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Abstract— We analyze the susceptibility of the Internet
to random faults, malicious attacks, and mixtures of faults
and attacks. We analyze actual Internet data, as well as
simulated data created with network models. The network
models generalize previous research, and allow generation
of graphs ranging from uniform to preferential, and from
static to dynamic. We introduce new metrics for analyzing
the connectivity and performance of networks which im-
prove upon metrics used in earlier research. Previous re-
search has shown that preferential networks like the Inter-
net are more robust to random failures compared to uni-
form networks. We find that preferential networks, includ-
ing the Internet, are more robust only when more than 95%
of failures are random faults, and robustness is measured
with the average diameter. The advantage of preferential
networks disappears with alternative metrics, and when a
small fraction of faults are attacks. We also identify dy-
namic characteristics of the Internet which can be used to
create improved network models, allowing more accurate
analysis for the future Internet, for example facilitating the
design of network protocols with optimal performance in
the future, or predicting future attack and fault tolerance.
We find that the Internet has been becoming more prefer-
ential as it evolves. The average diameter has been stable or
even decreasing as the number of nodes has been increas-
ing. The Internet has been becoming more robust to ran-
dom failures over time, but has also become more vulnera-
ble to attacks.

Method Keywords— Simulation, Network measurement,
Graph theory, Statistics

Index Terms— fault, attack, robustness, scale-free net-
work, exponential network, evolving network, Internet,
node failure, network topology, network models

I. INTRODUCTION

Many biological and social mechanisms—from Inter-
net communications [1] to human sexual contacts [2]—

can be modeled using the mathematics of networks. De-
pending on the context, policymakers may seek to impair
a network (e.g., to control the spread of a computer or
bacterial virus) or to protect it (e.g., to minimize the In-
ternet’s susceptibility to distributed denial-of-service at-
tacks). Thus a key characteristic to understand in a net-
work is its robustness against failures and intervention.
As networks like the Internet grow, random failures and
malicious attacks can cause damage on a proportionally
larger scale — an attack on the single most connected hub
can degrade the performance of the network as a whole, or
severe millions of connections. With the ever increasing
terrorist threat, attack and fault tolerance becomes an im-
portant factor in planning network topologies and strate-
gies for sustainable performance and damage recovery.

A network consists of nodes and links (or edges), which
often are damaged and repaired during the lifetime of the
network. Damage can be complete or partial, causing
nodes and/or links to malfunction, or to be fully destroyed.
As a result of damage to components, the network as a
whole deteriorates: first, its performance degrades, and
then it fails to perform its functions as a whole. Mea-
surements of performance degradation and the threshold
of total disintegration depend on the specific role of the
network and its components. Using random graph termi-
nology [3], disintegration can be seen as a phase transition
from degradation — when degrading performance crosses
a threshold beyond which the quality of service becomes
unacceptable.

Network models can be divided into two categories ac-
cording to their generation methods: static and evolving
(growing) [4]. In a static network model, the total num-
ber of nodes and edges are fixed and known in advance,
while in an evolving network model, nodes and links are



ACCEPTED FOR PUBLICATION IN THE IEEE INFOCOM 2003, MARCH, 30 - APRIL, 03, 2003, SAN FRANCISCO, U.S. 2

added over time. Since many real networks such as the In-
ternet are growing networks, we use two general growing
models for comparison — growing exponential (random)
networks, which we refer to as the GE model, where all
nodes have roughly the same probability to gain new links,
and growing preferential (scale-free) networks, which we
refer to as the Barabasi-Albert (BA) model, where nodes
with more links are more likely to receive new links. Note
that [5] used two general network models, a static random
network and a growing preferential network.

For our study, we extend the modeling space to a con-
tinuum of network models with seniority, adding another
dimension in addition to the uniform to preferential di-
mension. We extend the simulated failure space to include
mixed sequences of failures, where each failure corre-
sponds to either a fault or an attack. In previous research,
failure sequences consisted either solely of faults or at-
tacks; we vary the percentage of attacks in a fault/attack
mix via a new parameter 8 which allows us to simulate
more typical scenarios where nature is somewhat mali-
cious, e.g., with 8 ~ 0.1 (10% attacks).

