
Natural Language Grammatical Inference
with Recurrent Neural Networks

Steve Lawrence, Member, IEEE, C. Lee Giles, Fellow, IEEE, and Sandiway Fong

AbstractÐThis paper examines the inductive inference of a complex grammar with neural networksÐspecifically, the task considered

is that of training a network to classify natural language sentences as grammatical or ungrammatical, thereby exhibiting the same kind

of discriminatory power provided by the Principles and Parameters linguistic framework, or Government-and-Binding theory. Neural

networks are trained, without the division into learned vs. innate components assumed by Chomsky, in an attempt to produce the same

judgments as native speakers on sharply grammatical/ungrammatical data. How a recurrent neural network could possess linguistic

capability and the properties of various common recurrent neural network architectures are discussed. The problem exhibits training

behavior which is often not present with smaller grammars and training was initially difficult. However, after implementing several

techniques aimed at improving the convergence of the gradient descent backpropagation-through-time training algorithm, significant

learning was possible. It was found that certain architectures are better able to learn an appropriate grammar. The operation of the

networks and their training is analyzed. Finally, the extraction of rules in the form of deterministic finite state automata is investigated.

Index TermsÐRecurrent neural networks, natural language processing, grammatical inference, government-and-binding theory,

gradient descent, simulated annealing, principles-and-parameters framework, automata extraction.

æ

1 INTRODUCTION

THIS paper considers the task of classifying natural
language sentences as grammatical or ungrammatical.

We attempt to train neural networks, without the bifurca-
tion into learned vs. innate components assumed by
Chomsky, to produce the same judgments as native
speakers on sharply grammatical/ungrammatical data.
Only recurrent neural networks are investigated for
computational reasons. Computationally, recurrent neural
networks are more powerful than feedforward networks
and some recurrent architectures have been shown to be at
least Turing equivalent [53], [54]. We investigate the
properties of various popular recurrent neural network
architectures, in particular Elman, Narendra and Parthasar-
athy (N&P), and Williams and Zipser (W&Z) recurrent
networks, and also Frasconi-Gori-Soda (FGS) locally recur-
rent networks. We find that both Elman and W&Z recurrent
neural networks are able to learn an appropriate grammar
after implementing techniques for improving the conver-
gence of the gradient descent based backpropagation-
through-time training algorithm. We analyze the operation
of the networks and investigate a rule approximation of
what the recurrent network has learnedÐspecifically, the
extraction of rules in the form of deterministic finite state
automata.

Previous work [38] has compared neural networks with

other machine learning paradigms on this problemÐthis

work focuses on recurrent neural networks, investigates

additional networks, analyzes the operation of the networks
and the training algorithm, and investigates rule extraction.

This paper is organized as follows: Section 2 provides the
motivation for the task attempted. Section 3 provides a brief
introduction to formal grammars and grammatical infer-
ence and describes the data. Section 4 lists the recurrent
neural network models investigated and provides details of
the data encoding for the networks. Section 5 presents the
results of investigation into various training heuristics and
investigation of training with simulated annealing. Section 6
presents the main results and simulation details and
investigates the operation of the networks. The extraction
of rules in the form of deterministic finite state automata is
investigated in Section 7 and Section 8 presents a discussion
of the results and conclusions.

2 MOTIVATION

2.1 Representational Power

Natural language has traditionally been handled using
symbolic computation and recursive processes. The most
successful stochastic language models have been based on
finite-state descriptions such as n-grams or hidden Markov
models. However, finite-state models cannot represent
hierarchical structures as found in natural language1 [48].
In the past few years, several recurrent neural network
architectures have emerged which have been used for
grammatical inference [9], [21], [19], [20], [68]. Recurrent
neural networks have been used for several smaller natural
language problems, e.g., papers using the Elman network
for natural language tasks include: [1], [12], [24], [58], [59].
Neural network models have been shown to be able to

126 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2000

. The authors are with NEC Research Institute, 4 Independence Way,
Princeton, NJ 08540.
E-mail: {lawrence, giles, sandiway}@research.nj.nec.com.

Manuscript received 14 Nov. 1996; revised 19 Sept. 1997; accepted 24 Feb.
1998.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104381.

1. The inside-outside reestimation algorithm is an extension of hidden
Markov models intended to be useful for learning hierarchical systems. The
algorithm is currently only practical for relatively small grammars [48].

1041-4347/00/$10.00 ß 2000 IEEE



account for a variety of phenomena in phonology [23], [61],
[62], [18], [22], morphology [51], [41], [40], and role
assignment [42], [58]. Induction of simpler grammars has
been addressed oftenÐe.g., [64], [65], [19] on learning
Tomita languages [60]. The task considered here differs
from these in that the grammar is more complex. The
recurrent neural networks investigated in this paper
constitute complex, dynamical systemsÐit has been shown
that recurrent networks have the representational power
required for hierarchical solutions [13] and that they are
Turing equivalent.

2.2 Language and Its Acquisition

Certainly one of the most important questions for the study
of human language is: How do people unfailingly manage
to acquire such a complex rule system? A system so
complex that it has resisted the efforts of linguists to date to
adequately describe in a formal system [8]. A couple of
examples of the kind of knowledge native speakers often
take for granted are provided in this section.

For instance, any native speaker of English knows that
the adjective eager obligatorily takes a complementizer for
with a sentential complement that contains an overt subject,
but that the verb believe cannot. Moreover, eager may take a
sentential complement with a nonovert, i.e., an implied or
understood, subject, but believe cannot:2

�I am eager John to be here I believe John to be here
I am eager for John to be here �I believe for John to be here
I am eager to be here �I believe to be here:

Such grammaticality judgments are sometimes subtle,
but unarguably form part of the native speaker's language
competence. In other cases, judgment falls not on accept-
ability, but on other aspects of language competence, such
as interpretation. Consider the reference of the embedded
subject of the predicate to talk to in the following examples:

John is too stubborn for Mary to talk to

John is too stubborn to talk to

John is too stubborn to talk to Bill

In the first sentence, it is clear that Mary is the subject of
the embedded predicate. As every native speaker knows,
there is a strong contrast in the coreference options for the
understood subject in the second and third sentences,
despite their surface similarity. In the third sentence, John
must be the implied subject of the predicate to talk to. By
contrast, John is understood as the object of the predicate in
the second sentence, the subject here having arbitrary
reference; in other words, the sentence can be read as John is
too stubborn for some arbitrary person to talk to John. The point
to emphasize here is that the language faculty has
impressive discriminatory power in the sense that a single
word, as seen in the examples above, can result in sharp
differences in acceptability or alter the interpretation of a
sentence considerably. Furthermore, the judgments shown
above are robust in the sense that virtually all native
speakers agree with the data.

