First-Order vs. Second-Order Single Layer Recurrent Neural
Networks *

Mark W. Goudreau t C. Lee Giles * Srimat T. Chakradhar $ D. Chen T

Abstract

We examine the representational capabilities of first-order and second-order Single Layer
Recurrent Neural Networks (SLRNNs) with hard-limiting neurons. We show that a second-
order SLRNN is strictly more powerful than a first-order SLRNN. However, if the first-order
SLRNN is augmented with output layers of feedforward neurons, it can implement any finite-
state recognizer, but only if state-splitting is employed. When a state is split, it is divided into
two equivalent states. The judicious use of state-splitting allows for efficient implementation of
finite-state recognizers using augmented first-order SLRNNs.

1 Introduction

Recurrent Neural Networks (RNNs) have been used for a variety of problems, including grammatical
inference [4, 5], and the implementation of finite automata [1, 7]. There has also been interest in
the representational abilities of neural networks [9, 10]. Ideally, we would like to find an RNN
architecture that has good representational capabilities and can be efficiently constructed as a VLSI
circuit [2]. We show that certain simple RNNs have limited representational capabilities. This is a
first step in the design of more sophisticated architectures.

Several RNN architectures have been proposed in the literature [3, 8, 11]. In this work we first
consider the Single Layer Recurrent Neural Network (SLRNN) shown in Figure 1. The SLRNN has
M inputs, that are labelled 1, 2s,..., 2. The value of input #; (1 <1 < M) at time ¢ is denoted
by zf. The SLRNN has a single layer of N neurons that are labelled yi,ys, ..., yn. The output
value of neuron y; (1 < i < N) at time ¢ is denoted by y!. The output values of these neurons are
stored in a bank of latches. These values become the “state” of the SLRNN. Each neuron computes
its output value based on the current state and the input of the SLRNN. An input vector at time ¢ is

represented by I = [2f, 2%, ..., 2%,]T. A state vector is represented by S? = [t it .,yf\,_l]T.

*Appeared in IEEE Trans. on Neural Networks, vol. 5, no. 3, p. 511, 1994.
tPrinceton University and NEC Research Institute, Inc.

INEC Research Institute, Inc. and University of Maryland

§C&CRL, NEC USA, Inc.

'University of Maryland

b),
+ feedforward network only ;

! for augmented architecture'

t1 t-1

Yn Y1

Figure 1: A Single Layer Recurrent Neural Network (SLRNN). There are M input bits, N state
bits, and (up to) N output bits. The bank of N latches is shown on the right. Within the dotted
lines is a feedforward network that is part of the augmented architecture as discussed in Section 3.

In general, one may only be concerned with output values from K of the neurons where 1 < K < N.
We represent the output vector by O = [yt 5, ..., %17,

SLRNN architectures are similar to Mealy machines, which can be used to implement arbitrary
finite-state machines [6]. A Mealy machine is a quintuple (7,0, S, é, A) where I is the set of inputs,
O 1is the set of outputs, S is the set of states, § : I x S — S is the state transition function, and
A I xS — O is the output function. A Mealy machine can implement any state transition or
output function. However, the structure of the SLRNN (first-order or second-order) may preclude
realization of certain state transition functions or output functions.

For a first-order SLRNN the state values are, in a sense, treated as regular input values. To

simplify the notation, we will define (for 1 <j < M + N):

;l‘g 1
Yy TM41<j<M+N (1)

. { ¢ ifl<j<M
z; =
J
A first-order SLRNN contains a set of parameters known as weights. Weight w;; causes input (or

neuron) j to have an effect on neuron i. A first-order SLRNN has N(M + N) weights. The dynamics

of a first-order SLRNN are completely specified by the following equation that computes the output

value of neuron ¢ using the output values of the neurons and the inputs to the SLRNN:

M+N
vi=9() wiz) (2)
ji=1
We define the function g to be a hard limiter:
0 ife<0
g("”):{ 1 ife>0 (3)

In a second-order SLRNN, weight w;;;, causes neuron j and input k& to have a combined effect
on neuron i. A second-order network has N2M weights. Neuron i computes its output value y; as

follows:
=900 winy el (4)

Here, the function g is as defined by Equation 3.

Any first-order SLRNN that has M inputs bits and N state bits can be simulated with a second-
order SLRNN that has M + 1 input bits and N + 1 state bits. This can be done by setting one input
and one neuron of the second-order SLRNN to “1” at all times.

In this note, we show that there exist second-order SLRNNs that can not be simulated by
first-order SLRNNs. Therefore, second-order SLRNNs are strictly more powerful than first-order
SLRNNs. Furthermore, we show that second-order SLRNNs can simulate any finite-state recog-
nizer and hence, they have the same representational abilities as Melay machines. If the first-order
SLRNN is augmented by a feedforward network of neurons (see Figure 1), Minsky [7] shows that the
augmented first-order SLRNN can simulate any finite-state recognizer. Therefore, the augmented
first-order SLRNN, the second-order SLRNN, and the Mealy machine have identical representational
abilities.