We analyze both static and dynamic susceptibility of
the Internet to faults and attacks. In static analysis, we
first reconfirm previous work of Albert et al. [5]. Based on
these results, we address the problems of existing metrics,
the average diameter and the S metric, and propose new
network connectivity metrics, K and DIK. Second, we put
that result to test by diluting the sequence of faults with
a few attacks, which quickly strips scale-free networks of
any advantage in resilience. Our study shows that scale-
free networks including the Internet do not have any ad-
vantage at all under a small fraction of attacks (8 > 0.05
(5%)) with all metrics. Moreover, we show that the In-
ternet is much more vulnerable under a small fraction
of attacks than the BA model — even 1% of attacks de-
crease connectivity dramatically. In dynamic analysis, we
trace the changes of the Internet’s average diameter and
its robustness against failures while it grows. Our study
demonstrates that the Internet has been becoming more
preferential over time and its susceptibility under attacks
has been getting worse. Our results imply that if the cur-
rent trend continues, the threat of attack will become an
increasingly serious problem in the future.

Finally, we analyze 25 Internet topologies examined
from November, 1997 to November, 1999, and perform
a detailed analysis of dynamic characteristics of the In-
ternet. These results provide insight into the evolution of
the Internet, may be used to predict how the Internet will
evolve in the future, and may be used to create improved
network models.

Il. PREVIOUS WORK

Network topology ties together many facets of a net-
work’s life and performance. It is studied at the overall

topology level [6], link architecture [7], [8], and end-to-
end path level [9], [10]. Temporal characteristics of a
network are inseparable consequences of its connectivity.
This linkage is apparent from [11], [12], [13]. Scaling
factors, such as power-law relationships and Zipf distri-
butions, arise in all aspects of network topology [6], [14]
and web-site hub performance [15].

Topology considerations inevitably arise in clustering
clients around demanding services [16], strategically po-
sitioning “digital fountains” [17], and mobile positioning
[18] et ad infinitum. In QoS and anycast, topology dictates
growing overlay trees, reserved links and nodes, and other
sophisticated connectivity infrastructure affecting over-
all bandwidth through hubs and bottlenecks [19], [20],
[21]. Other special connectivity infrastructures include
P2P netherworlds [22] and global, synchronizable storage
networks with dedicated topology and infrastructure for
available, survivable network application platforms such
as the Intermemory [23], [24], [25].

An important aspect which shows up more and more
is fault control [26]. Several insights have come from
physics, with the cornerstone work by Barabasi [5],
and further detailed network evolution models, including
small worlds and Internet breakdown theories [27], [28],
[4], [29], [30], [31], [32].

Albert, Jeong, and Barabasi [5] examine the dichotomy
of exponential and scale-free networks in terms of their
response to errors. They found that while exponential
networks function equally well under random faults and
targeted attacks, scale-free networks are more robust to
faults but susceptible to attacks. Because of their skele-
tal hub structure, preferential networks can sustain a lot
of faults without much degradation in average distance,
d, a metric also introduced in [5] to aggregate connectiv-
ity of a possibly disconnected graph in a single number.
According to the same metric, uniform networks behave
in the same way under faults and attacks when a small
percentage (about 5%) of the network is destroyed, while
preferential networks weather faults much longer but fail
pathetically under attacks on their hubs.

I11. NETWORK MODEL AND SIMULATION
ENVIRONMENT

Network models can be divided into two categories ac-
cording to their generation methods: static and evolving
(growing) [4]. In an evolving model, nodes are added over
time — time goes in steps, and at each time step a hode and
m links are added. The probabilities in such a network are
time-dependent (because the total number of nodes/edges
changes with each time-step). In a static network model,
the total number of nodes and edges are fixed and known
in advance. Note that this difference between the models
affects the probability of each node to gain new edges —
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old nodes have a higher probability than new nodes to gain
new edges in an evolving network model. Both classes of
models can be placed at the edges of a seniority contin-
uum, defined as follows. Seniority is a probability o that
all of the m edges of this iteration will be added immedi-
ately, or at the end of time. A seniority value of 1 corre-
sponds to a pure time-step model, and a seniority value of
0 represents a pure static model.