In the light of such examples and the fact that such
contrasts crop up not just in English, but in other languages
(for example, the stubborn contrast also holds in Dutch),
some linguists (chiefly Chomsky [7]) have hypothesized
that it is only reasonable that such knowledge is only
partially acquired: The lack of variation found across
speakers and, indeed, languages, for certain classes of data
suggests that there exists a fixed component of the language
system. In other words, there is an innate component of the
language faculty of the human mind that governs language
processing. All languages obey these so-called universal
principles. Since languages do differ with regard to things
like subject-object-verb order, these principles are subject to
parameters encoding systematic variations found in parti-
cular languages. Under the innateness hypothesis, only the
language parameters plus the language-specific lexicon are
acquired by the speaker; in particular, the principles are not
learned. Based on these assumptions, the study of these
language-independent principles has become known as the
Principles-and-Parameters framework, or Government-and-
Binding (GB) theory.

This paper investigates whether a neural network can be
made to exhibit the same kind of discriminatory power on
the sort of data GB-linguists have examined. More pre-
cisely, the goal is to train a neural network from scratch, i.e.,
without the division into learned vs. innate components
assumed by Chomsky, to produce the same judgments as
native speakers on the grammatical/ungrammatical pairs
of the sort discussed above. Instead of using innate
knowledge, positive and negative examples are used (a
second argument for innateness is that it is not possible to
learn the grammar without negative examples).

3 DATA

We first provide a brief introduction to formal grammars,
grammatical inference, and natural language; for a thor-
ough introduction, see Harrison [25] and Fu [17]. We then
detail the dataset which we have used in our experiments.

3.1 Formal Grammars and Grammatical Inference

Briefly, a grammar G is a four tuple fN;T; P ; Sg, where N
and T are sets of terminals and nonterminals comprising
the alphabet of the grammar, P is a set of production rules,
and S is the start symbol. For every grammar, there exists a
language L, a set of strings of the terminal symbols, that the
grammar generates or recognizes. There also exist automata
that recognize and generate the grammar. Grammatical
inference is concerned mainly with the procedures that can
be used to infer the syntactic or production rules of an
unknown grammar G based on a finite set of strings I from
L�G�, the language generated by G, and, possibly, also on a
finite set of strings from the complement of L�G� [17]. This
paper considers replacing the inference algorithm with a
neural network and the grammar is that of the English
language. The simple grammar used by Elman [13] shown
in Table 1 contains some of the structures in the complete
English grammar, e.g., agreement, verb argument structure,
interactions with relative clauses, and recursion.

In the Chomsky hierarchy of phrase structured gram-
mars, the simplest grammar and its associated automata are

LAWRENCE ET AL.: NATURAL LANGUAGE GRAMMATICAL INFERENCE WITH RECURRENT NEURAL NETWORKS 127

2. As is conventional, an asterisk is used to indicate ungrammaticality.



regular grammars and finite-state-automata (FSA). How-
ever, it has been firmly established [6] that the syntactic
structures of natural language cannot be parsimoniously
described by regular languages. Certain phenomena (e.g.,
center embedding) are more compactly described by
context-free grammars which are recognized by push-down
automata, while others (e.g., crossed-serial dependencies
and agreement) are better described by context-sensitive
grammars which are recognized by linear bounded
automata [50].

3.2 Data

The data used in this work consists of 552 English positive

and negative examples taken from an introductory GB-

linguistics textbook by Lasnik and Uriagereka [37]. Most of

these examples are organized into minimal pairs like the

example I am eager for John to win/*I am eager John to win

above. The minimal nature of the changes involved

suggests that the dataset may represent an especially

difficult task for the models. Due to the small sample size,

the raw data, namely words, were first converted (using an

existing parser) into the major syntactic categories assumed

under GB-theory. Table 2 summarizes the parts of speech

that were used.

The part-of-speech tagging represents the sole gramma-

tical information supplied to the models about particular

sentences in addition to the grammaticality status. An

important refinement that was implemented was to include

subcategorization information for the major predicates,

namely nouns, verbs, adjectives, and prepositions. Experi-

ments showed that adding subcategorization to the bare

category information improved the performance of the

models. For example, an intransitive verb, such as sleep,

would be placed into a different class from the obligatorily

transitive verb hit. Similarly, verbs that take sentential

complements or double objects, such as seem, give, or

persuade, would be representative of other classes.3 Fleshing

out the subcategorization requirements along these lines for

lexical items in the training set resulted in nine classes for

verbs, four for nouns and adjectives, and two for preposi-

tions. Examples of the input data are shown in Table 3.

Tagging was done in a completely context-free manner.

Obviously, a word, e.g., to, may be part of more than one

part-of-speech. The tagging resulted in several contra-

dictory and duplicated sentences. Various methods were

tested to deal with these cases; however, they were

removed altogether for the results reported here. In

addition, the number of positive and negative examples

was equalized (by randomly removing examples from the

higher frequency class) in all training and test sets in order

to reduce any effects due to differing a priori class

probabilities (when the number of samples per class varies

between classes, there may be a bias towards predicting the

more common class [3], [2], [69]).

4 NEURAL NETWORK MODELS AND DATA

ENCODING

The following architectures were investigated. Architec-

tures 1 to 3 are topological restrictions of architecture 4

when the number of hidden nodes is equal and, in this

sense, may not have the representational capability of

model 4. It is expected that the Frasconi-Gori-Soda (FGS)

architecture will be unable to perform the task and it has

been included primarily as a control case.

1. Frasconi-Gori-Soda (FGS) locally recurrent networks
[16]. A multilayer perceptron augmented with local
feedback around each hidden node. The local-output
version has been used. The FGS network has also
been studied by [43]Ðthe network is called FGS in
this paper in line with [63].

2. Narendra and Parthasarathy [44]. A recurrent network
with feedback connections from each output node to
all hidden nodes. The N&P network architecture has
also been studied by Jordan [33], [34]Ðthe network
is called N&P in this paper in line with [30].

3. Elman [13]. A recurrent network with feedback from
each hidden node to all hidden nodes. When
training the Elman network, backpropagation-
through-time is used rather than the truncated
version used by Elman, i.e., in this paper, ªElman
networkº refers to the architecture used by Elman,
but not the training algorithm.

4. Williams and Zipser [67]. A recurrent network where
all nodes are connected to all other nodes.

Diagrams of these architectures are shown in Figs. 1, 2, 3,
and 4.

For input to the neural networks, the data was encoded

into a fixed length window made up of segments containing

eight separate inputs, corresponding to the classifications

noun, verb, adjective, etc. Subcategories of the classes were

linearly encoded into each input in a manner demonstrated

by the specific values for the noun input: Not a noun = 0,

noun class 1 = 0.5, noun class 2 = 0.667, noun class 3 = 0.833,

128 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2000

TABLE 1
A Simple Grammar Encompassing a Subset of the English

Language (from [13])

NP = noun phrase, VP = verb phrase, PropN = proper noun, RC =
relative clause, V = verb, N = noun, and S = the full sentence.

