topology data sets. Certain metrics hih- and models based on necessarily incomplete data. Re-
light differences between the two topologies, while one of . ) . '

our static metrics and several dynamic metrics display an cently, using new methodologies for measuring the In-
invariance between the data sets. Invariant metrics may ternet's topology, researchers have created an extended
capture properties inherent to the Internet and indepen- source of data [2], [3] (hereafter, simpixtendeg, com-

dent of measurement methodology, and so may serve as betbining several existing sources, includi@gegon Look-

ter gauges for validating models. We continue by testing ing Glass RIPE, and other publicly available full BGP
nine models—seven existing models and two of our own— o ting tables, and capturing 20-50% more physical links
according to these metrics applied to the two data sets. We thanOregon Since most pronouncements regarding Inter-

distinguish between growth models that explicitly add nods L . ) .
and links over time in a dynamic process, and static mod- net characteristics and models—including the most cited

els that add all nodes and links in a batch process. All Property of a power-law degree distribution—are based on
existing growth models show poor performance according Oregondata, the new findings raise several questions.
to at least one metric, and only one existing static model, « What are the differences in characteristics of the Ore-
calledInet, matches all metrics well. Our two new models— gon and Extended topology data setR2searchers
growth models that are modest extensions of one of the have looked at differences in the two topologies’ de-

simplest existing growth mOdels_.perform better th.an any gree distributions, though other characteristics of the
other growth model across all metrics. Compared with net, . .
Extendedopologies are still largely unexplored.

our models are very simple. As growth models, they pro- i s X <
vide a possible explanation for the processes underlyingeh ¢ What metrics, if any, are invariant between the two

Researchers have explored characteristics and models
of the Internet, mainly validating their conclusions using

Internet’'s growth, explaining, for example, why the Inter-
net's degree distribution is more skewed than baseline mod-
els would predict.
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topologies? Even Extendedis a partial view of the
true Internet topology; it is not clear wheth@regon

or Extendedbetter represents the true Internet, or if
neither represent it well enough. However, identify-
ing meaningfulinvariant metrics that are the same
for both data sets may help identify properties inher-
ent to the Internet and less dependent on measure-
ment methodology, and help validate competing In-



ternet models. [l. PREVIOUS WORK
« What models match with characteristics observed in The Internet's topology has been studied at macro-

the two data sets? To what extent do those mogéopic level [4], the link architecture [5], [6], the end-to

els cz;pture hsorr_le (;fﬂsegt'lal aspect;[ of thle Intzrneéﬁd path level [7], [8]. Authors have also looked at tem-
growth mechanismZModels must be evaluated ony, 5| characteristics stemming from properties of its con-

two (often conflicting) dimensions: (1) their Corre'nectivity and growth [9], [10], [11]. Scaling factors, such

spond_ence Wit_h data, _and (_2) their_ a_bility to abstrags power-law relationships and Zipf distributions, arise i
away inessential details while retaining some essegy aspects of network topology [4], [12] and web-site hub
tial aspects of the system being modeled. performance [13]
Recent research [14], [15], [16], [17], [18], [19] has ar-
To begin to answer the first two questions, we Cong;;_ued that the performance of network protocols can be se-

pare Oregon and Extendedusing three existing metrics riously effected by the network topology and that building

and three new metrics of our own: link-degree ratio, avet! effective topology generator is at least as important as
tocol simulations. Previously, the Waxman generator

age node-degree ratio, and skewness. We find that, wHil@ 0 ) ’
the two data sets diverge according to most metrics, th ] Wh'Ch_'S a variant of the Erdos_—Ren)_/l random graph
agree nearly perfectly according to average node-degl 11‘]’ was widely us_t_ad for protocol §|mulat|on. In this gen-
ratio, suggesting that this metric is a good candidate ffator, the probability of link creation depends on the Eu-

an invariant measure. We also find that, though most §fdean distance between two nodes. However, since real
the metrics’ absolute values differ, their relative chemg@etwork topologies have a hlerarchlcal rather than ran-
over time are very similar between the two data sets. Sg™M Structure, next generation network generators such

dynamic changes in metrics over time may serve as ad@f Tre_:mS|t-St_ub [22] and Tlers [23], which explicitly in-
tional candidate invariant measures ject hierarchical structure into the network, were subse-

quently used. In 1999, Faloutsos et al. [4] discovered sev-
eral power-law distributions in Internet data, leadingte t
In response to the third question, we compare the pereation of new Internet topology generators.