In our simulations, we use a modified version of the
model in [33] for comparison with the Internet. The model
contains a parameter, o, which quantifies the natural intu-
ition that every vertex has at least some baseline probabil-
ity of gaining an edge. In [33], both endpoints of edges are
chosen according to a mixture of probability « for prefer-
ential attachment and 1 — « for uniform attachment. Let
k; be the degree of the ith node and m denotes the number
of edges introduced at each time-step. If mg represents
the number of initial nodes and ¢ denotes the number of
time-steps, the probability that an endpoint of a new edge
connects to vertex i is

k;
I(k;) = a2mt

+(1-0a)

mo +t

An « value of 0 corresponds to a fully uniform model,
while « values close to 1 represent mostly preferential
models.

When an evolving network is generated, we initially
introduce a seed network with two nodes and an edge
between them (ng = 2, eg = 1).!' Then, at each
time-step, after a new node is introduced, new edges
can be located with two different edge increment meth-
ods: external-edge-increment [5], [1] and internal-edge-
increment [33]. In a growing exponential network with
the external-edge-increment method, a new node is con-
nected to a randomly chosen existing node. However,
with internal-edge-increment, new edges are added be-
tween two arbitrary nodes chosen randomly. In our exper-
iment, unlike [33], we apply external-edge-increment in-
stead of internal-edge-increment because preferential net-
works generated by internal-edge-increment contain too
many isolated nodes. Note that when o equals 1, pref-
erential networks in our experiments are the same as the
Barabasi-Albert (BA) model in [5], [1], which is very sim-
ilar to the network in [33] with o = 0.5.

Failures can be characterized as either faults or attacks
[5]. Faults are random failures, which affect a node inde-
pendent of its network characteristics, and independent of
one another. On the other hand, attacks maliciously target
specific nodes, possibly according to their features (e.g.,
connectivity, articulation points, etc.), and perhaps form-

1 A seed network is needed to generate a network using the preferen-
tial model — the probabilities of new links for all initial nodes att = 1
are zero if there are no initial links.
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Fig. 1.  Phase space of the network models in our study. We con-
ducted experiments with both the evolving network family (pure time-
step models) and the static network family. We focus on the evolving
network family because most real networks are considered to be evolv-
ing networks.

ing a strategic sequence. The topology of the network af-
fects how gracefully its performance degrades, and how
late disintegration occurs. To measure robustness of net-
works against mixed failures, we use g for characterizing
failures. With probability 1 - 3, a failure is a random fault
destroying one node chosen uniformly. Otherwise (prob-
ability ), the failure is an attack that targets the single
most connected node. When $ equals 1, all failures are
attacks, and when $ equal 0, all failures are faults.

Figure 1 shows the phase space of different network
models. We conducted experiments with both the evolv-
ing network family (pure time-step models) and the static
network family. However, in this paper we mainly com-
pare the robustness of two different types of evolving
networks: evolving exponential (uniform) networks and
evolving scale-free (preferential) networks, because many
real networks, such as the Internet and the World Wide
Web, are considered to be evolving networks.

We implemented our simulation environment in C++
with LEDA [34]2. The networks are derived from LEDA’s
graph type, with additional features and experiments as
separate modules. We do not allow duplicate edges and
self-loops in our models and we delete all self-loop links
from the Internet.

Like [5], the Internet’s robustness against failures can
be measured from a snapshot of the Internet. We call this
kind of analysis Static Analysis. However, the Internet
is a growing network and its topology changes continu-
ously. Does the growth mechanism of the Internet affect
its robustness? How is the Internet’s robustness changing
while it is growing? Will performance and robustness of
the Internet improve in the future? To answer these ques-
tions, we analyze historical Internet topologies. We call

2Library of Efficient Data types and Algorithms (LEDA), available
at http://www.algorithmic-solutions.com.
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this Dynamic Analysis. In this paper, we mainly compare
the robustness of the Internet with two different network
models, the BA model and a growing exponential network
model (GE model).

IV. STATIC ANALYSIS OF THE INTERNET’S
SUSCEPTIBILITY TO FAULTS AND ATTACKS

A. Metrics

As noted in [35], finding a good connectivity metric re-
mains an open research question. [5] introduced two im-
portant metrics, d and S. The average diameter or average
shortest path length, d , is defined as follows: let d(v,w)
be the length of the shortest path between nodes v and w;
as usual, d(v,w) = oc if there is no path between v and
w. Let IT denote the number of distinct node pairs (v, w)
such that d(v, w) # oo where v # w.