3. Following classical GB theory, these classes are synthesized from the
theta-grids of individual predicates via the Canonical Structural Realization
(CSR) mechanism of Pesetsky [49].



noun class 4 = 1. The linear order was defined according to

the similarity between the various subcategories.4 Two

outputs were used in the neural networks, corresponding to

grammatical and ungrammatical classifications. The data

was input to the neural networks with a window which is

passed over the sentence in temporal order from the

beginning to the end of the sentence (see Fig. 5). The size

of the window was variable from one word to the length of

the longest sentence. We note that the case where the input

window is small is of greater interestÐthe larger the input

window, the greater the capability of a network to correctly

classify the training data without forming a grammar. For

example, if the input window is equal to the longest

sentence, then the network does not have to store any

information during the processing of a sentenceÐit can

simply map the inputs directly to the classification.

However, if the input window is relatively small, then the

network must learn to store information. As will be shown

later, these networks implement a grammar and a determi-

nistic finite state automaton which recognizes this grammar

can be extracted from the network. Thus, we are most

interested in the small input window case where the

networks are required to form a grammar in order to

perform well.

5 GRADIENT DESCENT AND SIMULATED ANNEALING

LEARNING

Backpropagation-through-time [66]5 has been used to train
the globally recurrent networks6 and the gradient descent
algorithm described by the authors [16] was used for the
FGS network. The standard gradient descent algorithms
were found to be impractical for this problem.7 The
techniques described below for improving convergence
were investigated. Due to the dependence on the initial
parameters, a number of simulations were performed with
different initial weights and training set/test set combina-
tions. However, due to the computational complexity of the
task,8 it was not possible to perform as many simulations as
desired. The standard deviation of the NMSE values is
included to help assess the significance of the results.
Table 4 shows some results for using and not using the
techniques listed below. Except where noted, the results in
this section are for Elman networks using two word inputs,
10 hidden nodes, the quadratic cost function, the logistic

sigmoid function, sigmoid output activations, one hidden
layer, the learning rate schedule shown below, an initial
learning rate of 0.2, the weight initialization strategy
discussed below, and one million stochastic updates (target
values are only provided at the end of each sentence).

1. Detection of Significant Error Increases. If the NMSE
increases significantly during training, then network
weights are restored from a previous epoch and are
perturbed to prevent updating to the same point.
This technique was found to increase robustness of
the algorithm when using learning rates large
enough to help avoid problems due to local minima
and ªflat spotsº on the error surface, particularly in
the case of the Williams and Zipser network.

2. Target Outputs. Target outputs were 0.1 and 0.9 using
the logistic activation function and -0.8 and 0.8 using
the tanh activation function. This helps avoid
saturating the sigmoid function. If targets were set
to the asymptotes of the sigmoid this would tend to:
a) drive the weights to infinity, b) cause outlier data
to produce very large gradients due to the large
weights, and c) produce binary outputs even when
incorrectÐleading to decreased reliability of the
confidence measure.

3. Stochastic Versus Batch Update. In stochastic update,
parameters are updated after each pattern presenta-
tion, whereas, in true gradient descent (often called
ºbatchº updating), gradients are accumulated over
the complete training set. Batch update attempts to
follow the true gradient, whereas a stochastic path is
followed using stochastic update.

Stochastic update is often much quicker than
batch update, especially with large, redundant
datasets [39]. Additionally, the stochastic path may
help the network to escape from local minima.
However, the error can jump around without
converging unless the learning rate is reduced, most
second order methods do not work well with
stochastic update, and stochastic update is harder
to parallelize than batch [39]. Batch update provides
guaranteed convergence (to local minima) and
works better with second order techniques. How-
ever, it can be very slow and may converge to very
poor local minima.

In the results reported, the training times were
equalized by reducing the number of updates for the
batch case (for an equal number of weight updates,
batch update would otherwise be much slower).
Batch update often converges quicker using a higher
learning rate than the optimal rate used for
stochastic update,9 hence altering the learning rate
for the batch case was investigated. However,
significant convergence was not obtained, as shown
in Table 4.

4. Weight Initialization. Random weights are initialized
with the goal of ensuring that the sigmoids do not
start out in saturation, but are not very small
(corresponding to a flat part of the error surface)

LAWRENCE ET AL.: NATURAL LANGUAGE GRAMMATICAL INFERENCE WITH RECURRENT NEURAL NETWORKS 129

4. A fixed length window made up of segments containing 23 separate
inputs, corresponding to the classifications noun class 1, noun class 2, verb
class 1, etc., was also tested, but proved inferior.

5. Backpropagation-through-time extends backpropagation to include
temporal aspects and arbitrary connection topologies by considering an
equivalent feedforward network created by unfolding the recurrent
network in time.

6. Real-time [67] recurrent learning (RTRL) was also tested, but did not
show any significant convergence for the present problem.

7. Without modifying the standard gradient descent algorithms, it was
only possible to train networks which operated on a large temporal input
window. These networks were not forced to model the grammar, they only
memorized and interpolated between the training data.

8. Each individual simulation in this section took an average of two
hours to complete on a Sun Sparc 10 server.

9. Stochastic update does not generally tolerate as high a learning rate as
batch update due to the stochastic nature of the updates.



[26]. In addition, several (20) sets of random weights
are tested and the set which provides the best
performance on the training data is chosen. In our
experiments on the current problem, it was found
that these techniques do not make a significant
difference.

5. Learning Rate Schedules. Relatively high learning rates
are typically used in order to help avoid slow
convergence and local minima. However, a constant
learning rate results in significant parameter and
performance fluctuation during the entire training
cycle such that the performance of the network can
alter significantly from the beginning to the end of
the final epoch. Moody and Darken have proposed
ªsearch then convergeº learning rate schedules of
the form [10], [11]:

��t� � �0

1� t
�

; �1�

where ��t� is the learning rate at time t, �0 is the

initial learning rate, and � is a constant.

We have found that the learning rate during the

final epoch still results in considerable parameter

fluctuation10 and, hence, we have added an addi-

tional term to further reduce the learning rate over

the final epochs (our specific learning rate schedule

can be found in a later section). We have found the

use of learning rate schedules to improve perfor-

mance considerably, as shown in Table 4.
6. Activation Function. Symmetric sigmoid functions

(e.g., tanh ) often improve convergence over the
standard logistic function. For our particular pro-
blem, we found that the difference was minor and
that the logistic function resulted in better perfor-
mance, as shown in Table 4.

7. Cost Function. The relative entropy cost function [4],
[29], [57], [26], [27] has received particular attention
and has a natural interpretation in terms of learning

130 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2000

TABLE 3
Examples of the Part-of-Speech Tagging

TABLE 2
Parts of Speech

10. NMSE results which are obtained over an epoch involving stochastic
update can be misleading. We have been surprised to find quite significant
differences in these on-line NMSE calculations compared to a static
calculation, even if the algorithm appears to have converged.



probabilities [36]. We investigated using both quad-
ratic and relative entropy cost functions:

Definition 1. The quadratic cost function is

defined as

E � 1

2

X
k

�yk ÿ dk�2 �2�

Definition 2. The relative entropy cost function is

defined as

E �
X
k

1

2
�1� yk� log

1� yk
1� dk �

1

2
�1ÿ yk� log

1ÿ yk
1ÿ dk

� �
;

�3�
where y and d correspond to the actual and desired

output values, k ranges over the outputs (and also

the patterns for batch update). We found the

quadratic cost function to provide better perfor-

mance, as shown in Table 4. A possible reason for

this is that the use of the entropy cost function

leads to an increased variance of weight updates

and, therefore, decreased robustness in parameter

updating.
8. Sectioning of the Training Data. We investigated

dividing the training data into subsets. Initially,
only one of these subsets was used for training. After
100 percent correct classification was obtained or a
prespecified time limit expired, an additional subset
was added to the ªworkingº set. This continued
until the working set contained the entire training
set. The data was ordered in terms of sentence
length, with the shortest sentences first. This enabled
the networks to focus on the simpler data first.
Elman suggests that the initial training constrains
later training in a useful way [13]. However, for our
problem, the use of sectioning has consistently
decreased performance, as shown in Table 4.