formance of nine generative models of the Internet, two Tangmunarunkit et al. [24] divide network topology
of which are new. We examine botitowth model¢hat generators into two categoriesstructural and degree-
posit a particular mechanism of growth over time, anghsednetwork generators. The major difference between
static modelghat input a number of nodes and edges arlese two categories is that the former explicitly injeats h
generate graphs all at once, without explicitly formulaerarchical structure into the network, while the later gen-
ing a growth procedure. Among existing growth modelsgrates graphs with power-law degree distributions without
a subset show relatively good performance on some statity consideration of network hierarchy. Tangmunarunkit
metrics, though none follow the observed dynamic behagt al. argue that even though degree-based topology gen-
ior of the Internet. A static model callddet does well erators do not enforce hierarchical structure in graphs,
at matching both static and dynamic Internet characteribey present a loose hierarchical structure, which is well
tics, but may be over-tuned to the dadaégon); the model matched to real Internet topology. Other recently pro-
says little about the underlying processes governing-nt@osed generators [25], [12], [26], [27], [28], [29] can be
net growth, only mimicking it using a quite complicatedhought of as degree-based generators.
procedure. In short, we believe that, whikeet certainly Characteristics of the Internet topology and its robust-
excels according to the first criteria of a good model (itemess against failures have been widely studied [25], [30],
(1) of question three above), it arguably falls short aceorft], [12], [31], with focus on extracting common regulari-
ing to the second criteria (item (2) of question three). Oties from several snapshots of the real Internet topology
new models, on the other hand, are quite simple, and @og., power-law degree distributions). Properties mea-
make statements about the potential mechanisms undesiyred on a single snapshot of the Internet’s topology at
ing Internet growth. Our models fit the static charactea given time are examples sfatic metrics. On the other
istics of the Internet more closely than any other growtiand, researchers have shown that, for example, the clus-
model, and as closely dset However our models still tering coefficient of the Internet is growing while the av-
fail to capture the dynamic evolution of the Internet; ierage diameter is decreasing over the past few years [29],
remains an open problem to discover a plausible growfB]. A second class of reasonable metrics for character-
mechanism that meshes well with the dynamic charactéing the Internet are suafiynamicmetrics.
istics clearly visible in bottOregonandExtendedlata. Park et al. [31], in examining the fault tolerance prop-



erties of Internet network models, also uncover some dyne of our own), for our analysis. In the following section,
namic patterns of the real Internet's growth that are nate will briefly explain these metrics.

captured by most existing models. One could of course

simulate network protocols (and failures) using the fu'u‘ Metri

details of the sampled Internet topology instead of using etrics

models, but this limits one’s ability to develop, for ex- 1) Static metrics: Our first static metric is the cumula-
ample, network protocols that best fit future conditiongive degree-frequencyistribution. It is well known that
Though degree-based generators seem to represent th#¥-degree distribution of the Internet follows a power
ternet’s topology better than structural ones, some degré®v. LetV be the set of all nodes in the graph avig
based topology generators seem to try more to mintlee set of nodes of degree equal or less thanThen,
generic properties than to provide explanatory power r&{k) = |V|/|V|. On plots of the degree distribution, the

garding the Internet's growth mechanism. horizontal axis is the degree of nodes and the vertical axis
plots1 — F(k).
We define a second metric called the cumulating-
Ill. COMPARISON OF TWOINTERNETAS degree ratiodistribution. Letlow; (lower degree node)
TOPOLOGIES andhigh; (higher degree node) be the the two nodes con-

ected by linki. &} = denotes the degree of the lower
gree node anld;'”-gh denotes the degree of the higher
degree node. Then the degree ratjf the link i can be

calculated ag,, /kj,;,- The cumulative distribution of

Recently, [2], [3] provided more extended Internea
topologies constructed using several sources— includi
Oregon RouteViewd.ooking Glasgdata,RIPE database,
and other publicly available full BGP routing tables. The 'k i ,
o can be drawn similarly to the previous metric.