E(v,w)EH d(v, w)

d=
||

where v # w. To evaluate the reliability of the d metric,
we started with measuring the robustness of three different
evolving networks under faults or attacks only. Our exper-
iments are somewhat different from [5]. We compared be-
haviors of the growing scale-free network (the BA model)
and the Internet with those of the growing random net-
work (the GE model), while [5] used static exponential
networks for comparison.

As we expected, our results are very similar to [5];
A growing exponential network performs worse under
faults, but better under attacks. However, as we can see
in Figure 2(a), d is not always representative of the overall
connectivity because it ignores the effect of isolated nodes
in the network. Note that d is decreasing rapidly after a
certain threshold under attacks only, showing that when
the graph becomes sparse, d is less meaningful. The other
metric, S, is defined as the ratio of the number of nodes in
the giant connected component divided by the total num-
ber of nodes. One might notice the different characteris-
tics of the two metrics. Shorter average diameter means
shorter latency. It demonstrates how fast a network can
react when an event occurs, providing an indication of the
performance of a network. On the other hand, S mainly
considers the networks’ connectivity, showing how many
nodes are connected to the largest cluster.

Since the S metric only considers the relative size of
the largest connected component, and does not character-
ize the entire network, we created a new metric, K, that
describes the whole network connectivity. K is defined as
follows: let ¥ be the number of distinct node pairs, and 11
is defined as above. Then

K measures all connected node-pairs in a network. In Fig-
ure 2, we can see that the Internet shows the best robust-
ness under faults according to the diameter. However, if
we use the K or S metrics, the Internet is most vulnerable
even under faults.

One weakness of the K metric is that it does not con-
sider the effect of redundant edges. The K value for a
connected graph with n nodes and n-1 edges® (K = 1,
d > 1) is the same as that of a fully connected graph? (K
=1, d = 1) even though the diameter and connectivity
of each graph is quite different. To solve this problem,
we introduce a modified diameter metric, which we call
Diameter-Inverse-K (DIK). DIK is defined as:

DIK =

Y

The DIK metric uses the K metric as a penalty parameter
for sparse graphs and measures both the expected distance
between two nodes and the probability of a path existing
between two arbitrary nodes. Figure 2 demonstrates that
d significantly decreases when it reaches a certain thresh-
old, while DIK continuously increases. Note that the In-
ternet is most vulnerable even under faults if we measure
network connectivities with S or K.

B. Robustness against Mixed Failures

In real life, it is somewhat unrealistic to expect that fail-
ures are either all faults or all attacks. One may expect
that failures are a mixture of attacks and faults, e.g., only
a small fraction of failures are attacks while most failures
denote faults. In the following experiments, network de-
struction was performed until 10% of the total number of
nodes was destroyed, using different values of 3 (proba-
bility of attack). We performed 10 runs in each case with
different seed numbers. The results in Figure 3 are the
average of the ten runs. We define the average diameter
ratio as dy/d, where d, denotes the average diameter of
the initial network, and d; is the average diameter after
10% of the nodes have failed. Similarly, the DIK ratio is
defined as DIK;/DIK, where DIK, is the DIK value
of the original network, and DIK is the DIK value af-
ter 10% of the nodes have failed. Figure 3 shows that: (a)
Although there seems to be an advantage for scale-free
networks under pure faults, their disadvantage under at-
tacks is much larger, and even a small fraction of attacks,
B > 0.05 (5%), in a mix of failures removes any overall
advantage of the scale-free networks. (b) The K metric is
even more unforgiving to the scale-free networks, show-
ing no advantage under any 8 > 0.01 (1%). Note that
the Internet shows the worst robustness even under faults