We have also investigated the use of simulated anneal-

ing. Simulated annealing is a global optimization method

[32], [35]. When minimizing a function, any downhill step is

accepted and the process repeats from this new point. An

uphill step may also be accepted. It is therefore possible to

escape from local minima. As the optimization process

LAWRENCE ET AL.: NATURAL LANGUAGE GRAMMATICAL INFERENCE WITH RECURRENT NEURAL NETWORKS 131

Fig. 1. A Frasconi-Gori-Soda locally recurrent network. Not all

connections are shown fully.

Fig. 4. A Williams and Zipser fully recurrent network. Not all connections

are shown fully.
Fig. 2. A Narendra and Parthasarathy recurrent network. Not all

connections are shown fully.

Fig. 3. An Elman recurrent network. Not all connections are shown fully.



proceeds, the length of the steps declines and the algorithm

converges on the global optimum. Simulated annealing

makes very few assumptions regarding the function to be

optimized and is therefore quite robust with respect to

nonquadratic error surfaces.
Previous work has shown the use of simulated annealing

for finding the parameters of a recurrent network model to

improve performance [56]. For comparison with the

gradient descent-based algorithms, the use of simulated

annealing has been investigated in order to train exactly the

same Elman network as has been successfully trained to

100 percent correct training set classification using back-

propagation-through-time (details are in Section 6). No

significant results were obtained from these trials.11 The use

of simulated annealing has not been found to improve

performance as in Simard et al. [56]. However, their

problem was the parity problem using networks with only

four hidden units, whereas the networks considered in this
paper have many more parameters.

This result provides an interesting comparison to the
gradient descent backpropagation-through-time (BPTT)
method. BPTT makes the implicit assumption that the error
surface is amenable to gradient descent optimization and
this assumption can be a major problem in practice.
However, although difficulty is encountered with BPTT,
the method is significantly more successful than simulated
annealing (which makes few assumptions) for this problem.

6 EXPERIMENTAL RESULTS

Results for the four neural network architectures are given
in this section. The results are based on multiple training/
test set partitions and multiple random seeds. In addition, a
set of Japanese control data was used as a test set (we do not
consider training models with the Japanese data because we
do not have a large enough dataset). Japanese and English
are at the opposite ends of the spectrum with regard to

132 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2000

Fig. 5. Depiction of how the neural network inputs come from an input window on the sentence. The window moves from the beginning to the end of

the sentence.

TABLE 4
Comparisons of Using and Not Using Various Convergence Techniques

All other parameters are constant in each case: Elman networks using: two word inputs (i.e., a sliding window of the current and previous word),
10 hidden nodes, the quadratic cost function, the logistic activation function, sigmoid output activations, one hidden layer, a learning rate schedule
with an initial learning rate of 0.2, the weight initialization strategy discussed in the text, and one million stochastic updates. Each NMSE result
represents the average of four simulations. The standard deviation value given is the standard deviation of the four individual results.

11. The adaptive simulated annealing code by Ingber [31], [32] was used.



word order. That is, Japanese sentence patterns are very
different from English. In particular, Japanese sentences are
typically SOV (subject-object-verb), with the verb more or
less fixed and the other arguments more or less available to
freely permute. English data is SVO and argument
permutation is generally not available. For example, the
canonical Japanese word order is simply ungrammatical in
English. Hence, it would be extremely surprising if an
English-trained model accepts Japanese, i.e., it is expected
that a network trained on English will not generalize to
Japanese data. This is what we findÐall models resulted in
no significant generalization on the Japanese data (50
percent error on average).

Five simulations were performed for each architecture.
Each simulation took approximately four hours on a Sun
Sparc 10 server. Table 5 summarizes the results obtained with
the various networks. In order to make the number of weights
in each architecture approximately equal, we have used only
single word inputs for the W&Z model, but two word inputs
for the others. This reduction in dimensionality for the W&Z
network improved performance. The networks contained 20
hidden units. Full simulation details are given in Section 6.

The goal was to train a network using only a small
temporal input window. Initially, this could not be done.
With the addition of the techniques described earlier, it was
possible to train Elman networks with sequences of the last
two words as input to give 100 percent correct (99.6 percent
averaged over five trials) classification on the training data.
Generalization on the test data resulted in 74.2 percent
correct classification on average. This is better than the
performance obtained using any of the other networks;
however, it is still quite low. The data is quite sparse and it
is expected that increased generalization performance will
be obtained as the amount of data is increased, as well as
increased difficulty in training. Additionally, the dataset
has been hand-designed by GB linguists to cover a range of
grammatical structures and it is likely that the separation
into the training and test sets creates a test set which

contains many grammatical structures that are not covered
in the training set. The Williams and Zipser network also
performed reasonably well with 71.3 percent correct
classification of the test set. Note that the test set
performance was not observed to drop significantly after
extended training, indicating that the use of a validation set
to control possible overfitting would not alter performance
significantly.

Complete details on a sample Elman network are as
follows (other networks differ only in topology, except for
the W&Z, for which better results were obtained using an
input window of only one word): The network contained
three layers including the input layer. The hidden layer
contained 20 nodes. Each hidden layer node had a recurrent
connection to all other hidden layer nodes. The network
was trained for a total of one million stochastic updates. All
inputs were within the range zero to one. All target outputs
were either 0.1 or 0.9. Bias inputs were used. The best of 20
random weight sets was chosen based on training set
performance. Weights were initialized as shown in Haykin
[26], where weights are initialized on a node by node basis
as uniformly distributed random numbers in the range
�ÿ2:4=Fi; 2:4=Fi�, where Fi is the fan-in of neuron i. The
logistic output activation function was used. The quadratic
cost function was used. The search-then-converge learning
rate schedule used was

� � �0
n
N=2� c1

max 1; c1ÿmax 0;c1�nÿc2N�� �
�1ÿc2�N

� �� � ;
where � � learning rate, �0 � initial learning rate, N �
total training epochs, n � current training epoch, c1 � 50,
c2 � 0:65. The training set consisted of 373 noncontradictory
examples, as described earlier. The English test set
consisted of 100 noncontradictory samples and the Japanese
test set consisted of 119 noncontradictory samples.