We also investigate the use of augmented first-order SLRNNs to implement finite-state recogniz-
ers. Minsky’s approach leads to an augmented first-order SLRNN with a large number of neurons.
Ideally, one would like to implement an n-state recognizer using only log, n neurons. We show that
there exist n-state recognizers that can not be implemented by an augmented first-order SLRNN
using only log, n neurons. However, it is possible to realize augmented first-order SLRNNs that have
a significantly smaller number of neurons than Minsky’s approach by using state-splitting techniques

traditionally used in the synthesis of Mealy machines.

Figure 2: (a) A minimal finite-state recognizer for odd parity. A is the starting state.
(b) A non-minimal finite-state recognizer for odd parity. C' is the starting state.

2 Implementation of Finite-State Recognizers

We show that a first-order SLRNN can not implement all finite-state recognizers, while a second-

order SLRNN can implement any finite-state recognizer.
2.1 First-Order SLRNNs

For our examination of first-order SLRNNs, we will utilize the odd parity problem. The minimal
finite-state recognizer for odd parity is shown in Figure 2(a). Since we are concerned with a recog-
nizer, the set of outputs is O = {0,1}. While this implies that only a single neuron’s output may
need to be observed, the case when K > 1 will also be allowed (that is, the “0” and “1” outputs
may be encoded in some way). It is required, though, that a single binary vector of length K be
used to represent a “0” output and a different binary vector of length K be used to represent a “1”
output. These vectors will be called Oy and O3, respectively. Since we are allowing for arbitrary
output representation of “0” and “1”, there is no need to distinguish between odd parity and even
parity recognizers. Similarly, the set of inputs to be encoded is I = {0, 1}. A binary vector of length
M will represent a “0” input (Ip), and a different binary vector of length M will represent a “1”
input (Iy).

The following theorem presents a shortcoming of first-order SLRNNs.
Theorem 1 A first-order SLRNN can not implement all finite-state recognizers.

Proof. Tt suffices to show that a first-order SLRNN can not implement the finite-state recognizer for

odd parity.

Assume that a first-order SLRNN can recognize all strings that have odd parity. The machine
must have at least two states that are represented by two different length N binary vectors, S¢ and

S1. The machine has the following properties:
A(SO;IO) = 00; A(SO;Il) = 01; /\(Sl,IO) = 01; A(SlaIl) = 00 (5)

Since Og # O1, there must be at least one neuron whose output value is different for the two output
vectors. We shall choose one such neuron and call it neuron z. Without loss of generality, assume
that neuron z has a value of 0 for O and a value of 1 for O;. The case where neuron z assumes the
value 1 and 0 for output vectors Og and O, respectively, can be analyzed in a similar way. The

neuron z must now be able to implement the following functions:
Az(SO,IO) :01 Az(SO,Il) = 1;)‘Z(SlaIO) = 1;)‘Z(SlaIl) :0 (6)

Now let W be a vector of the N weights that are matched with the state values and Wy be a
vector of the M weights that are matched with the input values. Using Equations 1, 2, 3, and the
first two parts of Equation 6, we see that the weighted sum of Equation 2 for input (Sg, Ig) must be

less than or equal to zero, while the weighted sum for input (Sg,I;) must be greater than zero.
SoWL + I, Wt <« soWL 4+ 1, Wt
I,WT <L, W7 (7)
However, Equations 1, 2, 3, and the last two parts of Equation 6 imply:
SSWL +1,Wt > s Wi 4+ ,wt
I,W? > LW/ (8)

Since there does not exist a W that satisfies both Equation 7 and Equation 8, no first-order SLRNN

can recognize strings with odd (or even) parity. I
2.2 Second-Order SLRNNs

Theorem 2 A second-order SLRNN can implement any finite-state recognizer.

Proof. We present a constructive method to prove Theorem 2.
Input ¢ will be labelled I;, output ¢ will be labelled O;, and state ¢ will be labelled S;. We

will use the obvious one-hot encoding for each input symbol, each output symbol, and each state

symbol. There will be one neuron for each state symbol and one neuron for each output symbol.
Only the values of the output neurons are examined by the user. Therefore, M = |I|, K = |O], and
N = 0|+ |S|. Now the weights can be defined:

for 1<i<K, wige = { 1 if A(Sj_k,Ix) = O;

0 otherwise

for K+1<i<N, Wik = { (1) ftflgvjv;;;’m =Si-x (10)

This implementation does not necessarily give the minimal second-order SLRNN for the finite-

state recognizer.
3 Augmented First-Order SLRNNs and State-Splitting

It is reasonable to ask whether one can augment the first-order SLRNN architecture to solve the
parity problem. Suppose we augment the first-order SLRNN by adding one or more output layers of
feedforward neurons. In the augmented architecture, the neurons yi1,¥2, ..., yn, shown in Figure 1,
also feed into the additional layers of feedforward neurons, so any mapping of the SLRNN state to the
output is possible. Therefore, we will ignore the output mapping and concern ourselves solely with
the state transition problem. Minsky has already shown that an augmented first-order SLRNN can
implement any finite-state recognizer [7]. However, his approach is likely to lead to implementations
that have many more neurons than are necessary. If there are n states and m inputs to a finite-state
recognizer, Minsky’s approach requires nm neurons in the bottom (feedback) layer.