3A graph where all nodes are connected to the giant connected com-
ponent.
4 A graph where all nodes are connected to all other nodes.
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Fig. 2. Robustness against faults/attacks; We used the AS (Autonomous System) level topology of the Internet with 6474 nodes and 13895 edges
from http://moat.nlanr.net/Routing/rawdata/, which was examined on Jan. 2, 2000. After removing self-loops, the number of edges decreased to
12572. For growing network models, we set m equal to two and generated networks with 6474 nodes. f denotes the number of failure nodes
divided by the total number of nodes in the original network. Two nodes and an edge between them are initially introduced when we generate
the network (no = 2, eg = 1). (a) and (c): (a) shows d for the Internet, and for the BA and GE models. Note that d significantly decreases when
it reaches a certain threshold, while DIK continuously increases. (b) and (d): The S and K metrics do not agree with the previous observations
using d. The Internet is most vulnerable under both attacks and faults using these metrics. Even though Sand K behave very similarly, Sonly
considers the relative size of the giant connected component, while K considers all node pairs which are connected. We set DIK to zero when d
and K becomes zero. Note that smaller is better for d and DIK, but larger is better for Sand K.
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only. Figure 3(c) clearly shows the vulnerability of the In-  robustness.
ternet under a small fraction of attacks. DIK is increasing

very rapidly and even 1% of attacks significantly hurts its Ve also measured the effect of preferential attachment
and observed the following trends. First, more preferen-
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While « is increasing, the average diameter of the networks generated
is decreasing. Results are the average of 10 different networks with
different seed numbers.

tial networks have shorter average diameters. We gener-
ated networks with various o and observed this trend, as
shown in Figure 5. The most preferential network with
n nodes and n — 1 edges has all nodes connected to the
most popular node. The diameter from the most popular
node to others is one and the diameter between any two
nodes except the most popular node is two, therefore the
average diameter is less than two, and the network has the
smallest diameter of all possible networks with n nodes
and n — 1 edges. Second, more preferential networks are
more robust under faults only, but more vulnerable un-
der even a small fraction of attacks if we measure robust-
ness using the average diameter. Figure 4 demonstrates
that when « is close to 1, even a small fraction of attacks
(8 > 0.01 (1%)) cancels out the advantage of the scale-
free networks and hurts their topologies more. Note that
if the average diameter reaches a certain threshold, it de-
crease rapidly and becomes meaningless. Third, with the
K metric, a preferential network does not show any no-
ticeable advantage even under attack, and an exponential
network dominates all kinds of failures.

V. DYNAMIC ANALYSIS OF THE INTERNET’S
SUSCEPTIBILITY TO FAULTS AND ATTACKS

In this section, we measure changes in the Internet’s
robustness against failures over time. We sampled eight
Internet topologies from different points in time from
http://moat.nlanr.net/Routing/rawdata/. Self-loop links were
removed. First, we measured the average diameter. We
also generated the BA model and the GE model and mea-
sured their average diameters. While the number of nodes
in the Internet increased, the average diameter actually de-
creased, which can not be explained by the BA model.
Both the BA and GE models predict an increasing aver-
age diameter as the number of nodes increases, as shown
in Figure 6.

Next, we trace the robustness of the Internet while it
is growing. For each Internet topology, we destroy 10%
of the total number of nodes and measure robustness with
three different metrics — average diameter, K, and DIK.
Figure 7 (a) and (d) show the robustness of the Internet
with the average diameter. The average diameter ratio of
the Internet is decreasing while the number of nodes is
increasing under pure faults. Note that the average diam-
eter ratios of other network models are fluctuating and do
not show any clear trend. Figure 7(d) is misleading be-
cause the Internet topology becomes too sparse after 10%
of the nodes are removed. Note that the average diame-
ter is meaningless when a graph contains many isolated
nodes. With the K and DIK metrics, we observe a clear
trend: the Internet becomes more robust under faults, but
more vulnerable under attacks while it grows. In other
words, the Internet has been becoming more preferential
over time and the growth mechanism of the Internet fo-
cuses on maximizing overall performance (decreasing av-
erage diameter) rather than robustness against attacks, and
the Internet’s susceptibility under attacks will be a more
serious problem in the future if this trend continues.
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Fig. 7. Dynamic characteristics of the Internet; d,, K, and DIK, are defined as the average diameter, K, and DIK of the original networks
and E K; and DIK denote the diameter, K, and DIK after 10% of the nodes are removed. Results are the average of ten runs. (a) and
(d): (a) shows that the average diameter ratio of the Internet is decreasing while the number of nodes are increasing under pure faults. (d) is
misleading because the Internet topology becomes too sparse after 10% of nodes are removed. (b) and (e): While the Internet is growing, the
K ratio of the Internet is increasing under faults but decreasing under attacks. (c) and (f): (f) also agrees with previous observations that the
Internet becomes more robust under faults but more vulnerable under attacks while it is growing. Note that smaller is better for d and DIK, but

larger is better for Sand K.