We now take a closer look at the operation of the
networks. The error during training for a sample of each
network architecture is shown in Fig. 6. The error at each
point in the graphs is the NMSE over the complete training
set. Note the nature of the Williams and Zipser learning
curve and the utility of detecting and correcting for
significant error increases.12

Fig. 7 shows an approximation of the ªcomplexityº of the
error surface based on the first derivatives of the error
criterion with respect to each weight

C �
P

i
@E
@wi

Nw
;

where i sums over all weights in the network and Nw is the
total number of weights. This value has been plotted after
each epoch during training. Note the more complex nature
of the plot for the Williams and Zipser network.

Figs. 8, 9, 10, and 11 show sample plots of the error
surface for the various networks. The error surface has
many dimensions, making visualization difficult. We plot
sample views showing the variation of the error for two

LAWRENCE ET AL.: NATURAL LANGUAGE GRAMMATICAL INFERENCE WITH RECURRENT NEURAL NETWORKS 133

12. The learning curve for the Williams and Zipser network can be made
smoother by reducing the learning rate, but this tends to promote
convergence to poorer local minima.

TABLE 5
Results of the Network Architecture Comparison

The classification values reported are an average of five individual
simulations and the standard deviation value is the standard deviation of
the five individual results.



dimensions and note that these plots are indicative
onlyÐquantitative conclusions should be drawn from the
test error and not from these plots. Each plot shown in the
figures is with respect to only two randomly chosen
dimensions. In each case, the center of the plot corresponds
to the values of the parameters after training. Taken
together, the plots provide an approximate indication of
the nature of the error surface for the different network
types. The FGS network error surface appears to be the
smoothest; however, the results indicate that the solutions
found do not perform very well, indicating that the minima
found are poor compared to the global optimum and/or
that the network is not capable of implementing a mapping
with low error. The Williams and Zipser fully connected
network has greater representational capability than the
Elman architecture (in the sense that it can perform a
greater variety of computations with the same number of
hidden units). However, comparing the Elman and W&Z
network error surface plots, it can be observed that the
W&Z network has a greater percentage of flat spots. These
graphs are not conclusive (because they only show two
dimensions and are only plotted around one point in the
weight space), however, they back up the hypothesis that
the W&Z network performs worse because the error surface
presents greater difficulty to the training method.

7 AUTOMATA EXTRACTION

The extraction of symbolic knowledge from trained neural
networks allows the exchange of information between
connectionist and symbolic knowledge representations
and has been of great interest for understanding what a
neural network is actually doing [52]. In addition, symbolic
knowledge can be inserted into recurrent neural networks
and even refined after training [15], [47], [45].

The ordered triple of a discrete Markov process ({state;
input ! next-state}) can be extracted from an RNN and
used to form an equivalent deterministic finite state
automata (DFA). This can be done by clustering the
activation values of the recurrent state neurons [46]. The
automata extracted with this process can only recognize
regular grammars.13

However, natural language [6] cannot be parsimoniously
described by regular languagesÐcertain phenomena (e.g.,
center embedding) are more compactly described by
context-free grammars, while others (e.g., crossed-serial
dependencies and agreement) are better described by
context-sensitive grammars. Hence, the networks may be

134 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2000

Fig. 6. Average NMSE (log scale) over the training set during training. Top to bottom: Frasconi-Gori-Soda, Elman, Narendra and Parthasarathy, and

Williams and Zipser.

13. A regular grammar G is a 4-tuple G � fS;N; T ; Pg, where S is the
start symbol, N and T are nonterminal and terminal symbols, respectively,
and P represents productions of the form A! a or A! aB, where A;B 2
N and a 2 T .



implementing more parsimonious versions of the grammar

which we are unable to extract with this technique.
The algorithm we use for automata extraction (from [19])

works as follows: After the network is trained (or even

during training), we apply a procedure for extracting what

the network has learnedÐi.e., the network's current

conception of what DFA it has learned. The DFA extraction

process includes the following steps:

LAWRENCE ET AL.: NATURAL LANGUAGE GRAMMATICAL INFERENCE WITH RECURRENT NEURAL NETWORKS 135

Fig. 7. Approximate ªcomplexityº of the error surface during training. Top to bottom: Frasconi-Gori-Soda, Elman, Narendra and Parthasarathy, and

Williams and Zipser.

Fig. 8. Error surface plots for the FGS network. Each plot is with respect to two randomly chosen dimensions. In each case, the center of the plot

corresponds to the values of the parameters after training.



1. clustering of the recurrent network activation space,
S, to form DFA states,

2. constructing a transition diagram by connecting
these states together with the alphabet labeled arcs,

3. putting these transitions together to make the full
digraphÐforming loops, and

4. reducing the digraph to a minimal representation.

The hypothesis is that, during training, the network begins

to partition (or quantize) its state space into fairly well-

separated, distinct regions or clusters, which represent

corresponding states in some finite state automaton

(recently, it has been proven that arbitrary DFAs can be

stably encoded into recurrent neural networks [45]). One

simple way of finding these clusters is to divide each

neuron's range into q partitions of equal width. Thus, for N

hidden neurons, there exist qN possible partition states. The

DFA is constructed by generating a state transition diagram,

i.e., associating an input symbol with the partition state it

just left and the partition state it activates. The initial partition

state, or start state of the DFA, is determined from the initial

value of S�t�0�, where S�t� is a vector of the neuron activation

values that are fed back as inputs to the network. If the next

input symbol maps to the same partition state value, we

assume that a loop is formed. Otherwise, a new state in the

DFA is formed. The DFA thus constructed may contain a

maximum of qN states; in practice, it is usually much less

since not all partition states are reached by S�t�. Eventually

this process must terminate since there are only a finite

number of partitions available and, in practice, many of the

partitions are never reached. The derived DFA can then be

reduced to its minimal DFA using standard minimization

algorithms [28]. It should be noted that this DFA extraction

method may be applied to any discrete-time recurrent net,

regardless of order or hidden layers. Recently, the extrac-

136 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2000

Fig. 9. Error surface plots for the N&P network. Each plot is with respect to two randomly chosen dimensions. In each case, the center of the plot

corresponds to the values of the parameters after training.

Fig. 10. Error surface plots for the Elman network. Each plot is with respect to two randomly chosen dimensions. In each case, the center of the plot

corresponds to the values of the parameters after training.



tion process has been proven to converge and extract any

DFA learned or encoded by the neural network [5].
The extracted DFAs depend on the quantization level, q.

We extracted DFAs using values of q starting from 3 and

used standard minimization techniques to compare the

resulting automata [28]. We passed the training and test

data sets through the extracted DFAs. We found that the

extracted automata correctly classified 95 percent of the

LAWRENCE ET AL.: NATURAL LANGUAGE GRAMMATICAL INFERENCE WITH RECURRENT NEURAL NETWORKS 137

Fig. 11. Error surface plots for the W&Z network. Each plot is with respect to two randomly chosen dimensions. In each case, the center of the plot

corresponds to the values of the parameters after training.

