Representation of Fuzzy Finite State Automata
in Continuous Recurrent Neural Networks *

Christian W. Omlin ¢, Karvel K. Thornber ¢, C. Lee Giles %
* NEC Research Institute, Princeton, NJ 08540

> UMIACS, U. of Maryland, College Park, MD 20742
Phone: (609) 951-{2691,2642,2622} FAX: (609) 951-2682

e-mail: {omlinc karvel giles}@research.nj.nec.com

ABSTRACT

Based on previous work on encoding deterministic finite-state automata (DFAs) in discrete-
time, second-order recurrent neural networks with sigmoidal discriminant functions, we propose
an algorithm that constructs an augmented recurrent neural network that encodes fuzzy finite-
state automata (FFAs). Given an arbitrary FFA, we apply an algorithm which transforms the
FFA into an equivalent deterministic acceptor which computes the fuzzy string membership
function. The neural network can be constructed such that it recognizes strings of fuzzy regular
languages with arbitrary accuracy.

1. Introduction

There has been an increased interest in combining artificial neural networks and fuzzy systems (see [2] for a
collection of papers). Fuzzy logic [21] provides a mathematical foundation for approximate reasoning; fuzzy
logic controllers have proven very successful in a variety of applications. The parameters of adaptive fuzzy
systems have clear physical meanings which facilitates the choice of their initial values. Furthermore, rule-
based information can be incorporated into fuzzy systems in a systematic way. Artificial neural networks
emulate on a small scale the information processing mechanisms found in biological systems which are based
on the cooperation of neurons which perform simple operations and on their ability to learn from examples.
Artificial neural networks have become valuable computational tools in their own right for tasks such as
pattern recognition, control, and forecasting. Fuzzy systems and multilayer perceptrons are computationally
equivalent, i.e. they are both universal approximators [3, 19]. Recurrent neural networks have been shown
to be computationally equivalent with Turing machines [16]; whether or not recurrent fuzzy systems are also
Turing equivalent remains an open question. While the methodologies underlying fuzzy systems and neural
networks are quite different, their functional forms are often similar. The development of powerful learning
algorithms for neural networks has been beneficial to the field of fuzzy systems which adopted some learning
algorithms; e.g. there exists a backpropagation training algorithms for fuzzy logic systems which are similar
to the training algorithms for neural networks [7].

A large class of problems where the current state depends on both the current input and the previous state
can be modeled by finite-state automata or their equivalent grammars. It has been shown that recurrent
neural networks can represent deterministic finite-state automata (DFAs) [1, 5, 6, 11]. Thus, it is only natural
to investigate whether recurrent neural networks can also represent fuzzy finite-state automata (FFAs) and
thus be used to implement recognizers of fuzzy regular languages.

The purpose of this paper is to show that recurrent networks that can represent DFAs can be easily modified
to accommodate FFAs. Our results show that FFAs can be encoded into recurrent networks such that a
constructed network assigns membership grades to strings of arbitrary length with arbitrary accuracy. Notice
that we do not claim that such a representation can be learned.

Fuzzy grammars have been found to be useful in a variety of applications such as in the analysis of X-
rays [12], in digital circuit design [10], and in the design of intelligent human-computer interfaces [14]. The
fundamentals of FFAs have been in discussed in [13] without presenting a systematic method for machine
synthesis. Neural network implementations of fuzzy automata have been proposed in the literature [8, 9, 18].
A general synthesis method for synchronous fuzzy sequential circuits has been discussed in [20]. A synthesis
method for a class of discrete-time neural networks with multilevel threshold neurons with applications to
gray level image processing has been proposed in [15].

*Published in Proceedings of IEEE International Conference on Neural Networks, p. 1023, IEEE Press, 1996. Copyright
IEEE.

2. Finite State Automata and Recurrent Neural Networks

Recurrent neural networks have been shown to be at least computationally equivalent to Turing machines [16].
Their computational power and training ability make them useful tools for modeling nonlinear dynamical
systems. DFAs can be represented in many discrete-time, recurrent network architectures [1, 5, 6]. We
choose for convenience networks with second-order Weights Wijr. The continuous network dynamlcs are
described by the following equations:

S = hai (1) = e () = b+ 3 WS,

ik
where b; is the bias associated with hidden recurrent state neurons S;; I denotes input neurons; h is the
nonlinearity; and a; is the activation of the ith neuron. The product S}I}c in the DFA directly corresponds
to the state transition 6(g;,ar) = ¢;. After a string has been processed, the output of a designated neuron
Sp decides whether the network accepts or rejects a string. The network accepts a given string if the value

of the output neuron S} at the end of the string is greater than some preset value such as 0.5; otherwise, the
network rejects the string. For the remainder of this paper, we assume a one-hot encoding for input symbols

ay, i.e. It € {0,1}.