Note that all of the feedback in the augmented architecture takes place in a single layer of
neurons. If this restriction is removed so that feedback may be provided after several feedforward
layers, then clearly any finite-state recognizer can be implemented.

We show that while the augmented architecture can be used to recognize strings with parity, at
least three different state vectors are needed to handle this problem for which the minimal machine
has only two states, as shown in Figure 2(a). This demonstrates that while minimal representations

may not be possible, non-minimal representations may exist.

Theorem 3 An augmented first-order SLRNN can not recognize all strings that have parity if the
network is only allowed to utilize two state vectors (i.e., if the network must implement the minimal

finite-state recognizer).

Proof. The proof of Theorem 3 is essentially identical to that of Theorem 1, but in this case there
are two different state vectors as opposed to two different output vectors. I

But we can show by example that the augmented architecture can solve the parity problem if
three different state vectors are allowed. The example actually implements the non-minimal finite-
state recognizer shown in Figure 2(b). States C' and D of Figure 2(b) are equivalent to state A in
Figure 2(a), while state E in Figure 2(b) is equivalent to state B in Figure 2(a). This phenomenon
is called state-splitting since state A “splits” into states C' and D.

Let M = 2 and N = 2. Now let Sg = [0,1]T (for state C), S; = [1,0]7 (for state D), and
Sy = [1,1]¥ (for state E). Sg is the initial state vector. The input vectors are Iy = [1,0]? and
I, = [1,1]7. Under these conditions, it can easily be verified that the augmented first-order SLRNN

with the following weights recognizes odd parity strings:

wyg = 1, wig =1, w13 =
Wa1 =1, way=-1, wiz=

(11)

This implementation of odd parity requires only two state neurons, while Minsky’s implementation

would require four [7].

4 Conclusion

We have shown that a second-order SLRNN can implement any finite-state recognizer, while a first-
order SLRNN can not. This is an example of the improved representational ability achieved by
utilizing a second-order network. On the other hand, a second-order SLRNN has N2M weights
while a first-order SLRNN has only N(M + N).

We have also shown that an augmented first-order SLRNN architecture can handle the parity
problem. In this case we allowed feedforward output layers of neurons. Intriguingly, the augmented
first-order SLRNN was proven to be unable to implement the minimal parity recognizer, but it
could implement a non-minimal parity recognizer. It thus becomes obvious that state-splitting is an
important method that can be used to expand the representational abilities of augmented first-order

SLRNNs.

References

[1] N. Alon, A. Dewdney, and T. Ott, “Efficient simulation of finite automata by neural nets,”

Journal of the Association for Computing Machinery, vol. 38, no. 2, pp. 495-514, April 1991.

[2] L. Atlas and Y. Suzuki, “Digital systems for artificial neural networks,” IEEE Circuits and

Devices Magazine, vol. 5, pp. 20-24, November 1989.
[3] J. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179-211, 1990.

[4] S. Fahlman, “The recurrent cascade-correlation architecture,” in Advances in Neural Informa-
tion Processing Systems 3 (R. Lippmann, J. Moody, and D. Touretzky, eds.), (San Mateo, CA),

pp. 190-196, Morgan Kaufmann Publishers, 1991.

[5] C. Giles, C. Miller, D. Chen, H. Chen, G. Sun, and Y. Lee, “Learning and extracting finite
state automata with second-order recurrent neural networks,” Neural Computation, vol. 4, no. 3,

pp. 393405, 1992.

[6] Z. Kohavi, Switching and Finite Automata Theory. New York, NY: McGraw-Hill, Inc., sec-

ond ed., 1978.

[7] M. Minsky, Computation: Finite and Infinite Machines, ch. 3, pp. 32-66. Englewood Cliffs,

NJ: Prentice-Hall, Inc., 1967.
[8] J. Pollack, “The induction of dynamical recognizers,” Machine Learning, vol. 7, p. 227, 1991.

[9] D. Seidl and R. Lorenz, “A structure by which a recurrent neural network can approximate
a nonlinear dynamic system,” in Proceedings of the International Joint Conference on Neural

Networks 1991, vol. 11, pp. 709-714, July 1991.

”

[10] H. Siegelmann and E. Sontag, “On the computational power of neural nets,” in Proceedings of

the Fifth ACM Workshop on Computational Learning Theory, (Pittsburgh, PA), July 1992.

[11] R. Watrous and G. Kuhn, “Induction of finite state languages using second-order recurrent
networks,” in Advances in Neural Information Processing Systems 4 (J. Moody, S. Hanson, and

R. Lippmann, eds.), (San Mateo, CA), pp. 309-316, Morgan Kaufmann Publishers, 1992.