Fig. 12. An automata extracted from an Elman network trained to perform the natural language task. The start state is state 1 at the bottom left and

the accepting state is state 17 at the top right. All strings which do not reach the accepting state are rejected.



training data and 60 percent of the test data for q � 7.
Smaller values of q produced DFAs with lower performance
and larger values of q did not produce significantly better
performance. A sample extracted automata can be seen in
Fig. 12. It is difficult to interpret the extracted automata and
a topic for future research is analysis of the extracted
automata with a view to aiding interpretation. Additionally,
an important open question is how well the extracted
automata approximate the grammar implemented by the
recurrent network which may not be a regular grammar.

Automata extraction may also be useful for improving
the performance of the system via an iterative combination
of rule extraction and rule insertion. Significant learning
time improvements can be achieved by training networks
with prior knowledge [46]. This may lead to the ability to
train larger networks which encompass more of the target
grammar.

8 DISCUSSION

This paper has investigated the use of various recurrent
neural network architectures (FGS, N&P, Elman, and W&Z)
for classifying natural language sentences as grammatical or
ungrammatical, thereby exhibiting the same kind of
discriminatory power provided by the Principles and
Parameters linguistic framework or Government-and-Bind-
ing theory. From best to worst performance, the architec-
tures were: Elman, W&Z, N&P, and FGS. It is not surprising
that the Elman network outperforms the FGS and N&P
networks. The computational power of Elman networks has
been shown to be at least Turing equivalent [55], where the
N&P networks have been shown to be Turing equivalent
[54], but to within a linear slowdown. FGS networks have
recently been shown to be the most computationally limited
[14]. Elman networks are just a special case of W&Z
networksÐthe fact that the Elman and W&Z networks are
the top performers is not surprising. However, theoretically,
why the Elman network outperformed the W&Z network is
an open question. Our experimental results suggest that this
is a training issue and not a representational issue. Back-
propagation-through-time (BPTT) is an iterative algorithm
that is not guaranteed to find the global minima of the cost
function error surface. The error surface is different for the
Elman and W&Z networks and our results suggest that the
error surface of the W&Z network is less suitable for the
BPTT training algorithm used. However, all architectures
do learn some representation of the grammar.

Are the networks learning the grammar? The hierarchy
of architectures with increasing computational power (for a
given number of hidden nodes) give an insight into whether
the increased power is used to model the more complex
structures found in the grammar. The fact that the more
powerful Elman and W&Z networks provided increased
performance suggests that they were able to find structure
in the data which it may not be possible to model with the
FGS network. Additionally, investigation of the data
suggests that 100 percent correct classification on the
training data with only two word inputs would not be
possible unless the networks were able to learn significant
aspects of the grammar.

Another comparison of recurrent neural network archi-
tectures, that of Horne and Giles [30], compared various
networks on randomly generated 6- and 64-state finite
memory machines. The locally recurrent and Narendra and
Parthasarathy networks proved as good as or superior to
more powerful networks like the Elman network, indicating
that either the task did not require the increased power or
the vanilla backpropagation-through-time learning algo-
rithm used was unable to exploit it.

This paper has shown that both Elman and W&Z
recurrent neural networks are able to learn an appropriate
grammar for discriminating between the sharply gramma-
tical/ungrammatical pairs used by GB-linguists. However,
generalization is limited by the amount and nature of the
data available and it is expected that increased difficulty
will be encountered in training the models as more data is
used. It is clear that there is considerable difficulty scaling
the models considered here up to larger problems. We need
to continue to address the convergence of the training
algorithms and believe that further improvement is possible
by addressing the nature of parameter updating during
gradient descent. However, a point must be reached after
which improvement with gradient descent-based algo-
rithms requires consideration of the nature of the error
surface. This is related to the input and output encodings
(rarely are they chosen with the specific aim of controlling
the error surface), the ability of parameter updates to
modify network behavior without destroying previously
learned information, and the method by which the network
implements structures such as hierarchical and recursive
relations.

ACKNOWLEDGMENTS

This work has been partially supported by the Australian
Telecommunications and Electronics Research Board (SL).

REFERENCES

[1] R.B. Allen, ªSequential Connectionist Networks for Answering
Simple Questions about a Microworld,º Fifth Ann. Proc. Cognitive
Science Soc., pp. 489-495, 1983.

[2] E. Barnard and E.C. Botha, ªBack-Propagation Uses Prior
Information Efficiently,º IEEE Trans. Neural Networks, vol. 4,
no. 5, pp. 794-802, Sept. 1993.

[3] E. Barnard and D. Casasent, ªA Comparison between Criterion
Functions for Linear Classifiers, with an Application to Neural
Nets,º IEEE Trans. Systems, Man, and Cybernetics, vol. 19, no. 5,
pp. 1,030-1,041, 1989.

[4] E.B. Baum and F. Wilczek, ªSupervised Learning of Probability
Distributions by Neural Networks,º Neural Information Processing
Systems, D.Z. Anderson, ed., pp. 52-61, New York: Am. Inst. of
Physics, 1988.

[5] M.P. Casey, ªThe Dynamics of Discrete-Time Computation, with
Application to Recurrent Neural Networks and Finite State
Machine Extraction,º Neural Computation, vol. 8, no. 6, pp. 1,135-
1,178, 1996.

[6] N.A. Chomsky, ªThree Models for the Description of Language,º
IRE Trans. Information Theory, vol. 2, pp. 113-124, 1956.

[7] N.A. Chomsky, Lectures on Government and Binding. Foris Publica-
tions, 1981.

[8] N.A. Chomsky, Knowledge of Language: Its Nature, Origin, and Use.
Prager, 1986.

[9] A. Cleeremans, D. Servan-Schreiber, and J.L. McClelland, ªFinite
State Automata and Simple Recurrent Networks,º Neural Compu-
tation, vol. 1, no. 3, pp. 372-381, 1989.

138 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2000



[10] C. Darken and J.E. Moody, ªNote on Learning Rate Schedules for
Stochastic Optimization,º Advances in Neural Information Processing
Systems, R.P. Lippmann, J.E. Moody, and D.S. Touretzky, eds.,
vol. 3, pp. 832-838, San Mateo, Calif.: Morgan Kaufmann, 1991.

[11] C. Darken and J.E. Moody, ªTowards Faster Stochastic Gradient
Search,º Neural Information Processing Systems 4, pp. 1,009-1,016,
San Mateo, Calif.: Morgan Kaufmann, 1992.

[12] J.L. Elman, ªStructured Representations and Connectionist Mod-
els,º Sixth Ann. Proc. Cognitive Science Soc., pp. 17-25, 1984.

[13] J.L. Elman, ªDistributed Representations, Simple Recurrent Net-
works, and Grammatical Structure,º Machine Learning, vol. 7,
nos. 2/3, pp. 195-226, 1991.

[14] P. Frasconi and M. Gori, ªComputational Capabilities of Local-
Feedback Recurrent Networks Acting as Finite-State Machines,º
IEEE Trans. Neural Networks, vol. 7, no. 6, pp. 1,521-1,524, 1996.