VI. DYNAMIC CHARACTERISTICS OF THE INTERNET

Characteristics of the Internet topology and its robust-
ness against failures have been widely studied in [6], [14],
[5], [1], focusing on extracting common regularities from
several snapshots of the Internet topology. Those char-
acteristics, e.g., power-law of the degree distribution, can
be called Static Characteristics because of their consis-
tency over time. Several Internet topology generators have
been introduced [36], [14], [37], [1], [38], [39] based on
the static characteristics. Recent research has argued that
the performance of network protocols can be seriously ef-
fected by the network topology [40]. Unfortunately, us-
age of existing Internet topology generators to develop
network protocols is significantly limited for the follow-
ing reasons. The Internet is a growing network and its
topology and characteristics can change over time. For
example, the clustering coefficient of the Internet has been
growing and the average diameter of the Internet has been
decreasing during the past few years [39]. We call these
Dynamic Characteristics of the Internet. Since current
Internet topology generators are designed using only the
static characteristics of the Internet, they suffer from a

lack of ability to predict future Internet topology. Cur-
rently, the best method to simulate network protocols is
using the actual Internet topology instead of using Inter-
net topology generators, however this limits our ability to
develop, for example, network protocols that best fit fu-
ture conditions. Most existing Internet topology genera-
tors fail to explain some of the dynamic characteristics of
the Internet that we have found. For example, we found
that the average degree of the Internet is growing but most
Internet topology generators do not show this character-
istic. We believe that the dynamic characteristics should
be considered when an Internet topology generator is de-
signed.

In order to analyze the dynamic characteristics of the
Internet topology in detail, we sampled 25 Internet topolo-
gies from http://moat.nlanr.net/Routing/rawdata/®. We first
analyze the number of total nodes, node births, and node
deaths in the Internet topologies. Since we cannot guar-
antee that our data set covers whole Internet topologies,

5They were examined on the 15th of each month from November,
1997 to November, 1999. Since most Internet topology generators and
previous work does not consider self-loop links, we removed all self-
links (around 9% of total links).
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eight topologies of the Internet, examined on 11/15/1997 (3037 nodes),
04/08/1998 (3564 nodes), 09/08/1998 (4069 nodes), 02/08/1999
(4626 nodes), 05/08/1999 (5031 nodes), 08/08/1999 (5519 nodes),
11/08/1999 (6127 nodes), and 01/02/2000 (6474 nodes), and measured
their diameters. For comparison, we also generated the BA and GE
models and measured their average diameters. We generated each net-
work model ten times with different seed numbers and calculated aver-
age values. Each d; is divided by d,, the diameter of the first network
with 3037 nodes. d, is 3.78 for the Internet, 4.51 for the BA model,
and 5.20 for the GE model. Note that as the networks are growing, the
diameter of the BA and GE models increases, while the diameter of
the Internet decreases, indicating a growth mechanism that maximizes
performance (minimizing diameter and latency).

and a node may not be discovered because of a temporary
failure, we define that a node is dead only when it does
not appear in future Internet topologies. For example, a
node in November, 1997 is considered to be deleted only
when it never appears from December, 1997 to November,
1999.

Figure 8(a) shows clear regularity in the number of total
nodes, added nodes, and deleted nodes over the period of
November, 1997 to November, 1999. We also measured
the number of total links, added links, and deleted links
as shown in Figure 8(b). The total number of nodes and
edges increases quadratically and we can predict the num-
ber of nodes in the near future with the equations given in
(a) and (b).