We have recently proven that DFAs can be encoded in discrete-time, second-order recurrent neural networks
with sigmoidal discriminant functions such that the DFA and constructed network accept the same regular
language [11]. The desired finite-state dynamics are encoded into a network by programming a small subset of
all available weights to values +H and — H leading to a nearly orthonormal internal DFA state representation:

Theorem 2.1 For any given DFA M with n states and m input symbols, there exists a sparse recurrent
neural network with n + 1 sigmoidal state neurons and m input neurons can be constructed from M such
that the internal state representation remains stable. Furthermore, the constructed network has at most
3mn second-order weights with alphabet X, = {—H,0,+H}, n+ 1 biases with alphabet ¥y = {—H/2}, and
mazimum fan-out 3m.

The above theorem can be be proven by showing that there exists a lower bound on the magnitude of H
which guarantees stable state dynamics for strings of arbitrary length. The number of weights and the
maximum fan-out follow directly from the DFA encoding algorithm.

Since deterministic and fuzzy finite state automata share a common underlying structure expressed in terms
of state transitions, we will be able to use the result on the stability of the network dynamics for DFAs to
implement fuzzy finite-state automata.

3. Fuzzy Finite State Automata

We begin by defining the class of fuzzy automata for which we develop a synthesis method for recurrent
neural networks:

Definition 3.1 A fuzzy regular grammar G is a quadruple G =< S, N, T, P > where S is the start symbol,
N and T are non-terminal and terminal symbols, respectively, and P are productions of the form A Loaor
AL aB where A/ BeN,aeT and 0 <60 < 1.

Definition 3.2 Given a regular fuzzy grammar é, the membership grade pg(x) of a string x € T in the

regular language L(é) ts the mazimum value of any derivation of x, where the value of a specific derivation
of x 1s equal to the minimum weight of the productions used:

ua() = pa(S = x) = max minfug(S — a1), pe(ar — az), ..., pg(am —)]
S=z

This is akin to the definition of stochastic regular languages where the min-and max-operators are replaced
by the product- and sum-operators, respectively.

Definition 3.3 A fuzzy finite state automaton (FFA) M is a 6-tuple M =< ¥,Q,7Z, R, 6,w > where X
ts the wput alphabet, Q) s a set of fuzzy states, 7 is a finite oulpul alphabet, R is the fuzzy initial state,
6 :XxQ x[0,1] = Q s the fuzzy transition map and w : Q — Z 15 the output map.

String Membership

|

t
recurrent state neurons @ J

second-order weightsW__k
[

Fig. 1: Recurrent Network Architecture for Fuzzy Finite State Automata: The architecture consists of two parts:
Recurrent state neurons with second-order weights implement the finite-state dynamics of the deterministic acceptor. The state
neurons are connected via weights to a linear output neuron. The value of the weights is equal to the labels u; of states g; of
the deterministic acceptor.

In this paper, we consider a restricted type of fuzzy automaton whose initial state is not fuzzy, and w is a
function from F' to Z, where F' is a non fuzzy subset of states, called final states. Any fuzzy automaton as

described in definition 3.3 is equivalent to a restricted fuzzy automaton [4]. !

There exists a correspondence between FFAs and fuzzy regular grammars [4]:

Theorem 3.1 For a given fuzzy grammar G, there exists a fuzzy automaton M such that L(é) = L(M)

Our goal is to use only continuous (sigmoidal and linear) discriminant functions for the neural network
implementation of FFAs. The following results greatly simplifies the encoding of FFAs in recurrent networks
with continuous discriminant functions:

Theorem 3.2 Given a regular fuzzy grammar C~¥, there exists a deterministic finite state automaton M
with output alphabet Z C {0 : 6 is a production weight} U {0} which computes the membership function

pX* —[0,1] of the language L(G).