[15] P. Frasconi, M. Gori, M. Maggini, and G. Soda, ªUnified
Integration of Explicit Rules and Learning by Example in
Recurrent Networks,º IEEE Trans. Knowledge and Data Eng.,
vol. 7, no. 2, pp. 340-346, Apr. 1995.

[16] P. Frasconi, M. Gori, and G. Soda, ªLocal Feedback Multilayered
Networks,º Neural Computation, vol. 4, no. 1, pp. 120-130, 1992.

[17] K.S. Fu, Syntactic Pattern Recognition and Applications. Englewood
Cliffs, N.J.: Prentice Hall, 1982.

[18] M. Gasser and C. Lee, ªNetworks That Learn Phonology,º
technical report, Computer Science Dept., Indiana Univ., 1990.

[19] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, and Y.C.
Lee, ªLearning and Extracting Finite State Automata with Second-
Order Recurrent Neural Networks,º Neural Computation, vol. 4,
no. 3, pp. 393-405, 1992.

[20] C.L. Giles, C.B. Miller, D. Chen, G.Z. Sun, H.H. Chen, and Y.C.
Lee, ªExtracting and Learning an Unknown Grammar with
Recurrent Neural Networks,º Advances in Neural Information
Processing Systems 4, J.E. Moody, S.J. Hanson, and R.P Lippmann,
eds., pp. 317-324, San Mateo, Calif.: Morgan Kaufmann, 1992.

[21] C.L. Giles, G.Z. Sun, H.H. Chen, Y.C. Lee, and D. Chen, ªHigher
Order Recurrent Networks and Grammatical Inference,º Advances
in Neural Information Processing Systems 2, D.S. Touretzky, ed.,
pp. 380-387, San Mateo, Calif.: Morgan Kaufmann, 1990.

[22] M. Hare, ªThe Role of Similarity in Hungarian Vowel Harmony: A
Connectionist Account,º Technical Report CRL 9004, Center for
Research in Language, Univ. of California, San Diego, 1990.

[23] M. Hare, D. Corina, and G.W. Cottrell, ªConnectionist Perspective
on Prosodic Structure,º Technical Report CRL Newsletter, vol. 3,
no. 2, Center for Research in Language, Univ. of California, San
Diego, 1989.

[24] C.L. Harris and J.L. Elman, ªRepresenting Variable Information
with Simple Recurrent Networks,º Sixth Ann. Proc. Cognitive
Science Soc., pp. 635-642, 1984.

[25] M.H. Harrison, Introduction to Formal Language Theory. Reading,
Mass.: Addison-Wesley, 1978.

[26] S. Haykin, Neural Networks, A Comprehensive Foundation. New
York: Macmillan, 1994.

[27] J.A. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of
Neural Computation. Redwood City, Calif.: Addison-Wesley, 1991.

[28] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation. Reading, Mass.: Addison-Wesley,
1979.

[29] J. Hopfield, ªLearning Algorithms and Probability Distributions in
Feed-Forward and Feed-Back Networks,º Proc. Nat'l Academy of
Science, vol. 84, pp. 8,429-8,433, 1987.

[30] B.G. Horne and C.L. Giles, ªAn Experimental Comparison of
Recurrent Neural Networks,º Advances in Neural Information
Processing Systems 7, G. Tesauro, D. Touretzky, and T. Leen,
eds., pp. 697-704, MIT Press, 1995.

[31] L. Ingber, ªVery Fast Simulated Re-Annealing,º Math. Computer
Modelling, vol. 12, pp. 967-973, 1989.

[32] L. Ingber, ªAdaptive Simulated Annealing (ASA),º technical
report, Lester Ingber Research, McLean, Va., 1993.

[33] M.I. Jordan, ªAttractor Dynamics and Parallelism in a Connec-
tionist Sequential Machine,º Proc. Ninth Ann. Conf. Cognitive
Science Soc., pp. 531-546, 1986.

[34] M.I. Jordan, ªSerial Order: A Parallel Distributed Processing
Approach,º Technical Report ICS Report 8604, Inst. for Cognitive
Science, Univ. of California, San Diego, May 1986.

[35] S. Kirkpatrick and G.B. Sorkin, ªSimulated Annealing,º The
Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.,
pp. 876-878, Cambridge, Mass.: MIT Press, 1995.

[36] S. Kullback, Information Theory and Statistics. New York: Wiley,
1959.

[37] H. Lasnik and J. Uriagereka, A Course in GB Syntax: Lectures on
Binding and Empty Categories. Cambridge, Mass.: MIT Press, 1988.

[38] S. Lawrence, S. Fong, and C.L. Giles, ªNatural Language
Grammatical Inference: A Comparison of Recurrent Neural
Networks and Machine Learning Methods,º Symbolic, Connec-
tionist, and Statistical Approaches to Learning for Natural Language
Processing, S. Wermter, E. Riloff, and G. Scheler, eds., pp. 33-47,
New York: Springer Verlag, 1996.

[39] Y. Le Cun, ªEfficient Learning and Second Order Methods,º
Tutorial presented at Neural Information Processing Systems 5,
1993.

[40] L.R. Leerink and M. Jabri, ªLearning the Past Tense of English
Verbs Using Recurrent Neural Networks,º Proc. Australian Conf.
Neural Networks, P. Bartlett, A. Burkitt, and R. Williamson, eds.,
pp. 222-226, 1996.

[41] B. MacWhinney, J. Leinbach, R. Taraban, and J. McDonald,
ªLanguage Learning: Cues or Rules?º J. Memory and Language,
vol. 28, pp. 255-277, 1989.

[42] R. Miikkulainen and M. Dyer, ªEncoding Input/Output Repre-
sentations in Connectionist Cognitive Systems,º Proc. 1988
Connectionist Models Summer School, D.S. Touretzky, G.E. Hinton,
and T.J. Sejnowski, eds., pp. 188-195, 1989.

[43] M.C. Mozer, ªA Focused Backpropagation Algorithm for Tempor-
al Pattern Recognition,º Complex Systems, vol. 3, no. 4, pp. 349-381,
Aug. 1989.

[44] K.S. Narendra and K. Parthasarathy, ªIdentification and Control
of Dynamical Systems Using Neural Networks,º IEEE Trans.
Neural Networks, vol. 1, no. 1, pp. 4-27, 1990.

[45] C.W. Omlin and C.L. Giles, ªConstructing Deterministic Finite-
State Automata in Recurrent Neural Networks,º J. ACM, vol. 45,
no. 6, p. 937, 1996.

[46] C.W. Omlin and C.L. Giles, ªExtraction of Rules from Discrete-
Time Recurrent Neural Networks,º Neural Networks, vol. 9, no. 1,
pp. 41-52, 1996.

[47] C.W. Omlin and C.L. Giles, ªRule Revision with Recurrent Neural
Networks,º IEEE Trans. Knowledge and Data Eng., vol. 8, no. 1,
pp. 183-188, 1996.

[48] F. Pereira and Y. Schabes, ªInside-Outside Re-Estimation from
Partially Bracketed Corpora,º Proc. 30th Ann. Meeting ACL,
pp. 128-135, 1992.