We also reconfirm the previous result that the Internet
has been becoming more preferential. For this purpose,
we introduce a new metric Preferentiality (PF). Let n be
the number of nodes in the network and r be a rank of a
node according to its degree. The highest degree node has
rank one and any two nodes cannot have the same rank.
k, and kg4 denote the degree of rank r nodes and the
average degree. Then PF is defined as:

P _(rxky)

r=1

nx(n+1
Kang * (2 )

PF =

This metric shows how preferential the network is. PF
values close to 0 mean that the network is extremely pref-
erential, and PF values close to 1 means the network
is extremely random. The PF value of the Internet is
0.40 ~ 0.39 while that of the BA and GE models are

0.61 and 0.70. Our results show two interesting observa-
tions: First, the Internet is a much more preferential net-
work than the BA model and its susceptibility under at-
tacks is much larger than even the general scale-free net-
works such as the BA model. Second, the Internet has
been becoming more preferential as it grows and its vul-
nerability has been increasing. Figure 8(c) clearly shows
this trend.

Average degrees of the Internet topologies are shown in
Figure 9(a). In most of the time-step based Internet topol-
ogy generators including [1], [38], [39], the number of
links added at each time-step is fixed. However, the aver-
age degree of the Internet is increasing linearly while the
number of nodes is increasing, which implies that previ-
ous time-step and fixed number of node/edge addition ap-
proaches may not generate the proper Internet topologies.
Links can be introduced by two main processes. When a
new node is introduced, new links are introduced which
connect the new node to existing nodes. We previously
defined this process as external edge increment. Other-
wise, links can be added between two existing nodes, de-
fined as internal edge increment earlier. In a few cases,
we found that a link is introduced between two new nodes
and those cases are ignored. In general, 1.3 links per new
node are added by external edge increment and 1.9 links
per new node are added by internal edge increment. A to-
tal of 3.2 links per new node are added over time. Note
that internal edge increment affects link increment more
than external edge increment. 71 ~ 66% of new nodes
are introduced with a single link and 25 ~ 31% of new
nodes are added with two links. Only 3 ~ 4% of new
nodes are introduced with more than two links. Like link
births, a link can be discarded two ways. When a node is
dead, links connected to the node are broken. Also, a link
can die when any one of the connected nodes decides to
be disconnected from the other. We define the former as
external edge death and the latter as internal edge death.
Node death is not the main factor in link death — link death
frequently happens without node death. Around 79% of
dead links are broken due to internal edge death. In gen-
eral, the average number of dead links due to node death
increased slightly over time. This can be explained since
the average degree of the Internet is increasing. Around
1.1 ~ 1.5 links were broken when a node was discarded.
The average number of internal edge deaths is more than
three times larger than that of external edge deaths in the
same time period. 8.7 ~ 5.5 links per node death are dis-
carded during November, 1997 to November, 1999. Note
that the average number of link deaths per node death was
increasing; the death rate of links overcomes the death rate
of nodes. One of the interesting observations for link and
node death is that more than 76% of dead nodes had de-
gree one, but less than 18% of dead nodes had degree two.
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different seed numbers.

Note that there are almost the same number of nodes with
degree one and two in the Internet. It clearly shows that
less popular nodes are more likely to die.

Figure 10(a) shows that the fraction of nodes with de-
gree one in the Internet is decreasing while that of nodes
with degree two is increasing. Note that around 70% of
nodes have degree one or two. Figure 10 (b) and (c)
clearly show the limitations of the BA model-like topol-
ogy generators. First, there are no nodes with degree one.
The results strongly imply that the proposal of [39] is a
better model for the Internet. In this proposal, when a
new node is added, a node and a single link are introduced
with probability «, but a node and two links are introduced
with probability 1 — «. Second, several complex mecha-
nisms are involved with the growth of the Internet. Our
simple growing network model only incorporates external
edge increment, missing other important factors in the In-
ternet’s growth — internal edge increment, internal edge
death, and external edge death.

VII. FUTURE WORK

Our study may be extended in various ways, for exam-
ple:

« Internet topology generator
Currently, we are designing a new Internet topology
generator which fits not only the static characteristics
but also the observed dynamic characteristics of the
Internet. This generator can be used for simulation
to develop network protocols aiming to have optimal
performance in the future.