The constructive proof can be found in [17]. An immediate consequence of this theorem is the following
corollary:

Corollary 3.1 Given a regular fuzzy grammar é, there exist an equivalent unambiguous grammar G in
which productions have the form A YWaBorAt a

Thus, all states ¢; in the deterministic acceptor M are assigned a label 0 < p; < 1 such that pe(z) = y; if
&z, R,) = ¢;.

4. Network Architecture for Fuzzy Automata

Theorem 3.2 enables us to transform any FFA into a deterministic automaton which computes the same
membership function u : ¥* — [0, 1]. We just need to demonstrate how to implement the computation of
1 with continuous discriminant functions. For that purpose, we augment the network architecture used for
encoding DFAs with additional weights which connect the recurrent state neurons to a linear output neuron.
The recurrent neurons shown in figure 1 implement the desired finite state dynamics (see also theorem 2.1).
The weights connecting the recurrent state neurons with the linear output neuron are just the memberships
assigned to the DFA states after the transformation of a FFA into an equivalent DFA.

1 Notice that FFAs reduce to DFAs when Z = {0,1}, and the weights of all transitions are set to 1. This leaves open the
possibility of non-deterministic finite-state automata (NDFAs). However, for each NDFA, there exists a DFA which accepts the
same language: L(Mypra) = L(Mppa). Thus, states g; in DFAs with w(g;) = 1 and w(g;) = 0 are labeled accepting and
rejecting states, respectively.

5 6F |
0

5

g st]
>

O \\

T 4l 100% |
2 \

[}

P4 \

Q

5 3+ I 4
2 50%,

< Y R]
S . 30%

g mO

o RN .

z 1120%: s 1

10 12 14 16 18 20
Weight Strength H

Fig. 2: Network Performance: The graphs show average absolute error of the network output when tested on 100 randomly
generated strings of length 100 as a function of the weight strength H used to encode the finite state dynamics of randomly
generated DFAs with 100 states. The percentages of DFA states with p; > 0 were 1%, 5%, 20%, 30%, 50% and 100% respectively,
of all DFA states.

Let p; denote the graded memberships assigned to DFA states ¢;. In the worst case, the network computes
for a given string the fuzzy membership function

BENN = i &7 + (Rgec — 1) ¢~
where ng.. is the number of DFA states with p; > 0.

Since ¢~ and ¢ converge toward 0 and 1, respectively for increasing values of H, ugyn converges toward
p;. Notice that |ugnn — pi| can be made arbitrarily small by increasing H.

5. Simulation Results

We randomly generated deterministic acceptors for fuzzy regular languages over the alphabet {0, 1} with 100
states as follows: For each DFA state, we randomly generated a transition for each of the two input symbols
to another state. Each accepting DFA state ¢; was assigned a membership 0 < y; < 1; for all non-accepting
states q;, we set u; = 0. We encoded these acceptors into recurrent networks with 100 recurrent state
neurons, two input neurons (one for each of the two input symbols 0 and 1), and one linear output neuron.
We measured their performance on 100 randomly generated strings of length 100 whose membership was
determined from their deterministic acceptors. The graphs in figure 2 show the average absolute error of
the network output as a function of the weight strength H used to encode the finite state dynamics for
DFAs where 1%, 5%, 20%, 30%, 50% and 100% of all states had labels 0 < u; < 1. We observe that
the error exponentially decreases with increasing weight strength H, i.e. the average output error can be
made arbitrarily small. The value of H for which the dynamics of all six DFAs remains stable for strings of
arbitrary length is approximately H ~ 9.8.

6. Conclusions

We have proposed a method for representing fuzzy finite state automata (FFASQ in recurrent neural networks
with continuous discriminant functions. Based on a previous result on encoding stable representations of
finite state dynamics in recurrent networks, we have shown how FFAs can be encoded in recurrent networks
that compute string membership functions with arbitrary accuracy. The method uses an algorithm which
transforms FFAs into equivalent DFAs which compute fuzzy string membership. A membership label g;
with 0 < p; < 1 is associated with each accepting DFA state; nonaccepting DFA states have label y; = 0.
The membership of a string is equal to the membership label of the last visited DFA state.

A recurrent network is constructed from the original architecture used for DFA encodings by connecting
the recurrent state neurons to a linear output neuron. The weights of these connections are set to the value
of the membership labels of the DFA states. The accuracy of the computation of the string membership
function depends on the network size, the number of DFA states which membership label g; > 0, and the
weight strength H used to encode the finite state dynamics in the recurrent network. The larger H is chosen,

the more accurate the network computes membership functions.

