
On-Line Prediction of Multiprocessor Memory Access Patterns

M.F. Sakr1,2, C. L. Giles1,5, S. P. Levitan2, B. G. Horne1, M. Maggini4, D. M. Chiarulli3

1NEC Research Institute, Princeton, NJ, 08540
sakr@research.nj.nec.com

2EE Department, University of Pittsburgh, Pittsburgh, PA, 15261
3CS Department, University of Pittsburgh, Pittsburgh, PA, 15260

4Universita di Firenze Dipartimento di Sistemi e Informatica Via di Santa Marta, 3, 50139 Firenze, Italy
5UMIACS, University of Maryland, College Park, MD 20742

ABSTRACT

A neural network based technique is introduced which hides the control latency of reconfigurable
interconnection networks (INs) in shared memory multiprocessors. Such INs require complex
control mechanisms to reconfigure the IN on demand, in order to satisfy processor-memory
accesses. Hiding the control latency seen by each access improves multiprocessor performance
significantly. The new technique hides control latency by employing a time-delay neural network
(TDNN) as a prediction technique that learns the current processor-memory access patterns and
predicts the need to reconfigure the IN. Training and prediction of the TDNN is performed on-line.
Based on three experiments, the TDNN is able to learn repetitive patterns and predict the need to
reconfigure the IN thus, effectively hiding control latency of processor-memory accesses.

1 Introduction
Large scale multiprocessor systems need low-cost, highly-scalable, and dynamically reconfigurable interconnection
networks (INs) [8]. Such INs offer a limited number of communication channels which are configured on demand to
satisfy required processor-memory accesses. An IN controller is required to determine the IN configuration based on
processor requests. Hence, the end-to-end latency incurred by such INs can be characterized by three components:
control time, which is the time needed to determine the new IN configuration and to physically establish the paths in
the IN; launch time, the time to transmit the data into the IN; andfly time, the time needed for the message to travel
through the IN to its final destination. Launch time can be reduced by using high bandwidth opto-electronic INs, fly
time is relatively insignificant in such an environment since the end-to-end distances are short. Therefore, control
time dominates the communication latency.

In a demand driven environment, a processor accessing a memory module makes a request to the IN controller to
establish a path (reconfigure the IN) that satisfies the processor’s request. In a multiprocessor system executing a par-
allel application, the memory-access requests made by the processors follow a pattern based on the application. The
goal of this work is to provide a technique that predicts a processor’s request and performs the IN configuration prior
to that request, thus hiding the control latency. To accomplish this, the predictive technique must learn the processor-
memory access patterns and predict changes in the pattern. The effect of hiding control latency is to reduce the major
component of communication latency in multiprocessor systems.

In this paper we examine how neural networks perform at predicting processor-memory access patterns to aid in
reconfiguring an IN in a shared memory multiprocessor environment. While other prediction mechanisms could be
used, neural networks have been quite successful as nonlinear predictors [9]. Our experiments use simulated on-line
neural network learning and prediction using the memory access patterns of three parallel applications:temperature
propagation, matrix multiply, and1-D FFT. The next section presents the environment of our experiment where we
describe the shared memory multiprocessor model and the use of neural networks as predictors. In section 3, we
present the organization of our experiments. Finally, we discuss our results and make projections about future direc-
tions of research.

2 Model
The shared memory multiprocessor (SMM) model used consists ofN processors, D memory modules, a reconfig-
urable IN and an IN controller (Figure 1). Such INs can be configured to achieve any path between a processor and a
memory module. However, at any given time only a subset of these paths are available. Because of contention for
paths, the IN must be dynamically reconfigured to satisfy the set of current processor-memory accesses. In a typical

Proceedings of the IEEE International Conference on Neural Networks, p. 1564, (1996)

demand driven environment, when a processor needs to access a memory module it issues a request to the IN control-
ler. The controller receives requests from all processors and reconfigures the IN to provide the paths necessary to ser-
vice these requests.

The SMM model used in this paper employs an IN control system based on a different paradigm, that ofstate
sequence routing (SSR) [2]. This paradigm takes advantage of the locality characteristics exhibited in memory access
patterns [3] and reconfigures the network through a fixed set of configurations in a repetitive manner. The set of IN
configurations consists of sets of compatible (non-blocking) paths called a state sequence. The IN controller, used for
state sequence routing, consists of astate generator which is controlled by astate transformer (Figure 1). The state
transformer, based on processor requests, determines the set of configurations. The state generator broadcasts this
fixed length state sequence repetitively to each of the processors, memory modules, and switching elements of the IN.
Thus, a processor that needs to access memory issues afault (or a request) to the state transformer only if the current
state sequence does not already include the required path to a memory module. In response to the fault, the state
transformer adds the required path to the state sequence, possibly by removing an existing path.