« Metrics
New overall connectivity or QoS metrics can be cre-
ated, for example one possibility is k-disjoint paths:
how many paths are there, on average, between any
two nodes, which have at least k different edges?
Novel approaches are also desirable, soliciting actual
survivability/performance degradation metrics from
other network practitioners.

« Overall performance degradation caused by local
network congestion
Instead of attacking the most popular nodes, selected
edges can be blocked. If user requests in the network
increase, the number of requests in the most popular
links will increase and may be blocked by network
congestion. How will the network as a whole be af-
fected by local network congestion?

VIIl. CONCLUSIONS

In our study, we first re-evaluated two basic connectiv-
ity metrics, average diameter and S. The average diame-
ter may be a good metric for measuring the performance
of networks, but is not always representative of the over-
all network connectivity. The S metric only considers the
relative size of the largest component and ignores other
components. To analyze the Internet’s susceptibility to
faults and attacks, we introduced two new metrics, K and
DIK. Unlike S, K measures all connected node-pairs in a
network. Also, unlike average diameter, DIK is still valu-
able in sparse graphs, and incorporates both the average
expected distance between two nodes, and the probability
of a path existing between two arbitrary nodes. We also
examined the robustness of the Internet under mixed fail-
ures. We found that any advantage of scale-free networks,
including the Internet, disappeared when a small fraction
of failures are attacks, or when using metrics other than
the average diameter. We also conducted dynamic anal-
ysis of the Internet’s susceptibility to attacks and faults,
and discovered two interesting results; First, the Internet
is much more preferential than the BA model, and its sus-
ceptibility under attacks is much larger than even general
scale-free networks such as the BA model. Second, the
growth mechanism of the Internet stresses maximizing
performance, and the Internet is evolving to an increas-
ingly preferential network. If this trend continues, attacks
on a few important nodes will be a more serious threat in
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Fig. 9. Dynamic characteristics of the Internet — average degree, creation of nodes and links, and death of nodes and links; (a) In most time-step
based Internet topology generators including [1], [38], [39] , the number of links added at each time-step is fixed. However, the average degree
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since November, 1997. In general, 1.3 links per new node are added by external edge increment, and 1.9 links per new node are added by
internal edge increment. A total of 3.2 links per new node are added over time. Note that internal edge increment affects link increment more
than external edge increment. (c): For external edge increment, 71 ~ 66% of new nodes are introduced with a single link and 25 ~ 31% of
new nodes are added with two links. Only 3 ~ 4% of new nodes are introduced with more than two links. (d) and (e): External edge death is
not a main factor in link death. Only about 21% of dead links were due to node deletion and 79% of link death were made without node death.
d, and d. denote the number of nodes and links deleted since November, 1997. The number of internal edge deaths per node death are more
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1997 to November, 1999. (f): d,,x denotes the number of degree k£ nodes deleted since November, 1997. More than 76% of destroyed nodes
have degree one even though there are almost the same number of nodes with degree one and two in the Internet. This figure clearly shows that
less popular nodes are more likely to die.

the future. Finally, we addressed dynamic characteristics
of the Internet in detail, finding that:

The number of nodes and links has been increasing
quadratically over time.

The average degree of the Internet has been increas-
ing linearly.

71 ~ 66% of new nodes are introduced with single
links and 25 ~ 31% of new nodes are introduced
with two links. Only 3 ~ 4% of new nodes are intro-
duced with more than two links.

Two edge increment mechanisms — external edge in-
crement and internal edge increment — affect link
birth. In general, 1.3 links per new node are added
by external edge increment, and 1.9 links per new
node are added by internal edge increment. A total

of 3.2 links per new node are added over time.

Node death is not the main factor in link death. Link
death frequently happens without node death. Only
about 21% of dead links are due to node death, while
79% occur without node death.

Less popular nodes are more likely to die. More than
76% of dead nodes have degree one, but less than
18% of dead nodes have degree two. Note that there
are almost the same number of degree-one nodes and
degree-two nodes. Only 6% of dead nodes have de-
gree more than two.

The observed characteristics of the Internet topology
shows that existing network generators not only lack
the ability to predict future Internet topologies, but also
are not able to explain or generate many characteristics.
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can not be explained by our network model.

Based on our analysis, we are currently designing new In-  [16]
ternet topology generators.
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