An interesting question is whether representations of FFAs can be learned through training on example
strings and how weighted production rules are represented in trained networks. Such insight may lead to a
more direct encoding of FFAs in recurrent networks without the additional step of transforming FFAs into
equivalent DFAs which compute the same string membership functions, i.e. a fuzzy representation of states
and outputs. This may lead to smaller analog VLSI implementations of finite state controllers.

One problem with training fully recurrent networks with sigmoidal discriminant functions to behave like
FFAs is the instability of learning algorithms based on gradient descent, i.e. it can become very difficult
to train sigmoidal neurons to target values which are outside of the saturated regions of the discriminant
function. This suggests the use of continuous multilevel threshold neurons [15] which also have the potential
for stable internal DFA state representations. Whether training such networks is feasible remains an open
question.

References

1] R. Alquezar and A. Sanfeliu, “An algebraic framework to represent finite state machines in single-layer
recurrent neural networks,” Neural Computation, vol. 7, no. 5, p. 931, 1995.

2] J. Bezdek, ed., IEEE Transactions on Neural Networks — Special Issue on Fuzzy Logic and Neural
Networks, vol. 3. IEEE Neural Networks Council, 1992.

3] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Control,
Signals, and Systems, vol. 2, pp. 303-314, 1989.

4] D. Dubois and H. Prade, Fuzzy sets and systems: theory and applications, vol. 144 of Mathematics in

Science and Engineering, pp. 220-226. Academic Press, 1980.

] P. Frasconi, M. Gori, M. Maggini, and G. Soda, “Representation of finite state automata in recurrent

radial basis function networks,” Machine Learning, 1995. In press.

] C. Giles, C. Miller, D. Chen, H. Chen, G. Sun, and Y. Lee, “Learning and extracting finite state

automata with second-order recurrent neural networks,” Neural Computation, vol. 4, no. 3, p. 380,

1992.

[
[
[
[
[5
[

6

Conference on Fuzzy Systems, pp. 1163-1170, 1992.

[7] V. Gorrini and H. Bersini, “Recurrent fuzzy systems,” in Proceedings of the Third IEEE Conference on
Fuzzy Systems, vol. 1, pp. 193-198, 1994.
[8] J. Grantner and M. Patyra, “Synthesis and analysis of fuzzy logic finite state machine models,” in
Proceedings of the Third IEEE Conference on Fuzzy Systems, vol. I, pp. 205-210, 1994.
[9] S. Lee and E. Lee, “Fuzzy neural networks,” Mathematical Biosciences, vol. 23, pp. 151-177, 1975.
[10] S. Mensch and H. Lipp, “Fuzzy specification of finite state machines,” in Proceedings of the European
Design Automation Conference, pp. 622-626, 1990.
[11] C. Omlin and C. Giles, “Stable encoding of large finite-state automata in recurrent neural networks
with sigmoid discriminants,” Neural Computation, 1996. Accepted for publication.
[12] A. Pathak and S. Pal, “Fuzzy grammars in syntactic recognition of skeletal maturity from x-rays,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 16, no. 5, pp. 657-667, 1986.
[13] E. Santos, “Maximin automata,” Information and Conirol, vol. 13, pp. 363-377, 1968.
[14] H. Senay, “Fuzzy command grammars for intelligent interface design,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 22, no. 5, pp. 1124-1131, 1992.
[15] J. Si and A. Michel, “Analysis and synthesis of a class of discrete-time neural networks with multilevel
threshold neurons,” IEEFE Transactions on Neural Networks, vol. 6, no. 1, p. 105, 1995.
[16] H. Siegelmann and E. Sontag, “On the computational power of neural nets,” Journal of Computer and
System Sciences, vol. 50, no. 1, pp. 132-150, 1995.
[17] M. Thomason and P. Marinos, “Deterministic acceptors of regular fuzzy languages,” IEEE Transactions
on Systems, Man, and Cybernetics, no. 3, pp. 228-230, 1974.
[18] F. Unal and E. Khan, “A fuzzy finite state machine implementation based on a neural fuzzy system,”
in Proceedings of the Third International Conference on Fuzzy Systems, vol. 3, pp. 1749-1754, 1994.
[19] L.-X. Wang, “Fuzzy systems are universal approximators,” in Proceedings of the First International
[20]
[21]