extended topologies contain more nod2%) and links . : ) . )
Finally, we define a third metric called the cumulative

(20% ~ 50% more). Also, degree-frequency distributions o TR X
of their extended topologies do not follow strict power2erage-node-degree rataistribution. LetV;’ be the set

law distribution while original topologies do. Chen et. af! N€lghbor nociles of the nodeand letk;,,, be the aver-
reported that their extended topologies showed more AZIE deg.rfae OV? - Then th‘? average-node-cjegre.e r@;lo
with degree between 4 and 300, resulting in a curve i Node? is defined as; /k;,,,. The cumulative distribu-
in the distribution. This result is shown in Figure 1 (a). tion of § can F’e drawn as above. ) ]
Then, our first question is that how different two topolo- 2) Dynz?lmlc metrics: We use three metn_cs for tracing
gies are. Since two topologies are still partial of the Whone behav_lor of the Internet topology over time. _
Internet topology and we do not really know which one is W& defineskewnesso measure how preferential the
more similar to the real Internet topology, we compal%etwork is. Consider the degree-rank dlstrl.butlon of a net-
two topologies with several metrics. Our second questidfP'k- Letn denote the number of nodes in the network
is that which metrics will be more consistent over two Ingndri be the rank of node according to its degree. The

ternet topologies. If we can find them, these metric Wih'gheSt degree node has rank one_and gny two nodes can-
be quite useful to determine validation of existing Intern&©t have the same rank. Skewnéisis defined as that the

sum over all nodes of the product of rank times degree:

models.
Characteristics of the Internet topology can be divided S (rg % ki)
into two categories:static and dynamic characteristics Sk = TT (1)

[31]. For example, several common regularities, e.g.,

power-law degree distributions, can be extracted fromwhere Sk, is the skewness of an idealized uniform net-
snapshot of the Internet topology and those regularitiesrk,

can be defined astatic characteristicdecause of their .
consistency over time. On the other hand, several growt _ Cu LN T
patterns of the Internet can be derived by tracing the bei;gku B Z(n *hi) = kx Z
haviors of the Internet topologies over time. For example,
clustering coefficient of the Internet has been growing amecherek denotes the average (uniform) degree of the net-
average diameter of the Internet has been decreasing overk.

the past few years. We define thesedgeamic charac-  Note thatSk, is upper bound ob", (r; * k;), sol >
teristics of the Internet. Based on these definitions, w8k > 0. Sk values close to 0 mean that the network is
choose six basic metrics, three static (including two nesxtremely preferential Sk values close to 1 means that
metrics of our own) and three dynamic metrics (includinthe network is extremely random or uniform.

n*(n+1)

. @

r=kx

7 r=1



Average diameteandclustering coefficienf33], [30], 0.30and 0.32. Also, the extended topologies show smaller
[34] are widely used metrics for the analysis of networksverage diameters, but larger clustering coefficients than
Average diameter or average shortest path lenfjtis,de- the original topologies. Figure 2 shows these results.
fined as follows. Leti(v, w) be the length of the shortest One of interesting observations is that the behaviors of
path between nodesandw, whered(v, w) = o if there two Internet topologies over nine weeks are quite sim-
is no path between andw. LetII denote the number ofilar even though their absolute metric magnitudes are

distinct node pairgv, w) such thatl(v, w) # oco. different. To confirm this observation, we trace sev-
eral other properties of two topologies, i.e. number of

- 2 (v,w)er d(v, w) @) nodes and links, average degree, node birth/death, and
1| ’ link birth/death and observe that all these results stgong|

support our argumeht So, we conclude that dynamic
OBharacteristics drawn fro@regonare very valuable met-
rics to validate network generative models.

wherev # w.