SSR based control differs from demand driven control in that the IN controller needs only to respond to the changes
in the memory access pattern and establish the initial paths; it is not required to respond to individual memory access
requests. The state sequence router exploits the memory access locality inherent in these patterns by re-using the
sequence of states, or paths, repetitively. Using SSR the average control latency, L, incurred by each access can be
shown to be:L = [(1-p)(k/2)]+[p(f+k)] wherep is the probability of a fault,k is the sequence length, andf is the fault
service time [2]. If the required path exists in the state sequence, there is no fault and the latency is just the time for
the path to come around in the sequence. However if the path does not exist, a fault must be generated and serviced
before the memory access can occur.

Our goal is to provide a technique that reduces the probability of a fault by predicting changes in memory access pat-
terns and informing the controller of a needed transformation before a fault occurs. Thus, the controller is able to
transform the state sequence to include the soon-to-be-needed paths avoiding the latency incurred by the fault.

Since the processor-memory access patterns change dynamically and thus can be modeled as a time series, any pre-
diction mechanism that learns the pattern can eventually predict changes in the pattern. However, any mechanism
would need to maintain a history of the memory access behavior. Therefore for this preliminary investigation, we
chose to use a simple time delay neural network (TDNN) [4].

MD-2

MD-1PN-1

PN-2

M1

M0

P1

P0

Reconfigurable
Interconnection
Network (IN)

broadcast current IN configuration

Current set ofk configurations
(shift register)

Determines the sequence
of paths needed based

on processor requests (faults)

IN Controller (based on State Sequence Routing)

State Transformer

State Generator

(controller)

Fig. 1: A shared memory multiprocessor system.

3 Experimental Procedures
We performed three experiments to evaluate our technique [7]. Since our simulation environment is trace driven, each
experiment consists of three distinct phases: First, we generate the raw memory traces of a parallel program and
translate these traces into memory access patterns. Second, we use the memory access patterns as input to a TDNN to
perform on-line training and prediction. Third, we evaluate the neural network predictions by simulating the multi-
processor behavior with and without the TDNN predictions. A more detailed description of each phase can be found
in [6].

3.1 Extraction of Access Patterns

Using a trace driven shared memory multiprocessor (SMM) simulator [1], we generate the raw processor-memory
accesses of a parallel program run on an 8x8 multiprocessor. Since the SMM simulator only provides relative mem-
ory access times for each processor, the accesses are serialized and then translated to a binary matrix form using a
windowing mechanism illustrated in Figure 2. The top time line of Figure 2 depicts the serialized references. All ref-
erences taking place during a fixed time window are combined in a single processor-memory access matrix. For
example, if processor P5 accessed memory M3 at least once in the time period covered by a window then a “1” is
placed in the matrix at column 5, row 3. For these experiments, large window sizes were used to compress the infor-
mation in the traces.

This mechanism increases the relative number of changes in the pattern which was found to be necessary for the
TDNN to learn these memory access patterns. Also, the on-line learning and prediction task is simplified by using an
independent TDNN for each processor. Therefore, each TDNN trains on and attempts to predict sequences of mem-
ory access vectors of a single processor.

3.2 Neural Network Training and Prediction

The same TDNN architecture is used for all three experiments. The number of input neurons is 8 since each processor
accesses 8 memory modules. Preliminary experimentation showed that a tapped delay line of length 5 suffices to give
good prediction performance. Therefore the total number of input neurons is 48 (8× (1 input + 5 taps)). Preliminary
testing showed that a single hidden layer of 10 neurons is large enough for good prediction performance. The number
of output neurons is 8 since the TDNN predicts the access of a single processor to 8 memory modules.

P0-M1 P3-M7 P2-M0 P5-M6 Pn-1-M2 P2-M2 P6-M0 P0-Md-1

P0 Pn-1

M0

Md-1

Fig. 2: Translation of the serialized memory traces into a matrix memory access pattern.