[49] D.M. Pesetsky, ªPaths and Categories,º PhD thesis, MIT, 1982.
[50] J.B. Pollack, ªThe Induction of Dynamical Recognizers,º Machine

Learning, vol. 7, pp. 227-252, 1991.
[51] D.E. Rumelhart and J.L. McClelland, ªOn Learning the Past

Tenses of English Verbs,º Parallel Distributed Processing, D.E.
Rumelhart and J.L. McClelland, eds., vol. 2, chapter 18, pp. 216-
271, Cambridge, Mass.: MIT Press, 1986.

[52] J.W. Shavlik, ªCombining Symbolic and Neural Learning,º
Machine Learning, vol. 14, no. 3, pp. 321-331, 1994.

[53] H.T. Siegelmann, ªComputation Beyond the Turing Limit,º
Science, vol. 268, pp. 545-548, 1995.

[54] H.T. Siegelmann, B.G. Horne, and C.L. Giles, ªComputational
Capabilities of Recurrent NARX Neural Networks,º IEEE Trans.
Systems, Man and Cybernetics-Part B, vol. 27, no. 2, p. 208, 1997.

[55] H.T. Siegelmann and E.D. Sontag, ªOn the Computational Power
of Neural Nets,º J. Computer and System Sciences, vol. 50, no. 1,
pp. 132-150, 1995.

[56] P. Simard, M.B. Ottaway, and D.H. Ballard, ªAnalysis of
Recurrent Backpropagation,º Proc. 1988 Connectionist Models
Summer School, D. Touretzky, G. Hinton, and T. Sejnowski, eds.,
pp. 103-112, 1989.

[57] S.A. Solla, E. Levin, and M. Fleisher, ªAccelerated Learning in
Layered Neural Networks,º Complex Systems, vol. 2, pp. 625-639,
1988.

[58] M.F. St. John and J.L. McClelland, ªLearning and Applying
Contextual Constraints in Sentence Comprehension,º Artificial
Intelligence, vol. 46, pp. 5-46, 1990.

[59] A. Stolcke, ªLearning Feature-Based Semantics with Simple
Recurrent Networks,º Technical Report TR-90-015, Int'l Computer
Science Inst., Berkeley, Calif., Apr. 1990.

[60] M. Tomita, ªDynamic Construction of Finite-State Automata from
Examples Using Hill-Climbing,º Proc. Fourth Ann. Cognitive
Science Conf., p. 105-108, 1982.

LAWRENCE ET AL.: NATURAL LANGUAGE GRAMMATICAL INFERENCE WITH RECURRENT NEURAL NETWORKS 139



[61] D.S. Touretzky, ªRules and Maps in Connectionist Symbol
Processing,º Technical Report CMU-CS-89-158, Dept. of Compu-
ter Science, Carnegie Mellon Univ., Pittsburgh, Pa., 1989.

[62] D.S. Touretzky, ªTowards a Connectionist Phonology: The 'Many
Maps' Approach to Sequence Manipulation,º Proc. 11th Annual
Conf. Cognitive Science Soc., pp. 188-195, 1989.

[63] A.C. Tsoi and A.D. Back, ªLocally Recurrent Globally Feedfor-
ward Networks: A Critical Review of Architectures,º IEEE Trans.
Neural Networks, vol. 5, no. 2, pp. 229-239, 1994.

[64] R.L. Watrous and G.M. Kuhn, ªInduction of Finite State
Languages Using Second-Order Recurrent Networks,º Advances
in Neural Information Processing Systems 4, J.E. Moody, S.J. Hanson,
and R.P Lippmann, eds., pp. 309-316, San Mateo, Calif.: Morgan
Kaufmann, 1992.

[65] R.L. Watrous and G.M. Kuhn, ªInduction of Finite-State
Languages Using Second-Order Recurrent Networks,º Neural
Computation, vol. 4, no. 3, p. 406, 1992.

[66] R.J. Williams and J. Peng, ªAn Efficient Gradient-Based Algorithm
for On-Line Training of Recurrent Network Trajectories,º Neural
Computation, vol. 2, no. 4, pp. 490-501, 1990.

[67] R.J. Williams and D. Zipser, ªA Learning Algorithm for
Continually Running Fully Recurrent Neural Networks,º Neural
Computation, vol. 1, no. 2, pp. 270-280, 1989.

[68] Z. Zeng, R.M. Goodman, and P. Smyth, ªLearning Finite State
Machines with Self-Clustering Recurrent Networks,º Neural
Computation, vol. 5, no. 6, pp. 976-990, 1993.

[69] S. Lawrence, I. Burns, A.D. Back, A.C. Tsoi, and C.L. Giles,
ªNeural Network Classification and Unequal Prior Classes,º
Tricks of the Trade, G. Orr, K.-R. MuÈ ller, and R. Caruana, eds.,
pp. 299-314. Springer-Verlag, 1998.

Steve Lawrence graduated summa cum laude
from the Queensland University of Technology
(QUT), Australia, with highest honors in both
BSc and BEng degrees. He received his PhD
degree from the Department of Electrical and
Computer Engineering, University of Queens-
land, Australia. His awards include an NEC
Research Institute achievement award, ATERB
and APRA priority scholarships, a QUT univer-
sity medal and award for excellence, QEC and

Telecom Australia Engineering prizes, and three prizes in successive
years from the Australia Mathematics Competition. Dr. Lawrence is
currently working as a research scientist at NEC Research Institute in
Princeton, New Jersey. His research interests include information
retrieval, Web search, machine learning, neural networks, face recogni-
tion, speech recognition, financial prediction, and natural language. He
is a member of the IEEE.

C. Lee Giles is a senior research scientist in
computer science at NEC Research Institute,
Princeton, New Jersy, and an adjunct faculty
member of the Institute for Advanced Computer
Studies at the University of Maryland, College
Park. His current research interests are in novel
applications of neural computing, machine learn-
ing, agents and AI computing, multimedia,
computer architecture and systems, Internet
and Web research, signal processing and

control, language processing, time series and finance, and optical
processing. He is a fellow of the IEEE and a member of the AAAI, ACM,
INNS, OSA, and DIMACS, Rutgers University Center for Discrete
Mathematics and Theoretical Computer Science. He has served on or is
currently serving on the editorial boards of IEEE Intelligent Systems,
IEEE Transactions on Knowledge and Data Engineering, IEEE
Transactions on Neural Networks, the Journal of Computational
Intelligence in Finance, the Journal of Parallel and Distributed Comput-
ing, Neural Networks, Neural Computation, Applied Optics, and
Academic Press.

Sandiway Fong received the PhD and SM
degrees in computer science from the Massa-
chusetts Institute of Technology, Cambridge,
where he was the recipient of an IBM Graduate
Fellowship and a Kennedy scholarship. He
received his BSc(Eng) in computing science,
first class honors, from the Imperial College of
Science and Technology, University of London.
He is currently a research scientist at NEC
Research in Princeton, New Jersey. His re-

search interests include natural language processing and formal
linguistics.

140 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2000