The clustering coefficient gives a measure of the pr
ability of connection between nod& neighbors. Lel/;
be the set of neighbor nodes of nagandyu a number of
links between neighbors. Then, the clustering coefficient V- EXISTING INTERNET TOPOLOGY GENERATORS

C; for nodei is defined as follows: AND OUR MODELS
In this section we describe seven existing generative In-
Ci= Vil (Hﬁ_t’ )2 (4) ternet topology models, and two new model of our own.
! ! We categorize the models according to whether they are
Then the clustering coefficient of the network is: staticmodels, meaning that they build the full netwank
‘ massewithout an explicit model of growth over time, or
O — 2iev Ci (5) dynamicgrowthmodels, meaning that they incorporate an
v explicit procedure for the network’s growth over time. In

growth models, node connectivities are in general time-
dependent—older nodes tend to have higher probabilities

) of gaining edges—whereas there is no explicit notion of
B. Comparing théregonand Extendednternet topolo-  {ime in static models.

whereV denotes a set of all nodes in the network.

gies For growth models, there is a further distinction regard-
1) Static measurements:Among other findings, the ing the way in which links are added to (or removed from)
creators of theextendeddata set noticed that their meathe graph. Links can be added from a newly created node
surements do not corroborate the strict power-law degree-the existing network; we call thesxternallink ad-
frequency distribution that th@regondata display. This ditions. Or links can be added between already existing
is recreated in Figure 1(a). We find that the separation besdes in the network; we call theisgernal link additions.
tween the two data sets is even larger when examined acTable | summarizes the characteristics of all nine mod-
cording to link-degree ratio, as seen in Figure 1(b). Hovels employed in our experiments. For all network models,
ever, according to average-node-degree ratio, plottedwe prohibit self links. Also, we prohibit network models
Figure 1(c), the two Internet topologies have nearly idefrom generating duplicate links rather than merging du-
tical distributions. Average node-degree-ratio, therghhi plicate links at the end; we choose to prohibit duplicates
be considered one of the key measures along which viaécause merging would reduce the number of links sig-
idate Internet topology generative models, since therenicantly. When a network model does not generate a
a clear standard—constant across two distinct sampleguify connected graph, we only consider the largest con-
the Internet—against which to compare. The above anafyected component. (This process also potentially reduces
ses were conducted usi@yegonandExtendedsnapshots the number of nodes and links significantly; however this
of the Internet, both from April 21, 2001. method of canonicalization seems as appropriate as any).
2) Dynamic measurementsTo trace the behaviors of In this section we briefly explain each network model.
two Internet topologies, we downloaded nine snapshots of
each AS topologies from [35]. These data are collected 1 siatic exponential (random) model
each week starting from March 31 to May 26 2001. Ac-
cording to metricSk, Extendedopologies are more pref-
erential tharOregon Skewness oDregontopologies are
between 0.37 and 0.38 while thatEtendedare between We do not show these results due to space limitation.

This model generates a random graph in the classic
Erdos-Renyi sense. All nodes are added initially, then
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Fig. 1. Static metrics foOregonand Extendedopologies on April 21, 2001(a) Degree-frequency distributioBxtendedshows a looser fit to
a power law, whileOregonfollows a nearly strict power law. (b) Link degree ratio:gtmetric clearly differentiates the two Internet topolagie
(c) Average node degree ratio: this measure appears invamaer both th@©regonandExtendedopologies.
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Fig. 2. Skewness, average diameter, and clustering caeffjadDur result clearly shows that the behaviors of two togigls are quite similar
according to three different metrics.

COMPARING NINE GENERATIVEINTERNET TOPOLOGY MODELS

TABLE |

| Static/Growth| Network Partition|

Operations

Random Static Y all nodes are added initially. internal link addition
GE Growth N node birth withm links
BA Growth N node birth withm links
AB Growth Y node birth withm links, internal link addition, rewiring
GLP Growth N node birth withm links, internal link addition
PG Growth Y node birth without links, internal link addition

Inet-3.0 Static N all nodes are added initially, heuristics link addition

First model Growth N node birth withm links, internal link addition
Second mode Growth N node birth withm links, internal link addition, dynamic generation;of




links are added one by one between pairs of (uniformly). Generalized linear performance (GLP) model

randomly selected nodes. For every edge endpoint addedz| p [29] is one of the proposed extensions of BA. In
the probability that the edge endpoint attaches to a giviifis model, the probability of attachment is modified to
node is 1 better fit Internet-like graphs:

Hrcmd 1) = T (6)
V=W k(-5

_ Iy (ki t + At) = ,
whereV is the set of all nodes. Random graphs often par- > (k;(t) — B)
titions into several subgraphs; as mentioned we keep onl ere—oo < B < 1. This model has two link addition
the largest connected component. The model generates

most nodes with roughly the same degree operations:
o e 1) with probability p, m links are addednternally—

links are added between two existing nodes. For
each endpoint, a node is chosen with probability (9).
GE is a dynamic or growth-model version of the ran- 2) With probabilityl — p, one new node angh new
dom graph model. At each time step, one node and links are added externally from the new node to an
links are added. Links are connectegternally mean- existing node chosen according to (9).
ing that they all connect from the new node to one of thg the simulation, we set parameterss: 0.7124, m =
existing nodes. The identity of the existing node is chq-13, andp = 0.4294, which are the same as those in the
sen uniformly at random from among all nodes added {99, The fractionalm value of 1.13 means that 13% of
the graph in the past. The probability that a given edgfw nodes are added with two links while 87% are added

(9)

B. Growing exponential (GE) model

endpoint attaches to a particular existing node is with one link, yielding an expected number of links/edge
Mge (it + At) = —, 7
I V(t)]

E. Albert-Baralasi (AB) model

whereV'(¢) is the number of nodes in the graph at time The AB model [28] is the authors’ own extension of
t. Note that, although nodes are chosen uniformly at afyejr BA model. In this model, three operations are used
given time step, as the network grows, older nodes tend{@ the network grows:

gain more links simply because they have more chancesi) With probability p, m links are added internally.

to. One edge endpoint is selected uniformly at random
while the other endpoint is selected according to
C. Baralasi-Albert (BA) model
The BA model [25] resembles GE except that desti- (ki t + At) = %, (20)
nation nodes are chosen according to a ling&feren- 7N
tial attachmenfunction, rather than uniformly at random. which is like (8) but with a “Laplacian smoothing”-
Again, at each time step, one new node amdiew links like term.
are added. Links are added externally from the new node2) With probability ofg, m links are rewired. Node
to an existing node. The probability that existing néde is randomly selected and one of the linkg con-
chosen is proportional to its degree: nectingi with j is randomly selected. Link ; is
a(t) reple_lced with a new link; .., wherek is chosen ac-
My (ks  t + At) = Z'ZT'(W (8) cording to (10).
7 3) With the probabilityl — p — ¢, one new node anah

wherek; (t) denotes the degree of nodat timet. The BA links are added externally from the new node to an
model is remarkable in its simplicity, and it seems to cap-  €Xisting node chosen according to (10).

ture the minimal assumptions required to generate graphd he rewiring operation often causes the graph to be-
with power-law degree distributions. However, in its bgome partitioned; we keep only the main connected com-
sic form, it is not flexible enough to fit different power lawPonent. In the experiments, we use parameters- 1,
exponents. The BA model, often cited as a more genefc= 0-45, andg = 0.1.

model (e.g., for the World Wide Web, the power grid, the

co-star graph of Hollywood actors, etc.), touched off & “Pretty good” (PG) model

wave of extensions and analysis among computer scienThe PG model [36] is another extension of the BA
tists and physicists. model. This model adds a parameterized component of



uniform attachment to the BA model’s strictly preferential’he parameters, b, ¢, p, ¢, andR are known constants es-
attachment policy. Specifically edge endpoints are chodmated fromOregondata, and is the number of months
according to a mixturex of preferential attachment andsince Nov. 1997.