Serialized
Memory

Memory Access
Pattern Time
Line

P0 Pn-1

M0

Md-1

P0 Pn-1

M0

Md-1

P0 Pn-1

M0

Md-1

P4-M3

...

...

...
References

A TDNN on-line simulator [5] trains at each time step using the following parameters:weights are initialized using a
uniform random distribution in the interval [-1/fan_in, 1/fan_in], where fan_in is the number of connections that enter
a neuron;bias weights are used in the hidden and output layers only; total number of weights is 2282; ahyperbolic
tangent activation function is used for hidden neurons andlinear activation function for output neurons;training set
size is a memory access vector that is trained on every time step; The training set is covered only once (max # of
epochs = 1); learning rate is set to 0.01.

Learning is delayed by one time step since the target output for each input is available after one time step (one step
prediction). All simulations discussed below use the same parameters. Having the same neural net architecture for all
problems facilitates future hardware implementation.

3.3 Prediction Evaluation

The TDNN predictions are used as hints to the SSR while routing the memory access data. The number of IN faults
incurred while performing the routing is logged and compared to the number of faults incurred without using the
TDNN predictions.

4 Experimental Results

4.1 Temperature Propagation(2D Relaxation Algorithm)

The first program is a temperature propagation/ 2D relaxation algorithm. This parallel program is written for the 8×8
SMM simulator discussed earlier. The TDNN simulator is trained on the memory access pattern generated by a time
window of length 5000, which is large enough to emphasize the changes in the pattern (Figure 3a).

The SSR performs the routing of the actual memory accesses while using the neural network predictions as hints to
the SSR. Figure 3b depicts the (time averaged) number of faults incurred while routing the memory accesses with and
without the TDNN predictions. This plot shows a ramp like shape for the initial 100 time steps since the time averag-
ing window used here is of length 100.

For this program, the memory access pattern is stair-like (Figure 3a), where each discontinuity depicts a change in the
memory access pattern. For the TDNN to be effective, it has to predict the “steps” in the access pattern because dur-
ing the “stairs” the state sequence satisfies all accesses. As Figure 3b illustrates, the TDNN predictions greatly reduce
the number of faults incurred. Hence, the TDNN is capable of predicting the changes in the memory access patterns
thus removing the latency of servicing these faults.

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400

M
e
m

o
ry

 m
o
d
u
le

 #

�

Time

Communication data pattern (win =)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350 400

#
 o

f
fa

u
lts

�

Time

Number of faults time averaged for the POPS emulator, with and without NN prediction (--- no-nn)

without neural net prediction

using neural net prediction

Fig. 3: (a) The memory access pattern of the temperature propagation program. (b) The number of network
faults incurred with and without the TDNN predictions (time averaged).

M
em

or
y

M
od

ul
e

F
au

lts

(a)
Time Window

(b)
Time Window

4.2 Matrix Multiply

Our second application is a repetitive matrix multiply program. The memory access pattern is generated using a time
window of length 5000 (Figure 4a).

This program exhibits more complex memory access patterns since each processor alternates its accesses to the mem-
ory modules in a less uniform fashion than the temperature propagation program. The plot of the time averaged num-
ber of IN faults incurred while routing the memory accesses is shown in Figure 4b. This shows that the TDNN
predictions aid the SSR in decreasing the number of faults after several pattern repetitions.

4.3 Fast Fourier Transform

For the third experiment, the memory access pattern is generated from a repetitive 1D Fast Fourier Transform (FFT)
program. In this example, a window of size 1000 time units suffices to emphasize the changes while generating the
memory access pattern (Figure 5a). The number of faults that occur during the routing are time averaged and plotted
vs. time in Figure 5b which shows that the neural network is also capable of learning and predicting the memory
access pattern of the FFT.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250 300 350 400 450 500

#
 o

f
fa

u
lts

�

Time

Number of faults time averaged for the POPS emulator, with and without NN prediction (-- no-nn)

without neural net prediction

using neural net prediction

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450 500

M
e
m

o
ry

 m
o
d
u
le

 #

�

Time

Communication data pattern (win = 5000)

F
au

lts

Fig. 4: (a) The memory access pattern of the matrix multiply program. (b) The number of network faults
incurred with and without the TDNN predictions (time averaged).