1 — « of uniform attachment: Third, the model builds a spanning tree among all nodes
k() in Viops @andV’. The spanning tree construction proceeds
(ki t +At) = o=+ (1 —a) (11) one node at a time, although any interpretation in terms of

K (t Vit . )
ZJ J( ) V@ the network’s natural evolution seems unwarranted, since

This additional degree of freedom is enough to allow flethe final degree values have already been pre-assigned in

ibility in fitting differing power-law exponents, and to fitstep two. In each step a node is selected randomly. One

typical divergences from the strict power law often obef the node’s pre-assigned edges connects to the existing

served in the low-degree region of a variety of naturallygraph according to:

occurring graphs, including communities on the World ,

Wide Web. The PG model employs oritternal link ad- P(i,j) = w] (15)

ditions. That is, all edge endpoints are chosen according ’ S pec wF

to (11), and new nodes are not explicitly differentiated.
Note that in the limit asx — 0, PG corresponds to

GE, while asoe — 1, PG corresponds to BA (modulo the

where

2 2
internal/external distinction). j d; f(di)
! = 1 log— l d;
The main problem in adapting this model to our prob- Wi = max ’J ( Ogdj> + < ng (d;) * 4
lem is that, because it employs only internal link addi- (16)

tions, it generates too many disconnected nodes. For Xis procedure continues until all nodestip,,; andV’
ample, whem = 0.7 andm = 2, arounds0% of nodes 0 4qged to the graph. Note that P(i,j) depends not only
are disconnected. Because we choose to keep only_ mg degree of destination nodebut also the degree of
largest connected component, the average degree W'@érbarture nodé. If the degrees of two nodes are very
this component is artificially high. Alternative Canomcaldifferent, the probability for two nodes to be connected is
Ization poll_C|es might have yielded more comparable rﬂ'lgher than the linear preference assumption. Otherwise,
sults for this model. it roughly follows the linear preference assumption.
Fourth, the model connects all degree-one nod&$ (
G. Inet3.0 to the graph according to (15). Fifth, the model connects
Inet-3.0is the latest version of a complex yet very acclihe remaining free edge endpoints (edges that have been
rate model [37], [26]. The user provides the desired nurgssigned one endpoint in step two, but have not yet been
ber of nodesV and the fractiork: of nodes with degree assigned a particular second endpoint), starting from the
one. The model proceeds in five steps. First, the mogdgghest degree nodes, according to (15).
calculates the number of monthg ¢t would take the In- e considelnet to be a static model, since the proba-
ternet to grow from its initial size in Nov. 1997 to si2é pjjities of connections are time-independent; each node’s
according to: degree is assigned in a batch process in step two. One
N = exp(0.0208 # £ + 7.9842). (12) :ptere_sting chgracteristic of thils model is _that number of
inks is not an input parameter; this value is computed to
Second, the model defindg, V;,,3, andV’, respec- match the proper degree distribution using (in part) pa-
tively, as the set of all degree-one nodes, the set of ti@metert. This model is extremely accurate in generating
three highest-degree nodes, and the set of all nodes exc¢gptiom topologies similar in many respects to Owe-
nodes int; andV;,,s. The model calculates the cumulagon data; in fact it fits this data much better than every
tive degree distribution (defined above in Section Ill-A.19ther model we tested. However, the model seems partic-

for all nodes inl’’ in order to match a power law: ularly well-tuned toOregon and its flexibility in adapt-
e atsb ing to other data sets appears limited; for example, the
1= F(d) = e+ d™™. (13)  model does not fiExtendediata as well. Since the model

is effectively static—it generates graphs with the explici
intention of matching particular aggregate charactessti
like the degree distribution (13)—it is limited in its albjli

to provide any bottom-up explanation of why those partic-
d = Pt s Bt (14) ular aggregate characteristics arise. For our experiments

The degrees of particular nodeslith are then assigned in
order to agree with (13). The degrees of nodelg,ip; are
assigned according to:



we did not re-implemenret, we used the code made pubfrom theOregondata using
licly available by the model’s authors [35].
In = L—N=xm
H. Our models PN) = In/(N+In), (18)
In this section, we describe our own generative netwovikherelN is the number of nodeg, is the number of links,
models. Our models are very simple and provide one p&$idIn is the number of internal links added after Novem-
sible explanation for the degree distribution displayed fper 1997. Then the probabilitycan be computed as fol-
the Oregondata set, and why other growth models didows:
agree. Two assumptions help motivate our models: (1) dP(N)

For each link, we consider that the higher-degree nodeisa p(N +AN) = p(N)+ N

service provider and the lower-degree node is a customer; — p(N)— (3 1079 « N+

and (2) customers decide which providers they would like p 5

to connect to. Our models posit reasonable policies for 3.6 %1077, (19)

customers to choose providers. wherep(0) = 0.3, determined empirically. So, the num-

1) First model: Our first model cgn be thought of asDerof internal link additions versus external addition enor
yet another extended BA model, with a new attachme

babilit r Let nodé be th " q (%sely reflects the trends seen on the Internet. This
probabiiity equation. Let nodebe the customer no e’change to the model causes the average degree of nodes
which tries to generate a new link arg the degree of

dei. Also. 16tV (k. be th t of nod i d to increase over time, as the number of internal link ad-
hoges. /IS0, i (ki+) be ese‘o noaes wi _eg_reeditions grows. Figure 3 shows that the resulting trend in
higher thank; + . Then, consumer chooses providef

. average degree growth for our model matches the trend
according to: ' .
found in theOregondata quite closely.

k;(t) ) Note that~y determines how preferential a generated
> ifk; > (ki + ) : ; i
T(k;, t + At) = 2 iev gy Bt ®) J ! network is. InBA and its other extensions, = —oo,
0 otherwise meaning that all existing nodes have a certain probabil-

(17) ity to be chosen as a provider. However, in our models,
In other words, a customer node always selects a provideistomers choose providers only among candidate nodes
node that has degree higher than+ ~; among this which have higher degree than their own. We find that
group the customer still prefers higher-degree nodes atr models generate very similar Internet-topology-like
cording to the linear preference function. This assumgraphs wheny = 1. All experiments show results for
tion seems reasonable: customers prefer to link up 4o= 1.
providers whose connectivity is strictly greater thantthei
own. The assumption is supported by our observations
that most links on the Internet are hierarchical (endpoints . . .
have greatly varying degrees) rather than peer-to-pee n_thls section, we compare nine Interne_t modgls ac-
(endpoints have similar degrees). gordlqg to th_e three static and three dynamic metrics de-

Our model has two operations: node birth and IinﬂneOI in Section llI-A.
birth. With probabilityp, a new internal link is added be-
tween existing nodes. The customer node is randomly €e- Static metric performance
lected and connected to a provider according to (17). WithWe first compare the cumulative degree-frequency dis-
probability 1 — p, one new node anah external links are tribution for the nine models. Figure 4(a) shows a few of
added. The new node is considered a customer anatheéhe models that do not perform particularly well accord-
links are connected to providers using (17). For the expéiig to this metric. Figure 4(b) shows thaB, GLP, Inet,
iments, we setn = 1.25, meaning tha25% of new nodes and our two model do match the Intern@régor) data
are added with two links anith% are added with one link relatively well; with our models and Inet performing best.
[31]. Note, however, that all models tixtendedconsiderable
2) Second model:Since the average degree of the Iness well. Link-degree ratio clearly differentiates thedno

ternet changes continuously over time, Our second moeéd. Figures 4(c) and 4(d) split the models according to the
adapts the probability (the internal link addition proba- same partition used in separating Figures 4(a) and 4(b).
bility) dynamically. We computé®(N), the average ratio Inet matchesOregonthe best, and our two model match
of internal link additions compared to all link addition,Oregonvery closely as wellGLP matche€xtendedest.

V. MODEL COMPARISON
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Fig. 3. Average degree growth of our second model comparttetmternet Qregon.

According to average node-degree-ratio, we find that oofr classical random graphs. Note that absolute metric val-
models, along withAB, Inet and GLP, show relatively ues of our model are very similar to those of the Internet.
good performance. Again, Figures 4(e) and 4(f) categdowever, our models still do not match the clear relative
rize models by their ability to fit th®regondegree distri- trends in the data, and this cannot explain our observed
bution. dynamic characteristics of the Internet. Wheis gener-

Our models seem to exhibit excellent performance aated dynamically in our second model, the resulting net-
cording to the static metrics. Our models show bettarorks display higher clustering coefficients but lower av-
agreement to the Internet than any other growth modelsage diameters. However, its dynamic behavior is quite
across all three metrics. Onlyet show slightly better similar to our first model and dynamje does not affect
performance than our models. In general, we do not fitltese trends. We can only conclude that the Internet’s av-
any noticeable differences between the first and secamdge degree change over time is not the main factor for
model and conclude that the average degree incremdatermining network structure according to the metrics we
over time does not affect the static metric performance ekamined.