M
em

or
y

M
od

ul
e

(b)
Time Window

(a)
Time Window

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120 140 160

#
 o

f
fa

u
lts

�

Time

Number of faults time averaged for the POPS emulator, with and without NN prediction (--- no-nn)

Fig. 5: (a) The memory access pattern of the FFT program. (b) The number of network faults incurred
with and without the TDNN predictions (time averaged).

without neural net prediction

using neural net prediction

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180

M
e

m
o

ry
 m

o
d

u
le

 #

�

Time

Communication data pattern (win =)

(a)
Time Window

(b)
Time Window

M
em

or
y

M
od

ul
e

F
au

lts

5 Conclusions
Large scale shared memory multiprocessors need reconfigurable interconnection networks (INs). However, these INs
suffer a high overhead due to control latency. To reduce control latency, a time-delay neural network was trained to
learn and predict repetitive memory access patterns for three applications,temperature propagation, matrix multiply
andFast Fourier Transform. The predictions were used by a state sequence routing control algorithm to reduce con-
trol latency by providing needed paths before they were requested.

The experiments show that coupling state sequence routing with the time delay neural network (TDNN) prediction
technique reduces the number of faults incurred by the state sequence router. The cumulative number of faults is
reduced by a factor of 2.14 for the temperature propagation program, 2.18 for the matrix multiply program and 3.28
for the FFT program. Furthermore, we show that the faults decrease with time, and we speculate that if the programs
execute for longer periods than in our experiments, the cumulative number of faults will be reduced by a much larger
factor. Reducing the number of faults reduces the control latency toward the limit ofk/2, half the sequence length.

The ability of the TDNN to learn the memory access patterns of these parallel programs is based on two observations:
the parallel programs exhibit some underlying characteristic for repetitiveness in their memory accesses; and, the
changes in the memory access patterns are emphasized by using windowing techniques which compress the overall
access pattern. The windowing process facilitates the learning of the memory access pattern, but the predictions are
made at a granularity of the window size. Nevertheless, the state sequence router can use the TDNN predictions to do
anticipatory reconfiguration of the IN and thereby satisfy the forthcoming memory accesses. Even if the predictions
are made many time steps in the future, the state sequence router has the ability to store early predictions until their
actual use. Therefore, the prediction of future memory accesses is performed successfully by the TDNN which
reduces the communication latency for the applications tested.

5.1 Future Work

Our immediate plan is to compare the performance of the TDNN predictor to that of an on-line linear predictor to
determine if neural network predictors are really needed. We also plan to test the performance of a first order Markov
predictor. Other machine learning algorithms could also prove attractive.

We must address how these prediction methods effect actual performance of real multiprocessors. Can these predic-
tion methods be implemented in hardware and can their results be effectively used? Finally, we would like to investi-
gate the applicability of time series prediction techniques to the general problem of latency hiding at all levels of the
memory hierarchy.

Acknowledgments

S. P. Levitan and D. M. Chiarulli would like to acknowledge support from AFOSR Grant F-49620-93-1-0023 for
work done at the University of Pittsburgh.

References

[1] Bigrigg, M. “Personal Communication,” 1992.

[2] Chiarulli, D. M., Levitan, S. P., Melhem, R. G., Qiao, C., “Locality Based Control Algorithms for Reconfigurable
Interconnection Networks,”Applied Optics, vol. 33, pp. 1528-1537, 1994.

[3] Johnson, K. L., “The Impact of Communication Locality on Large-Scale Multiprocessor Performance”,Computer
Architecture News, vol. 20, pp 392-402, 1992.

[4] Lang, K. J., Waibel, A. H., Hinton, G. E., “A time-delay neural network architecture for isolated word recogni-
tion,” Neural Networks, vol. 3, pp. 23-44, 1990.

[5] Maggini, M., “Personal Communication,” 1994.

[6] Sakr, M. F., Predicting Multiprocessor Communication Patterns with Neural Networks, M.S. Thesis, Dept. of EE,
University of Pittsburgh, 1995.

[7] Sakr, M. F., Levitan S. P., Giles C. L., Horne B. G., Maggini M., Chiarulli D. M.,Predictive Control of Opto-Elec-
tronic Reconfigurable Interconnection Networks using Neural Networks, Proceedings of the Second International
Conference on Massively Parallel Processing Using Optical Interconnections, 1995.

[8] Siegel, H. J. (1990)Interconnection Networks for Large-Scale Parallel Processing, McGraw-Hill, NY.

[9] Weigend, A. S., Gershenfeld, N. A. (1993)Time Series Prediction: Forecasting the Future and Understanding the
Past, Addison-Wesley.