our model. According to our analysis]net is the best Internet
topology generator in terms of matching the data, espe-
B. Dynamic metric performances cially the Oregondata. However|net has several weak-

Next. we trace the behaviors of the models while tH¥SSes- First, as itis effectively a static model rathar tha
number of nodes in the networks increases. For the &fowth model, itis limited in its ability to explain how the
periments, the Internet AS topologies fr@negonover a Inter_ne_t grows. The mode_l’s complex heur_is_tics designed
four year period from November 1997 to February 209 Mimic Oregondata may in effect be overfitting or over-
were used. In each month, random graphs generated“ﬂ)@/'ng to that particular data source, making the model
network models include the same number of nodes witQnsiderably less flexible in matching other data sources
the Internet AS topologies. In Figure 5(a), only three ne?! I generall_zmg toward the future_evolutloq of the_ In-
work models GLP, PG, andinef) show continuous skew- ternet, even if that future topology is a relatively slight
ness decrement. With average diameter, k8 GLP variant of what is seen today. Among growth models, our
andInet shows decrement of the average diameter. Wif§O Néw models appear to perform best, withPthe best
clustering coefficient, onlynet shows the continuous in-2MONg the seven existing models tested.
crement. Excepnet, all network models fail to follow the

dynamic characteristics of the Internet: significant decre VI. LIMITATION AND FUTURE WORK
ment of skewness and average diameter and significant inOne major limitation of our models is that, like other
crement of clustering coefficient. growth models, they do not consider node/link deaths, for

With dynamic metrics, our models show small-worldeasons of simplicity. However, Figure 6 shows that death
effects [33]; that is, their average diameters are verylsmalents are another important factor that can greatly affect
but their clustering coefficients are much larger than thosgernet topologies.
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Fig. 4. Static metric performance of nine Internet generating niod@,b) Degree-frequency distributioAB,GLP, andInetseem to be better
model the Internet according to this metric; our models alsaw excellent performance with this metric. (c,d) Link aegratio:Inetgenerates
distributions similar todOregon but GLP generates distributions similar Extended This distribution clearly differentiates the models. Our
models show better performance than other models exeept(e,f) Average node degree ratidB, InetandGLP still show good performance

with this metric. Our second model show slightly worse perfance than the first model. In general, our two models gémg@od matching
distributions over all three metrics.

One may argue that it is somewhat strange that our sec- VIl. CONCLUSION
ond model shows poor metric performance with average
node-degree ratio even though it resembles real InterneRecent studies have reported differing aggregate char-
topologies more. However, the current slow expansion afteristics of the Internet’s topology depending on the
the Internet is due to the rapid increment of death evemtgthodology used for sampling the Internet’s true under-
coupled with a slower increment of birth events. So, thging structure. We examine two different data sets us-
actual internal-link probability should be larger than ouring six metrics (three of our own), showing that one static
model [31]. These differences may affect the Internetiaetric does a particularly good job at differentiating the
topology and be a source for the poor performance of odéita sets, one static metric appears invariant across the
second model according to dynamic metrics. data sets, and all dynamic metrics exhibit a degree of in-

variance. We then compare nine generative models (two

We also built a third model to explain Internet’s dyof our own). Among growth models, ours perform best,
namic characteristics. This model increasesontinu- but all growth models (including our own) fail to capture
ously according to the number of nodes to make a netwdhe observed dynamic behavior of the Internet. A par-
more preferential while it grows. This model shows gooticular static model (Inet) does match the data well, but
dynamic metric performance, but does not work well withlso is lacking in terms of an explanation for the Internet’s
static metrics. We believe that death events in the Interrggbwth pattern. We eagerly await any breakthroughs—
affect the growth pattern of the Internet significantly, anglerhaps incorporating a model of node/link deaths—that

we need a closer analysis of death events to explain théht yield plausible explanations for this striking behav
dynamic characteristics of the Internet. ior.
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